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Abstract6

We develop a new method for imaging the spatial variations of the anisotropy of the flexural response of the litho-7

sphere, and apply it to recent topographic and gravity data sets over Australia. The method uses two-dimensional8

Morlet wavelet transforms, superposed in a strictly controlled geometry, to estimate the auto- and cross-spectra of the9

two data sets in a number of different directions. The resulting wavelet coherence is a function of scale, or wavelength,10

as well as orientation, and is inverted, at each spatial location, for the three parameters of an anisotropic, thin elastic11

plate model, i.e., maximum and minimum flexural rigidities and the orientation of the maximum. Extensive tests of12

the method on synthetic anisotropic, but uniform, data sets, show that it retrieves the amplitude and orientation of13

the anisotropy with useful accuracy.14

The results for Australia west of 143◦E show a strong correlation with the shallower layers (75–175 km) of a recent15

model of seismic SV wave azimuthal anisotropy. The ‘weak’ axes (i.e., of minimum flexural rigidity) in most cases are16

approximately at right angles to the fast axes of the seismic anisotropy, implying that, for Precambrian Australia,17

they arise from the same source. This is most likely deformation resulting from the most recent episode of orogeny.18
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1. Introduction21

Estimates of the mechanical strength of the continental and oceanic lithosphere may be obtained from22

spectral isostatic analyses. The concept of isostasy provides a physical model that relates loading on and23

within the Earth to the compensating buoyancy of a subsurface density distribution, as in Archimedes’24

principle. Current isostatic models and plate tectonic theory describe a mechanically strong lithosphere25

‘floating’ on an inviscid, higher density asthenosphere, where long-term loading is supported by flexure26

of the lithosphere and the corresponding displacement of the asthenosphere. The degree of this flexure is27

determined by the lithosphere’s flexural rigidity (D), a measure of its mechanical strength, which is more28

often expressed in terms of an effective elastic thickness (Te), the two being related by:29

D =
E T 3

e

12(1− σ2)
(1)30

(e.g., Watts, 2001), where E is Young’s modulus, and σ is Poisson’s ratio. Hence, these terms, D and Te, are31

used interchangeably when referring to the same physical process. The magnitude of Te (D) depends upon32

many factors, including the temperature, composition and state of stress of the lithosphere, and controls33

the tectonic evolution of a region, with large-scale Te variations known to correlate with tectonic province34

boundaries and seismicity (e.g., Lowry and Smith, 1995).35

The lithosphere’s thickness can be characterised in several ways. Its thermal thickness, corresponding to36

the depth at which heat transfer mechanisms change from conduction to convection, can reach magnitudes37

of up to 350 km (e.g., Artemieva and Mooney, 2001). Its seismogenic thickness, governed by the depth38

to the brittle/ductile transition, has values reaching 25 km (e.g., Watts and Burov, 2003). The continental39

elastic thickness, however, is not a physical length parameter, and does not correspond to the depth to which40

lithospheric rocks behave elastically, as has been suggested in the past (e.g., McNutt, 1990), although there41

may be some correlation in the oceans (e.g., Watts, 1978). Burov and Diament (1995) and Watts and Burov42

(2003) have demonstrated that Te represents the thickness of an equivalent elastic plate that best models the43

flexural properties of the lithosphere, regardless of its actual rheology. As such, Te is a mechanical, rather44

than geometrical, property, and indeed, some researchers prefer to present results in terms of the flexural45

rigidity, which avoids assumptions of the associated elastic constants E and σ.46

In the spectral isostatic method, the Bouguer gravity anomaly and topographic signature are compared47

via the construction of two wavelength-dependent functions, the admittance and coherence. The former is48

essentially a transfer function from topography to gravity, while the latter is the square of the correlation49

coefficient in the wavenumber (spatial frequency) domain between these signals. The reasoning goes that50

large topographic features (loads) will flex even strong plates: the loads are buoyed by isostatic compensation51
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which generates large Bouguer anomalies, resulting in a coherence that approaches unity. Smaller features, in52

contrast, will be adequately supported by the plate’s mechanical strength, generating little or no associated53

Bouguer anomaly: the coherence at these wavelengths approaches zero. The transition wavelength at which54

the coherence approximates 0.5 is indicative of the scale at which isostatic compensation begins to prevail55

over mechanical support, as load size increases. Within a strong/thick plate, the transition wavelength has56

large values; whereas within weak/thin plates, the coherence “rolls-over” at shorter wavelengths. In the57

classical method, both admittance and coherence are computed in the Fourier domain (e.g., Forsyth, 1985),58

though in recent work, their relationship has been analysed through the wavelet transform (Stark et al.,59

2003; Kirby and Swain, 2004). By comparing predictions from theoretical loading models with the observed60

admittance and coherence, Te may, in principle, be determined.61

The theoretical model most commonly used to interpret the observations is the flexure of a thin elastic62

plate (e.g., Watts, 2001). Such a plate has the properties that its vertical deflections under loading are small63

compared to its thickness, and that this thickness is small compared to the lateral extent of the plate, which64

is true in a majority of tectonic regimes. An alternative model is that of the thick plate (Comer, 1983;65

Wolf, 1985). However, Banks et al. (1977) and Watts (2001) conclude that the errors that arise through66

the approximations and assumptions of thin-plate theory are not important, considering that most of these67

errors are manifest in the short wavelengths, and not around the transition wavelengths of importance in68

Te-estimation. Hence, thin plate theory is adequate at modelling most tectonic environments.69

In the past, theoretical admittances and coherences have been computed from the loading of an isotropic70

and uniform thin elastic plate, that is, one in which the loading response is equal in all directions from the71

applied load. However, given the highly variable temperature, compositional and stress regimes present in72

the lithosphere, and the existence of faulting of all orientations, it is clear that the loading response of the73

lithosphere will not generally be isotropic or uniform at all scales.74

More recently, several researchers have attempted to detect anisotropy in the flexural rigidity by analysing75

observed data with two-dimensional (2D) techniques (such as maximum entropy or multitaper spectral76

estimators) and interpreting the results as evidence of anisotropy (e.g., Lowry and Smith, 1995; Simons et77

al., 2000, 2003; Audet and Mareschal, 2004). These studies, however, have not used an anisotropic plate78

model by which to interpret their observed coherences.79

Using such a plate model, anisotropic estimates of Te were computed for central Australia by Swain80

and Kirby (2003b). In this approach, an observed 2D coherence, computed by the multitaper method,81

was compared with a theoretical coherence predicted by loading on an anisotropic, thin elastic plate with82

assumed values of Tx, Ty (being the anisotropic elastic thicknesses) and the orientation of weakest rigidity,83
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and based on a straightforward modification of the isotropic equations of Banks et al. (2001). The estimated84

values of Tx, Ty and anisotropy direction for central Australia were those that minimised the misfit between85

theoretical and observed coherence.86

The present study forms an extension to this work. Differences with Swain and Kirby (2003b) involve87

the replacement of the multitaper Fourier method by the wavelet transform through which to estimate88

observed coherence (Kirby and Swain, 2004), and an anisotropic development of coherence estimation. Swain89

and Kirby (2006) have also extended the “predicted coherence method” of Forsyth (1985) to the wavelet90

domain for isotropic Te-estimation, and while we have also tackled anisotropic Te-estimation in this fashion,91

the following study concerns the approach using theoretical coherence equations with an assumed ratio of92

subsurface to surface loads. This assumption means that our anisotropy directions (but not magnitudes) will93

be strictly comparable with those measured directly from coherence anisotropy, as in the studies by Simons94

et al. (2003), for example, which do not depend on the thin plate model. As noted below, the differences95

between the results of these two approaches are generally quite small, though occasionally significant, and96

in particular, the conclusions of the present study are not changed by the use of Forsyth’s method.97

2. The wavelet admittance and coherence98

2.1. Isotropic case99

In the classical method of spectral isostatic analysis, the Fourier transform is utilised to estimate the100

frequency characteristics of the isostatic admittance and coherence, whether through the conventional pe-101

riodogram, or more recently multitaper methods. The drawback of the isotropic Fourier approach is that102

only one estimate of the coherence (and admittance) is achievable for a data window. These parameters are103

dependent on wavenumber only, and all spatial information is irretrievable. The most common method used104

to circumvent this deficiency involved the windowed Fourier transform (WFT) (e.g., Lowry and Smith, 1994;105

Poudjom Djomani et al., 1999; Pérez-Gussinyé et al., 2004). In this approach, the coherence and admittance106

are estimated within a moving window, smaller than the study area, as in the Gabor transform. Within107

each window, comparison of the observed and theoretical coherences yields Te values that can be mapped,108

giving the variation of elastic thickness over the study area. The choice of window size depends upon the109

strength of the plate being mapped, with larger windows needed to estimate larger plate thicknesses, due110

to their larger transition wavelengths (e.g., Macario et al., 1995).111

However, the WFT suffers from two shortcomings. First, owing to its fixed window size, it performs best112

on data having a narrow wavenumber bandwidth, and cannot easily resolve broadband signals (e.g., Addison,113
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2002). Even though gravity and topography data have red spectra, they are not narrow-band signals. The114

second disadvantage lies in the trade-off between window size and resolution. On the one hand, use of a small115

window can better represent the spatial variation of Te over a large study area, though it will not resolve any116

transition wavelengths longer than the window size. On the other hand, while larger windows can resolve117

longer wavelengths, they run the risk of averaging the elastic thicknesses within a region of highly variable118

Te, thus not representing the high-frequency variations on the overall map.119

The wavelet transform was developed by Grossman and Morlet (1984) to overcome the deficiencies of the120

WFT. Whereas Fourier coefficients are dependent on wavenumber only, wavelet coefficients are functions of121

both wavenumber and spatial coordinates. This valuable extra information is achieved through convolution122

of a signal with localised basis functions (the wavelet), rather than with the infinitely-extending (though in123

practice truncated) sinusoids of Fourier analysis.124

In this study, we use the 2D continuous wavelet transform (CWT) in place of the Fourier transform125

when computing the auto- and cross-correlations of gravity and topography data needed in admittance and126

coherence analyses. This then gives these quantities as functions of wavenumber, geographical location, and127

azimuth, so that a map of the directional variations of flexural rigidity may be computed. Kirby (2005)128

provides a brief introduction to the 2D CWT, while a more complete discussion can be found in, e.g., Farge129

(1992) or Antoine et al. (2004).130

In practice, the 2D CWT of a signal is computed via the Fourier transform, which speeds up the convolution131

procedure. For a 2D space-domain signal y(x), its wavelet coefficients, ỹ(s,x, θ), are generated through a132

computational implementation of the following formula:133

ỹ(s,x, θ) = F−1
{

ŷ(k) ψ̂∗s,θ(k)
}

(2)134

where, x = (x, y) is the space-domain position vector, for grid eastings (or longitude), x, and grid northings135

(or latitude), y; s is the wavelet scale, described later; θ is the rotation parameter, determining the resolving136

azimuth of the wavelet; k = (u, v) is the 2D wavenumber, where u is the wavenumber in the x-direction,137

and v that in the y-direction; F−1 is the inverse 2D Fourier transform; and ŷ(k) is the 2D Fourier transform138

of the signal.139

The ψ̂∗s,θ(k) are the complex conjugates of the 2D Fourier transforms of the ‘daughter’ wavelets. They are140

derived from a ‘mother’ wavelet, ψ̂(k), through the relationship:141

ψ̂s,θ(k) = s ψ̂(s Ω(θ) k) (3)142

That is, the mother wavelet is both dilated and weighted by the chosen scale, s, and also rotated through a143

chosen angle θ, to yield a daughter wavelet. In Eq. (3), the rotation matrix, Ω(θ), for positive-anticlockwise144
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rotations, θ, of the mother wavelet is given by:145

Ω(θ) =




cos θ sin θ

− sin θ cos θ




(4)146

The translation of the daughter wavelet over the signal is achieved by convolution in the space-domain, or147

equivalently via Eq. (2) in the wavenumber-domain, enabling a region-by-region analysis of the signal. The148

computation is performed for many values of scale and azimuth, where the former are usually chosen to span149

the complete bandwidth of the signal, and our choice of the latter is discussed in Sections 2.2, 5 and 6. The150

wavelet scale, s, determines the width (dilation) of the daughter wavelet in the space domain, and hence151

determines resolution. At large scales, the wavelet coefficients reveal long wavelengths in the data; at small152

scales they show short wavelengths. In this regard, the wavelet transform resembles a series of band-pass153

filters. It is the combination of this dilation with the translation which allows the frequency characteristics154

at each location of the signal to be revealed.155

The choice of analysing wavelet is important with regards to a final interpretation of the CWT, particularly156

when computing the isostatic coherence. First, the Fourier transform of some real-valued, asymmetrically-157

distributed data, y(x), is a Hermitian function, ŷ(k), whose real component is an even function, and imagi-158

nary component is an odd function. The imaginary part, Im[ŷ(k)], is shown schematically in Figure 1, and159

it can be seen that the lower two quadrants in the wavenumber domain contain redundant information: they160

are merely (negative) mirrors of the upper two quadrants for the imaginary component, and positive mirrors161

for the real component (not shown). Hence, if isotropic information from a signal is desired, then only the162

upper two quadrants need be analysed.163

FIGURE 1 HERE164

Now consider the isostatic coherence. Conventionally, the Fourier coherence between Bouguer gravity165

anomalies, b(x), and topography/bathymetry, h(x), is computed in the wavenumber domain from averages166

of their auto- and cross-spectra:167

γ2
F(|k|) =

∣∣∣∣
〈
b̂ ĥ∗

〉
|k|

∣∣∣∣
2

〈
b̂ b̂∗

〉
|k|

〈
ĥ ĥ∗

〉
|k|

(5)168

(Forsyth, 1985), where the 〈·〉|k| represents an averaging over annuli of similar scalar wavenumber. Alter-169

natively, other methods of averaging may be performed, such as through one of the multitaper spectral170

estimators (e.g., Simons et al., 2000, 2003), in which case the Fourier coherence is a function of 2D, and not171

1D, wavenumber. What is important, though, is that some form of averaging must be performed: if not then172
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the numerator and denominator in Eq. (5) cancel and the coherence is unity at all wavenumbers.173

With the wavelet coherence, we perform an azimuthal averaging in the wavenumber domain, constrained174

by the geometry of the ‘fan’ wavelet (Kirby, 2005). The fan wavelet is constructed from a strictly controlled175

superposition of 2D Morlet wavelets which are able to exactly reproduce the Fourier power spectrum of a176

signal (Kirby, 2005), without further computation (e.g., Stark et al., 2003).177

The procedure to compute the wavelet coherence involves, first, taking the Morlet wavelet transform, at178

some starting azimuth, θ, of the Bouguer anomaly:179

b̃sxθ ≡ b̃M(s,x, θ) = F−1
{

b̂(k) ψ̂M ∗
s,θ (k)

}
(6)180

[c.f. Eq. (2)], where the first term indicates the convenient short-hand notation used hereafter for the Morlet181

wavelet coefficients. The Fourier transform of the 2D Morlet (daughter) wavelet, at some scale s and azimuth182

θ, is:183

ψ̂M
s,θ(k) = s e−[(su−|k0| cos θ)2+(sv−|k0| sin θ)2]/2 (7)184

where |k0|= π
√

2/ ln 2 ≈ 5.336 (e.g., Farge, 1992). The b̃sxθ are then computed at a number of other az-185

imuths, determined according to the fan wavelet geometry in the following manner. If a total azimuthal extent186

of ∆θ is required, then the necessary number of Morlet wavelet transforms is given by Nθ = int(∆θ/δθ),187

where δθ is the azimuthal increment between successive Morlet wavelet transforms. It was determined that,188

in order to avoid azimuthal over- and under-sampling, the azimuthal increment should have a value of δθ =189

2
√

ln 4
3 ln 2/π ≈ 16.3◦ (Kirby, 2005). This procedure is illustrated schematically in Figure 1, for ∆θ = 180◦,190

giving Nθ = 11. Each set of concentric circles represents a single Morlet wavelet, and Nθ sets of gravity191

wavelet coefficients, b̃sxθ, are obtained by multiplying each Morlet wavelet by the gravity Fourier transform,192

according to Eq. (6). [Incidentally, averaging all 11 Morlet wavelets yields the fan wavelet shown in Figure193

1 of Kirby and Swain (2004).] The procedure is also performed at the same azimuths on the topography,194

yielding Nθ sets of topography wavelet coefficients, h̃sxθ.195

In order to compute the wavelet coherence, the auto- and cross-spectra of the gravity and topography196

wavelet coefficients are averaged over the Nθ azimuths, rather than averaging the wavelet coefficients them-197

selves, e.g.:198

〈
b̃sxθ h̃∗sxθ

〉
θ
≡ 1

Nθ

Nθ∑
n=1

{b̃sxθ h̃∗sxθ}n (8)199

for θn : n = [1, Nθ], with Eq. (8) defining the notation used following. Then, by analogy with Eq. (5), the200

wavelet coherence over an azimuthal extent ∆θ is computed from:201
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γ2
W(s,x, θ) =

∣∣∣
〈
b̃sxθ h̃∗sxθ

〉
θ

∣∣∣
2

〈
b̃sxθ b̃∗sxθ

〉
θ

〈
h̃sxθ h̃∗sxθ

〉
θ

(9)202

As can be seen, the geometry in Figure 1 is isotropic as the 11 Morlet wavelets capture all of the data in203

the upper two quadrants, although there is some unavoidable leakage into the lower two quadrants. Hence, if204

∆θ = 180◦, then the wavelet coherence in Eq. (9) is isotropic and θ-independent: γ2
W(s,x). This quantity has205

been shown to be directly comparable with both theoretical and Fourier-derived coherence estimates (Kirby206

and Swain, 2004). However, if more than 11 Morlet wavelets were used in the superposition, cancellations207

of the imaginary component of the product b̂(k) ψ̂M ∗
s,θ (k) in Eq. (6) would begin to occur in the averaging208

procedure, owing to the negative reflection of Im[b̂(k)] about the axis v = 0, leading to loss of information.209

In the extreme case of a ring-shaped geometry (∆θ → 360◦), the cancellations would be total, the wavelet210

coefficients would have no imaginary components (Kirby, 2005), and the wavelet coherence would be unity.211

To enable direct comparison with 1D coherence estimates from the conventional annular-averaging method,212

Eq. (5), the wavelet method can also yield a global 1D profile, through a complete averaging of the auto-213

and cross-spectra over the space variable at each scale. Using the notation:214

〈·〉x ≡
1

NxNy

Ny∑

i=1

Nx∑

j=1

{·} (10)215

where the data grids are of size Nx×Ny, the global wavelet coherence is computed by:216

γ2
W(s, θ) =

〈〈
b̃sxθ h̃∗sxθ

〉
θ

〉
x

〈〈
b̃sxθ h̃∗sxθ

〉∗
θ

〉
x〈〈

b̃sxθ b̃∗sxθ

〉
θ

〉
x

〈〈
h̃sxθ h̃∗sxθ

〉
θ

〉
x

(11)217

which is now a function of scale and azimuth only.218

Finally, the scale of each daughter wavelet must be related to an ‘equivalent Fourier wavenumber’, κ,219

by taking the wavenumber at which the daughter wavelet has its maximum value (for that scale) to be220

representative of the harmonics resolved by that daughter wavelet (e.g., Kirby, 2005). The equivalent Fourier221

wavenumber for the Morlet wavelet at each scale is given by:222

κ =
|k0|
s

(12)223

(Kirby, 2005). This enables direct comparison with both theoretical models and estimates from Fourier224

transform methods. Thus, we now write γ2
W(κ,x, θ) for the wavelet coherence, and γ2

W(κ, θ) for the global225

wavelet coherence.226
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2.2. Anisotropic case227

As pointed out by Kirby and Swain (2004), the case of anisotropic Te can be studied by limiting the228

azimuthal extent ∆θ. If 2 δθ < ∆θ < 180◦, then the averaged auto- and cross-spectra [Eq. (8)] become direc-229

tional. However, the coherence formulae, Eqs (9) and (11), require averaging over at least two azimuths, since230

if only one azimuth transform is computed, the numerator and denominator are equal, and the coherence is231

always unity.232

Anisotropy in the wavelet coherence can be revealed by computation at a number of central (or resolving)233

azimuths, Θ, spanning the range 0◦ ≤ Θ < 180◦, to ensure good directional sampling. In this study we chose234

six central azimuths from Θ = 0◦ to 150◦ in increments of δΘ = 30◦, each averaging Nθ = 5 auto- and235

cross-spectra over ∆θ = 90◦, although other values of ∆θ and δΘ were tested (Section 5). Thus, the spectra236

were computed from θ = −45◦ to +45◦, giving γ2
W(κ,x, Θ) at Θ = 0◦; then from θ = −15◦ to +75◦, giving237

γ2
W at Θ = 30◦; etc. Figure 2 shows the wavelet geometry used for the anisotropic azimuthal averaging of238

the auto- and cross-spectra at a central azimuth Θ = 30◦.239

FIGURE 2 HERE240

Therefore, at each geographic location of the study area, x0, we now have six anisotropic estimates of the241

wavelet coherence, γ2
W(κ,x0,Θ).242

3. The anisotropic plate model243

3.1. An orthotropic plate244

Conventional thin plate modelling assumes a lithosphere parameterised by a single flexural rigidity, D.245

That is, the response of the plate to loading is assumed to be isotropic. In the present study, and in Swain and246

Kirby (2003b), we model the observed coherences with an orthotropic plate. As described in Timoshenko and247

Woinowsky-Krieger (1959), an orthotropic plate is one whose elastic properties have at least two orthogonal248

planes of symmetry, and where the anisotropy may be parameterised by two orthogonal rigidities, Dx and249

Dy, being the plate strengths in these directions. However, as discussed in the Introduction, isostatic studies250

typically have results presented in terms of the elastic thickness rather than flexural rigidity. So even though251

it is rather counter-intuitive to speak of a “thickness in the x-direction” for example, we follow convention,252

and relate the anisotropic rigidities to their elastic thickness counterparts through analogy with Eq. (1):253

Dx =
E T 3

x

12(1− σ2)
(13)254
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and similarly for Dy, where in this study we have assumed uniform and isotropic values of E = 100 GPa,255

and σ = 0.25. In reality, these ‘constants’ could vary geographically, and Chevrot and van der Hilst (2000)256

determined a range of 0.23–0.28 for Poisson’s ratio in Australia. Nevertheless, since lateral variations in257

these quantities should affect the coherence at a point equally in all directions, we assume uniformity. These258

constants could also vary directionally, and while orthotropic plate theory can account for quantities like Ex259

and σy, in the absence of such information for Australia, we assume isotropy in these constants.260

In general, for an initial load `(x), the vertical deflection, w(x), experienced by a uniform, orthotropic,261

thin elastic plate overlying an inviscid fluid of density ρm is given by:262

Dx
∂4w(x)

∂x4
+ 2H

∂4w(x)
∂x2∂y2

+ Dy
∂4w(x)

∂y4
+ ρm g w(x) = `(x) (14)263

(e.g., Timoshenko and Woinowsky-Krieger, 1959) where the last term on the left hand side is the buoy-264

ancy force arising from displacement of the underlying fluid, and g is the gravity acceleration. Following265

Timoshenko and Woinowsky-Krieger (1959) and Swain and Kirby (2003b), we can approximate H by:266

H ≈
√

DxDy (15)267

In general, the orthotropic plate equation [Eq. (14)] can be solved by a finite difference method, using268

sparse matrix techniques (e.g., Kirby and Swain, 2004). For uniform Dx, Dy, and ρm, Eq. (14) is far more269

easily solved via the Fourier transform:270

[(√
Dx u2 +

√
Dy v2

)2

+ ρm g

]
ŵ(k) = ˆ̀(k) (16)271

using the approximation, Eq. (15). Recall k = (u, v). Solution of Eq. (16), through either of the two methods272

presented in Sections 3.3 and 3.4, yields the ‘observed’ Bouguer anomaly and topography for the model, and273

also the theoretical coherence and admittance.274

To account for different directions of anisotropy, the u and v axes can be rotated through an angle β, the275

direction of anisotropy, defined as the (positive anticlockwise) angle from the positive u axis to the positive276

u′ axis:277




u′

v′




=




cos β sin β

− sin β cosβ







u

v




(17)278

[c.f. Eq. (4)]. For use in the following discussions, and from Eq. (16), we define a ‘flexural operator’ in the279

rotated frame:280

Λ(k) ≡
(√

Dx u′ 2 +
√

Dy v′ 2
)2

(18)281
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Note that when Dx = Dy = D, Λ(k) → D|k|4, and Eq. (16) reduces to the conventional isotropic plate282

model.283

3.2. Random fractal loads284

Following Macario et al. (1995) [and further discussed in Swain and Kirby (2003a,b)], initial synthetic285

surface and subsurface loads are emplaced on and within a thin elastic plate, and the resulting synthetic286

topography and Bouguer anomaly are determined from solutions to the thin plate differential equation. We287

tested two such plate models: those of Banks et al. (2001) and Forsyth (1985).288

We created two random fractal surfaces, sT(x) and sB(x), using the 2D spectral synthesis algorithm of289

Peitgen and Saupe (1988). We chose the fractal dimension of both surfaces to be 2.5. These surfaces then290

had their mean subtracted, and were standardised to unit variance. An example of such a surface is shown291

in Figure 3. Each surface was then multiplied by 100 metres, hence representing the amplitude of some load.292

The correlation coefficient between the surfaces [R in Macario et al. (1995)] was set to zero, to make the293

loads uncorrelated as required for the coherence to be diagnostic of the elastic thickness (Forsyth, 1985).294

FIGURE 3 HERE295

3.3. The plate model of Banks et al.296

The formulation of Banks et al. (2001) in the continental case requires two loads: an initial surface load297

due to the topography, and an initial subsurface load representing the variable density of a thin layer. This298

thin layer is emplaced at depth zl within the crust, though they also consider the gravity effect of the density299

contrast, ∆ρ, at the Moho. Hence, in Eq. (14) we set `(x) = −`T(x) − `B(x), where the loads are derived300

from the fractal surfaces as: `T(x) = ρcg sT(x) and `B(x) = fρcg sB(x). The mean crustal density is ρc, and301

f is the subsurface-to-surface loading ratio, which we set to a constant value [though see Swain and Kirby302

(2003a) for a discussion concerning the effect on f of different fractal dimensions for the two loads].303

To determine the ‘observed’ Bouguer anomaly and topography from the model, a value for each of Tx,304

Ty and β is assumed. Eq. (13) then determines the anisotropic flexural rigidities. Rearranging the flexural305

equation, Eq. (16), gives the (Fourier transform of) the plate deflection as:306

ŵ(k) =
−ˆ̀

T(k)− ˆ̀
B(k)

Λ(k) + ρm g
(19)307

which is the anisotropic version of Eq. (16) in Banks et al. (2001). Following Banks et al. (2001), it is a308

simple matter to generalise their Eqs (17) and (18) to the anisotropic case. The resulting surface topography309

after loading is the sum of the initial surface load amplitude and the resulting plate deflection:310
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ĥ(k) =
ˆ̀
T(k)
ρc g

+ ŵ(k) (20)311

while the surface Bouguer anomaly is estimated from the upward continued thin layer and Moho deflections:312

b̂(k) = 2πG

(
e−|k|zl ˆ̀

B(k)
g

+ ∆ρ e−|k|zm ŵ(k)

)
(21)313

where ∆ρ = ρm − ρc. Inverse Fourier transformation of Eqs (20) and (21) then gives h(x) and b(x).314

3.4. Forsyth’s plate model315

In the approach of Forsyth (1985), the two loads are an initial topography: hI(x) = sT(x); and relief on316

the Moho: wI(x) = fρcsB(x)/∆ρ. If values of Tx, Ty and β are assumed, the ‘observed’ topography and317

Bouguer anomaly after flexure can be determined. Again, the isotropic equations are readily converted to318

anisotropic ones, using Eq. (18). Forsyth’s equations for ξ and φ become:319

ξ(k) = 1 +
Λ(k)
∆ρ g

φ(k) = 1 +
Λ(k)
ρc g

(22)320

and the final surface topography and Moho relief are determined from:321

ĥ(k) = ĥI(k)
[

∆ρ ξ(k)
ρc + ∆ρ ξ(k)

]
− ŵI(k)

[
∆ρ

∆ρ + ρc φ(k)

]
(23)322

and323

ŵ(k) = −ĥI(k)
[

ρc

ρc + ∆ρ ξ(k)

]
+ ŵI(k)

[
ρc φ(k)

∆ρ + ρc φ(k)

]
(24)324

respectively [c.f. Forsyth’s Eq. (18)]. An ‘observed’ Bouguer anomaly at the surface may then be estimated325

from the upward continued Moho relief:326

b̂(k) = 2π∆ρG e−|k|zm ŵ(k) (25)327

being the anisotropic version of Forsyth’s Eq. (13). Inverse Fourier transformation of Eqs (23) and (25) then328

gives h(x) and b(x).329

4. Estimation of anisotropic parameters330

In the Forsyth (1985) method, a value for Te is assumed and the isotropic versions of our Eqs (23) and (24)331

are solved simultaneously in order to estimate the initial loads from the observed topography and Bouguer332

gravity, and hence calculate a “predicted coherence”. Te is then estimated as the value that minimises333

the misfit between observed and predicted coherence. This method has the advantage that it makes no334

assumptions about the loading, with f essentially being determined at each wavenumber from the WFT335
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of the data. Swain and Kirby (2003b) showed how to modify this method to estimate Tx, Ty and β for a336

uniform orthotropic plate model.337

In the present study we used a simpler procedure, similar to that used in Kirby and Swain (2004), and338

inverted the coherence for the three plate parameters using the theoretical formula for coherence (given in339

the Appendix). This requires the knowledge (or assumption) of the loading ratio and we simply assumed340

that f is uniform (spatially invariant), isotropic, and wavenumber-independent: we call this the “uniform f”341

method. On this assumption, its variations should affect Tx and Ty equally. When inverting the coherence342

at each geographic location, we also assumed that the local wavelet spectra are independent, or “decoupled”343

from adjacent spectra (Stark et al., 2003). The validity of this assumption can be tested by means of non-344

uniform synthetic models, which we have not used in this study, though Swain and Kirby (2006) present345

one such (isotropic) model finding that the decoupling assumption is quite reasonable in that case.346

It is worth mentioning here that we also tried a wavelet version of Forsyth’s method, in order to test347

the assumption of uniform, isotropic f . This involved extending our (isotropic) wavelet development of348

Forsyth (1985)’s approach (Swain and Kirby, 2006) to the case of anisotropy, which has the advantage of349

also allowing for the possibility of anisotropy in f . The relevant equations are identical to Forsyth’s, with350

the Fourier transforms of gravity and topography replaced by their wavelet transforms, D|k|4 replaced by351

Λ(k), and the averaging performed over wavelet azimuth rather than scalar wavenumber. When applied to352

the synthetic models (see Section 5), the directions of Te anisotropy given by this method and the uniform f353

method agree to within < 10◦, which is comparable with the standard deviation of the orientations of axes354

given in Section 5. The largest differences occur where the Te anisotropy estimates, with either method, are355

small. We also used the anisotropic wavelet Forsyth method with the Australian data, obtaining a comparable356

agreement with the uniform f method, except for part of central Australia, where Forsyth’s method yields357

larger magnitudes of anisotropy, presumably because of anisotropic (east-west) loading. Because of this358

agreement we consider that the assumptions about loading made by the uniform f method are justified,359

at least for Australia and the synthetic models. The results in the rest of this paper are for the uniform f360

method.361

In order to estimate the values of Tx, Ty and β for our orthotropic model at a particular x0, we compare362

the observed wavelet coherence at all values of Θ with the theoretical coherences of an anisotropic plate in363

these directions. To calculate such a coherence, we rewrite the flexural operator in polar coordinates in the364

k-frame:365

Λ(|k|, Θ) =
[√

Dx |k|2 cos2(Θ− β) +
√

Dy |k|2 sin2(Θ− β)
]2

(26)366

The general forms of the theoretical coherences from both Banks and Forsyth models are shown in Appendix367

13



A: to compute a theoretical coherence profile, γ2
t (|k|, Θ), in direction Θ from Eqs (A.1) and (A.5), replace368

Λ(k) with Λ(|k|, Θ).369

Starting with initial estimates of [Tx, Ty, β], the differences at all values of Θ between the theoretical370

coherences, γ2
t (|k|, Θ), and observed wavelet coherences, γ2

W(κ,x0, Θ), are minimised simultaneously using371

an iterative damped least squares algorithm similar to the one described in Swain and Kirby (2003b), except372

that here we assume that the uncertainty of an observed coherence estimate is proportional to |k|, and373

weight the data as 1/|k|. After a number of iterations, stable values for the estimates [Tx, Ty, β] are reached.374

This procedure is then repeated for each geographical location, x0, in the study area, giving estimates in375

each grid cell. In a very few instances with real data we have found it necessary to use 2 different starting376

models, with β differing by 90◦, in order to find the global minimum.377

Single estimates of [Tx, Ty, β] for the whole study area can also be derived by inverting the global wavelet378

coherence, γ2
W(κ,Θ), using the same method.379

5. Results for the synthetic models380

In this study we only consider uniform, anisotropic models, because in such cases the plate equation [Eq.381

(14)] can be easily and quickly solved using the FFT, as shown above. We generated 100 pairs of random,382

synthetic Bouguer anomaly and topography grids using the Forsyth plate model, all with [Tx, Ty, β] =383

[80, 40, 40◦] and f = 1. Then, as discussed in Section 2.2, the anisotropic wavelet coherence from each pair384

was computed at six central azimuths from Θ = 0◦ to 150◦, in increments of δΘ = 30◦, each using ∆θ = 90◦.385

In order to minimise array sizes and computation time, and to make plots less cluttered, the wavelet auto-386

and cross-spectra were ‘binned’ into larger grid cells of size 320× 320 km, prior to using Eq. (9). It must be387

stressed that this spatial averaging is performed only for computational convenience, and is not essential:388

while it has the effect of damping the noise in the coherence at high wavenumbers, it does not significantly389

alter the estimated values of the transition wavelength, and hence of Tx or Ty. Furthermore, to eliminate390

edge effects from the Fourier transform, the outer 5% at each side was discarded before implementation of391

Eq. (11).392

Inverting the global wavelet coherence, Eq. (11), for all 100 pairs (using the Forsyth theoretical coherence393

formula, Eq. (A.5), and assuming f = 1), gave Tx = 71±9 km, Ty = 45±6 km, and β = 39◦±10◦ (arithmetic394

mean ± standard deviation). The global coherences at the selected Θ values, for one model (#34), are shown395

in Figure 4. This particular model gave estimates: Tx = 79.6 km, Ty = 47.6 km, and β = 45.0◦. The legend396

indicates the Θ value for each profile, together with an estimated elastic thickness value at each azimuth397

(by inversion of the observed global wavelet coherence curves). Clearly though, the anisotropy of the model398
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is being revealed.399

FIGURE 4 HERE400

FIGURE 5 HERE401

Figure 5 shows the spatial variation in anisotropy for model #34. The ellipses are “Te-ellipses”: the length402

of the major and minor axes indicate the relative magnitudes of Tmax = max(Tx, Ty) and Tmin = min(Tx, Ty),403

respectively. The inclined lines within each ellipse give the orientation of maximum mechanical strength,404

with the weak direction perpendicular; the length of each line is 2
√

TxTy. The statistics for model #34 are405

Tx = 71±8 km, Ty = 41±7 km, β = 42±8◦. Only two estimates (in the bottom-right) are > 20◦ in error, and406

these points also exhibit the smallest anisotropy (i.e., Tx ≈ Ty), so here β is inevitably poorly determined.407

We believe that such anomalies are a product of the random process used to generate the synthetic fractal408

models.409

We have examined the six coherence plots at each point for some of the data sets. Although practically410

all of them show a very clear and quite smooth transition from high to low coherence, as in Figure 4, many411

of them also show quite separate, but large, “spikes” or “humps” in coherence at higher wavenumbers in412

some azimuths. These also occur with real data: similar features can be seen in the 2D coherence plots in413

Figure 11 of Simons et al. (2003). Because of the 1/|k| weighting, mentioned in Section 4, these features414

usually have little effect on our inversions. Without the weighting, it is possible for an inversion to find a415

model which fits a long-wavelength transition at one azimuth together with a short-wavelength transition416

at another azimuth, resulting in a model with too large an anisotropy.417

To compare the wavelet method against the Slepian multitaper (K = NW = 3) anisotropy estimates418

in Swain and Kirby (2003b), we also tested 100 pairs for a model with parameters [100, 50, 0◦], using the419

global wavelet coherence. The wavelet method returned estimates of: Tx = 87± 14 km, Ty = 55± 8 km, and420

β = 2◦ ± 12◦; compared with Tx = 68 ± 11 km, Ty = 43 ± 7 km, and β = −1◦ ± 17◦ from the multitaper421

method. The wavelet method gives a much better agreement with the model input parameters, particularly422

for the Tx estimate.423

Finally, a further plate model was used to test the method, this time for a weaker plate, with parameters424

[10, 30, 80◦]. The estimates from the inversions of the 100 anisotropic wavelet coherences were: Tx = 14± 2425

km, Ty = 26± 3 km, and β = 80◦ ± 4◦. Like the Fourier-based methods, it seems that the wavelet method426

better estimates smaller, rather than larger, values of elastic thickness.427

The choice of initial estimates of [Tx, Ty, β] in the inversion was not found to influence the final estimates428

of these parameters. Furthermore, computations on the 100 gravity/topography pairs using a smaller value429

of δΘ (10◦) in order to increase directional sampling, produced exactly the same results. Also, increasing430
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the number of wavelet scales (from 28 to 56) had a negligible effect upon the outcome, and merely gave431

smoother coherence profiles. Finally, choosing a smaller value for ∆θ of 45◦ gave a marginal increase in the432

variance of the parameter estimates of the uniform models. Hence, we believe that our sampling density in433

both azimuth- and scale-domains is adequate.434

6. Application to Australian data435

6.1. Australian gravity and topography data436

Computations involving the Fourier transform on continental scales have to account for Earth curvature.437

To avoid errors arising from the planar treatment of curvilinear coordinates, all data were projected onto438

a Mercator grid, with origin at 133◦E, 0◦N. This projection is conformal, thereby preserving angles, and is439

cylindrical, facilitating an intuitive visual interpretation of directions with respect to geographic parallels.440

In geographic coordinates, the study area spans approximately 101◦E to 165◦E, and 2◦S to 49◦S.441

For the study area, grids of the topography/bathymetry and complete Bouguer anomaly were derived442

from the following data sets. The Australian land topography grid was derived from the GEODATA 9-443

arcsecond DEM (digital elevation model) of Australia (Geoscience Australia, 2001). The bathymetric data444

were taken from the GEBCO Digital Atlas, given at 1-arcminute spacing (NOAA, 2003), which are compiled445

from ship-track data only, and, importantly, not from inverted altimetry gravity (e.g., Smith and Sandwell,446

1997). Topography over Indonesia and Papua New Guinea were also taken from the GEBCO Digital Atlas.447

Topography and bathymetry data were merged, and regridded at 20 km spacing on the Mercator grid.448

Simple Bouguer anomalies over mainland Australia were taken from the 2004 release of Geoscience Aus-449

tralia’s land gravity data base. Gravimetric terrain corrections derived from the 9-arcsecond DEM (Kirby450

and Featherstone, 1999) were added to these anomalies to form complete Bouguer anomalies over the conti-451

nent. Over Indonesia and Papua New Guinea, free-air anomalies were derived from the EGM96 geopotential452

model to degree and order 360: simple Bouguer anomalies were computed from these using the above GEBCO453

topography data. Over marine areas we used free-air anomalies from the KMS02 satellite altimetry model454

(Andersen and Knudsen, 1998) at a 2-arcminute grid spacing. A marine Bouguer anomaly was derived from455

these by applying a complete Bouguer correction computed from the GEBCO bathymetric model using the456

formula of Parker (1972). Again, the land and marine gravity data were merged and regridded at 20 km457

spacing on the Mercator grid.458
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6.2. Results and discussion459

The bathymetry was first converted into a load by calculating the equivalent depth of the sea bottom460

if the salt water were replaced by air, i.e., multiplying the ocean water depth by (ρc − ρw)/ρc, where we461

used values of ρc = 2800 kg m−3 and ρw = 1030 kg m−3. Then, as for the synthetic models, the wavelet462

coherences were inverted, assuming f = 1, yielding Tx, Ty and β estimates at each grid node. For these463

data, however, we spatially averaged the auto- and cross-spectra into bins of size 80× 80 km. As discussed464

in Section 5, the bin size does not significantly alter the magnitudes of Tx, Ty, or β, and anisotropy maps465

generated using 160× 160 km bins showed the same pattern of directions.466

Figure 6 shows the results plotted as bars, or ‘axes’, in the weak direction with length proportional to467

the anisotropy, here defined as (Tmax − Tmin)/Tmax. We only show results for the landmasses and their468

continental shelves. Results over the deeper ocean are very scattered, probably due to the poor sampling of469

the bathymetry data over these areas. Occasionally the inversion does not converge to a solution, but this470

appears to be confined to offshore areas.471

FIGURE 6 HERE472

Figure 6 clearly shows distinct clusters within Australia, containing homogeneous anisotropy directions.473

Sometimes the boundary between adjacent clusters exhibits a smooth, gradual change in direction, in other474

cases this change is abrupt. In addition, as previously noted by Simons et al. (2003), there is a clear tendency475

towards orthogonality between the axes shown in Figure 6 and the Australian coastline.476

Figure 6 also shows the major boundaries of the Australian crustal mega-element map of Shaw et al.477

(1995). Although the correlation between these boundaries and the distribution of our weak axes is far from478

being general or precise, there are some good examples: one is the characteristic pattern over the Pilbara479

Craton (117◦E, 23◦S), mimicking its large scale structure. In other cases, such as the Kimberley (126◦E,480

16◦S), North Australian (130◦E, 18◦S), and Gawler Cratons (135◦E, 32◦S), the anisotropy has a uniform,481

or slowly varying direction which changes more abruptly over their boundaries.482

It is noticeable in Figure 6 that the axes change direction more rapidly close to the coast than over the483

centre of Australia. This can be explained through the result of Swain and Kirby (2006) that Te decreases484

in magnitude towards the Australian coastline, and through the fact that only mid- to small-scale wavelets485

are important when resolving the lower transition wavelengths associated with low Te. Such wavelets have486

a smaller spatial extent, and can thus resolve more rapid changes in both Te and anisotropy direction.487
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7. Correlations with other data488

It is not an aim of this paper to give a detailed review of the possible geophysical controls on Te and its489

anisotropy, which has been provided elsewhere (e.g., Lowry and Smith, 1995; Simons et al., 2000, 2003),490

other than to note that their methods can all be approximated by our intrinsically anisotropic plate model491

(Swain and Kirby, 2003b). Nevertheless, in order to give the reader the opportunity to judge the truth of the492

anisotropy axes shown in Figure 6, we will give a comparison with some other relevant data over Australia,493

namely: (a) previous studies of isostatic anisotropy; (b) the stress map; (c) seismic azimuthal anisotropy.494

7.1. Previous isostatic studies495

The previous studies of Australian isostatic anisotropy have all used fixed windows of varying size from496

720 × 720 km (Simons et al., 2003) to 2200 × 2200 km (Swain and Kirby, 2003b), implying averaging over497

areas encompassing many of the axes in Figure 6 and making comparisons difficult. The closest comparable498

result to ours is Figure 12b of Simons et al. (2003), which shows axes of implied weakness derived from the499

maximum transition wavelength of the coherence. Their window width is small enough to downward bias500

estimates of both Te and transition wavelength in Australia by more than a factor of three (Swain and Kirby,501

2003a). This bias would affect estimates of the amplitude of anisotropy (which Simons et al. (2003) did not502

make), but not of its direction. However the bias may well compromise the accuracy of the orientations.503

Figure 7 shows a comparison of the “long-wavelength weak directions” from Figure 12b of Simons et al.504

(2003) with the axes shown in Figure 6 calculated by averaging the wavelet spectra over their window size505

(720×720 km). This figure shows their “good” quality (thick, white bars) and “fair” quality (thick, grey bars)506

measurements, but omits both “bad” and “null” results (Simons et al., 2003). However, we have included507

our axes at the locations of their missing measurements, and a majority of these (7/12) show relatively508

small anisotropy. The agreement between their “good” measurements and ours in Figure 7 is excellent: 9509

out of 15 are within 30◦, which has a < 2.2% chance of being random. For all 28 of the Simons et al. (2003)510

measurements (i.e., “good” and “fair”), 14 of ours agree to within 30◦, implying a 2.9% chance of random511

occurrence. Overall, we think that the agreement between the two studies is encouraging.512

FIGURE 7 HERE513

7.2. Tectonic stress514

Lowry and Smith (1995) state that azimuthal variations of Te reflect tectonic stress, because such stress515

reduces Te in the direction of the stress axis. Their study is of the western US Cordillera, a region of516
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extensional stress, and in several of their tectonic provinces they observe excellent agreement between the517

minor axes of Te ellipses (i.e., the weak directions) and directions of minimum horizontal compressive stress518

(i.e., the direction of tectonic stress). They note, however, some exceptions to this (e.g., Yellowstone).519

The Australian stress regime is largely compressive (Zoback et al., 1989) so the correlation should be520

between the Te minor axis and the direction of maximum horizontal compressive stress. The Australian521

stress map, unlike those of most other continents, shows orientations of maximum horizontal compressive522

stress that are variable and not generally parallel to the direction of absolute plate motion (north to north-523

northeast) (e.g., Hillis and Reynolds, 2003). Because of the variable stress orientations, Hillis and Reynolds524

(2003) define a number of “stress provinces” for each of which they calculate a mean stress orientation.525

The data are very sparse and occur in concentrations, mostly within sedimentary basins since the majority526

of them are from measurements in petroleum exploration boreholes. Thus the mean stress orientations are527

heavily weighted towards the uppermost crust. Eleven of the twelve Australian stress provinces defined by528

Hillis and Reynolds (2003) show statistically significant stress orientations, of which nine are from offshore529

or coastal basins, and two from interior basins (the Cooper and Amadeus Basins).530

Figure 8 compares the stress province data with the weak directions in our Figure 6, averaged over531

400× 400 km windows. There is little correlation between the two sets of directions. In two cases our weak532

directions may be too scattered for a useful comparison, and four cases are offshore basins, where, as we533

have previously noted, the Te results are less reliable. Overall, however, it appears that tectonic stress is not534

a major control on the lithospheric strength anisotropy that we observe. This agrees with the conclusions535

of Simons et al. (2003), who contend that there would only be a relation between the two if present-day536

stress and fossil strain are still related. However, another factor may be the stress magnitudes: although the537

observed stress data do not include magnitudes, model stresses are typically less than 30 MPa (Reynolds et538

al., 2003; Zhao and Müller, 2003). Reference to Figure 4b of Lowry and Smith (1995) shows that such stress539

magnitudes would probably have no significant effect on Te.540

FIGURE 8 HERE541

7.3. Seismic anisotropy542

Seismic anisotropy under the continents is usually studied using shear wave splitting of near-vertical543

core phases like SKS (Silver, 1996). For Australia such studies have tended to measure mostly weak or544

null splitting (Debayle and Kennett, 2003). This is most likely because of the inherent lack of vertical545

resolution of the method, usually requiring the assumption of a single anisotropic layer, which is probably546

an oversimplification for Australia. Although it is sometimes possible to interpret shear wave splitting data547
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in terms of two anisotropic layers, this requires fairly numerous data with a range of backazimuths, which548

have not been available for most Australian studies. An exception is the detailed study by Girardin and549

Farra (1998) of data from the Canberra GEOSCOPE station.550

Recently, some tomographic models derived from surface waves have included azimuthal anisotropy. Al-551

though there is a trade-off between heterogeneity and anisotropy (e.g., Simons et al., 2002), tests show that552

including anisotropy clearly fits the data better and it has the advantage of significant depth resolution.553

Tomographic studies of Australian seismic anisotropy include Simons et al. (2002) and Debayle and Kennett554

(2003) who both present maps of SV-wave azimuthal anisotropy from inversion of Rayleigh waveform data.555

However, both of these studies were hampered by a sparsity of ray paths for Western Australia. Kennett et556

al. (2004) show a more recent model which includes many more ray paths under Western Australia.557

Although these models of seismic anisotropy are rather different in detail, there is general agreement558

(e.g., Debayle and Kennett, 2003; Simons et al., 2003) that the seismic azimuthal anisotropy observed under559

Australia at depths of < 150 − 200 km is quite variable, with as many E-W as N-S orientations, while560

at depths > 200 km the orientations are consistently N-S to NNE-SSW. Simons et al. (2003) examined561

the orthogonality between the directions of shallower seismic anisotropy and those of mechanical anisotropy,562

concluding that they represent “frozen” deformation from the most recent episode of orogeny. There is general563

agreement that the anisotropy at depths > 200 km reflects present-day deformation due to the northward564

motion of the Australian Plate. Silver (1996) refers to the “frozen” deformation mechanism as ‘vertically565

coherent deformation’ (VCD), and to the deformation due to plate motion as ‘simple asthenospheric flow’566

(SAF), explaining them in terms of preferential alignment of olivine crystals in response to finite strain.567

Simons et al. (2003) suggest that over most of Precambrian Australia, where compressional tectonics568

predominate, the weak directions from isostatic analyses should lie approximately at right angles to the569

fast axes in the shallower mantle layers of the seismic models, because for VCD the fast axes should be570

approximately perpendicular to the compression direction, which is also the direction that has accumu-571

lated the most deformation per unit of topographic loading. They compared the weak directions for their572

“good” measurements, to the fast axes of their seismic model (Simons et al., 2002), finding that they are573

approximately at right angles in >50% of cases at the shallowest depth of their model (30 km), falling to574

30% at 200 km depth. However, the fact that this comparison was based on only 15 measurements of the575

long-wavelength coherence anisotropy somewhat reduced the impact of this study.576

We have obtained a recent update of the anisotropic model of Kennett et al. (2004) for 3 depths: 75577

km, 125 km and 175 km (S. Fishwick, personal communication, 2005). The model consists of azimuth and578

amplitude (%) of the anisotropy, and shear velocity given on a 3◦ × 3◦ grid. In Figures 9, 10 and 11 we579
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compare the seismic anisotropy with our weak direction axes, the latter calculated by averaging the spectra580

over a window size of 300× 300 km. The length scale for the seismic anisotropy axes is 1/30 of that of the581

isostatic weak axes. At all three depths there is a strong tendency for the axes to lie at a large angle to582

one another, particularly for inland Australia west of about 143◦E. At 75 km, but not at the other depths,583

there seems to be a relation between the amplitudes of anisotropy of the two data sets: their orthogonality584

appears to improve with depth. In eastern Australia there is less correlation apparent between the two sets585

of axes, but this might be expected since the seismic tomography of Kennett et al. (2004) shows that the586

lithosphere is much thinner here, so the depths 125–175 km probably represent asthenosphere.587

FIGURE 9 HERE588

FIGURE 10 HERE589

FIGURE 11 HERE590

We have carried out tests with circular statistics on a subset of 57 pairs of axes from Figures 9, 10 and591

11 within an area west of 143◦E and between latitudes 33◦S and 14◦S, approximately corresponding to592

the extent of Precambrian basement. We first applied a Rayleigh test to the hypothesis that differences593

in orientation between the mechanically weak axes and the fast seismic axes are sampled from a uniform594

distribution, with no preferred direction, versus the alternative hypothesis that they are from a von Mises595

distribution - the circular equivalent of a normal distribution (Davis, 1986). Next we tested the hypothesis596

that the differences have a mean of 90◦. Since the data are orientations, they were doubled prior to the597

calculations, and the angular results subsequently halved (Davis, 1986). The results are given as, for the598

first test, mean resultant vectors (R) and significance levels (α), and for the second test, mean orientations599

(A) and 95% confidence intervals. They are as follows: for 75 km, R = 0.238, α = 4%, A = 101◦ ± 25◦; for600

125 km, R = 0.278, α = 1%, A = 87◦ ± 21◦; for 175 km, R = 0.477, α =< 1%, A = 86◦ ± 11◦. Thus, for all601

three depths, we can say, with > 96% confidence, that the orientation differences have a preferred direction602

and that the 95% confidence intervals around all three mean orientations include 90◦.603

8. Conclusions604

We have described a technique for mapping the mechanical anisotropy of the elastic lithosphere which605

yields greater detail than previously possible. The method gave good results with a wide variety of synthetic,606

anisotropic, uniform models. Applied to new grids of Australian topography and gravity data it gave a map607

of minimum Te directions which is in reasonable agreement with the “long-wavelength weak directions”608

of Simons et al. (2003). Although both studies suffer from various uncertainties which would contribute609

to differences between the results, we think that the use in the latter study of a fixed window of width610
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comparable to, or even smaller than, the transition wavelength over much of Precambrian Australia, probably611

results in relatively large estimation errors.612

We have compared our results with a recent model of seismic azimuthal anisotropy (Kennett et al., 2004)613

at depths between 75 and 175 km. Over Precambrian Australia, results of a statistical analysis carried out on614

the differences in orientation between our weak axes and the fast seismic axes strongly support the hypothesis615

that they are orthogonal. We are therefore in agreement with Simons et al. (2003) that the source of our616

observed anisotropy is likely to be vertically coherent “frozen” deformation of the lithosphere (Silver, 1996)617

due to alignment of olivine crystals. The fact that our results correlate with seismic azimuthal anisotropy618

at depths of 75–175 km also supports the ideas that under cratonic regions crust and mantle are strongly619

coupled and that the strength of the lithosphere resides mainly in the upper mantle (Vauchez et al., 1998).620

Comparison of our weak axes with a map of present day stress directions (Hillis and Reynolds, 2003)621

shows that there is no obvious plate weakening in these directions, probably because the stresses are too622

small.623

We have also indicated how our wavelet approach can be modified so that the predicted coherences are624

modelled without the assumption of a constant loading ratio (Forsyth’s method). A comparison between the625

two methods will be the subject of a further paper, but we note that our results to date indicate that using626

Forsyth’s method will not change any of the above conclusions.627
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Appendix A. Theoretical coherence from the Banks and Forsyth plate models633

A.1. Theoretical coherence from the Banks model634

The theoretical coherence for an anisotropic Banks et al. (2001)-style plate with plate constants [Tx, Ty, β],635

and a wavenumber-dependent subsurface to surface loading ratio, f(k), is given by:636

γ2
t (k) = 1− (αT/βT − αB/βB)2

(1 + 1/A2) (αT/βT)2 + (1 + A2) (αB/βB)2
(A.1)637
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[c.f. Eqs (14), (11) and (12) in Banks et al. (2001)], where A, αT, αB, βT, and βB are all functions of638

wavenumber, k:639

A(k) = −f(k)
ρc g

Λ(k) + ∆ρ g
(A.2)640

and641

αT(k) =
−2πG∆ρ e−|k|zm

Λ(k) + ρm g
αB(k) = αT(k) +

2πGe−|k|zl

g
(A.3)642

βT(k) = βB(k) +
1

ρc g
βB(k) =

−1
Λ(k) + ρm g

(A.4)643

Λ(k) is given by Eqs (18) or (26). Note that Banks’s Eqs (19) are incorrect, and the above Eqs (A.3) and644

(A.4) are the corrected versions of these, updated for anisotropy. In the isotropic case Dx = Dy = D,645

k → |k|, and Λ(k) → D|k|4, as noted in Section 3.1.646

As mentioned in Section 4, in this study we have assumed f(k) = 1, ∀k.647

A.2. Theoretical coherence from the Forsyth model648

If Forsyth (1985)’s Eqs (4), (7) and (12) are substituted into his Eq. (25), the following analytical expression649

for a theoretical coherence can be derived, updated to account for anisotropy:650

γ2
t (k) =

[
ξ + φf2r2

]2
[ξ2 + f2r2] [1 + φ2f2r2]

(A.5)651

where ξ and φ are functions of k (as is f) and are given in our Eq. (22), and r = ρc/∆ρ. Note that if the652

layer of variable density in the Banks model is placed at the Moho (i.e., zl = zm), the Banks and Forsyth653

theoretical coherences are identical.654
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Figure captions754

Fig. 1. The imaginary part of the Fourier transform of some real-valued data, showing the eleven con-755

stituent Morlet wavelets that comprise an isotropic fan wavelet geometry of azimuthal extent ∆θ = 180◦.756

Axes are u and v wavenumber in rad/km.757

Fig. 2. The imaginary part of the Fourier transform of some real-valued data, showing the five constituent758

Morlet wavelets that comprise an anisotropic fan wavelet geometry of central azimuth Θ = 30◦ and azimuthal759

extent ∆θ = 90◦. Axes are u and v wavenumber in rad/km.760

Fig. 3. One of the random fractal surfaces (fractal dimension 2.5) used as input to form an initial load on761

the orthotropic plate. Grey scale ±3.5 (dimensionless).762

Fig. 4. The global wavelet coherences computed at six indicated central azimuths (Θ), from a Forsyth-763

style synthetic plate model (#34) with Tx = 80 km, Ty = 40 km and β = 40◦, with f = 1. The values764

in parentheses after Θ are estimated Te values for that azimuth after inversion of the individual coherence765

profiles, assuming f = 1.766

Fig. 5. Anisotropic elastic thickness ellipses from inversion of data for a Forsyth-style synthetic plate767

model (#34) with Tx = 80 km, Ty = 40 km and β = 40◦, with f = 1. The relative lengths of the semi-major768

and semi-minor ellipse axes indicate the degree of anisotropy in elastic thickness, while the orientation of769

the major axis (shown by the inclined lines of length 2
√

TxTy at the ellipse centres) indicates the direction770

of maximum mechanical strength. A model ellipse is shown to the right for comparison.771

Fig. 6. Mechanical anisotropy in Australia: axes in the direction of Tmin and of length proportional to the772

anisotropy (Tmax − Tmin)/Tmax. Also shown are the crustal mega-elements of Shaw et al. (1995). Mercator773

projection.774

Fig. 7. Comparison of our axes of anisotropy in the direction of Tmin (averaged over a 720×720 km area)775

(thin, black bars), with the Simons et al. (2003) “long-wavelength weak directions” (“good” data: thick,776

white bars; “fair” data: thick, grey bars). Our axes are also shown where Simons et al. (2003) record “null”777

or “bad” data. Mercator projection.778

Fig. 8. Comparison of our axes of anisotropy in the direction of Tmin (averaged over a 400×400 km area)779

(thin, black bars), with the mean stress orientations in the Australian stress provinces of Hillis and Reynolds780

(2003) (thick, grey bars). Mercator projection.781

Fig. 9. Comparison of our axes of anisotropy in the direction of Tmin (averaged over a 300×300 km area)782

(thin, black bars), with the fast axes of seismic anisotropy from the tomographic model of Kennett et al.783

(2004) at 75 km depth (thick, grey bars). Mercator projection.784
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Fig. 10. As Figure 9, but at 125 km depth.785

Fig. 11. As Figure 9, but at 175 km depth.786
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Fig. 1. The imaginary part of the Fourier transform of some real-valued data, showing the eleven constituent Morlet wavelets

that comprise an isotropic fan wavelet geometry of azimuthal extent ∆θ = 180◦. Axes are u and v wavenumber in rad/km.
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Fig. 2. The imaginary part of the Fourier transform of some real-valued data, showing the five constituent Morlet wavelets that

comprise an anisotropic fan wavelet geometry of central azimuth Θ = 30◦ and azimuthal extent ∆θ = 90◦. Axes are u and v

wavenumber in rad/km.
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Fig. 3. One of the random fractal surfaces (fractal dimension 2.5) used as input to form an initial load on the orthotropic plate.

Grey scale ±3.5 (dimensionless).
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Fig. 4. The global wavelet coherences computed at six indicated central azimuths (Θ), from a Forsyth-style synthetic plate

model (#34) with Tx = 80 km, Ty = 40 km and β = 40◦, with f = 1. The values in parentheses after Θ are estimated Te

values for that azimuth after inversion of the individual coherence profiles, assuming f = 1.
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Fig. 5. Anisotropic elastic thickness ellipses from inversion of data for a Forsyth-style synthetic plate model (#34) with Tx = 80

km, Ty = 40 km and β = 40◦, with f = 1. The relative lengths of the semi-major and semi-minor ellipse axes indicate the degree

of anisotropy in elastic thickness, while the orientation of the major axis (shown by the inclined lines of length 2
√

TxTy at the

ellipse centres) indicates the direction of maximum mechanical strength. A model ellipse is shown to the right for comparison.

33



110oE 120oE 130oE 140oE 150oE 160oE

10oS

20oS

30oS

40oS

Fig. 6. Mechanical anisotropy in Australia: axes in the direction of Tmin and of length proportional to the anisotropy

(Tmax − Tmin)/Tmax. Also shown are the crustal mega-elements of Shaw et al. (1995). Mercator projection.
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Fig. 7. Comparison of our axes of anisotropy in the direction of Tmin (averaged over a 720×720 km area) (thin, black bars),

with the Simons et al. (2003) “long-wavelength weak directions” (“good” data: thick, white bars; “fair” data: thick, grey bars).

Our axes are also shown where Simons et al. (2003) record “null” or “bad” data. Mercator projection.
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Fig. 8. Comparison of our axes of anisotropy in the direction of Tmin (averaged over a 400×400 km area) (thin, black bars),

with the mean stress orientations in the Australian stress provinces of Hillis and Reynolds (2003) (thick, grey bars). Mercator

projection.
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Fig. 9. Comparison of our axes of anisotropy in the direction of Tmin (averaged over a 300×300 km area) (thin, black bars),

with the fast axes of seismic anisotropy from the tomographic model of Kennett et al. (2004) at 75 km depth (thick, grey bars).

Mercator projection.
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Fig. 10. As Figure 9, but at 125 km depth.
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Fig. 11. As Figure 9, but at 175 km depth.
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