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Abstract

The Weibull distribution is the most widely used function in the reliability analysis 

and structural design of dental ceramics; however, it is still unclear whether Weibull 

distribution is always the most suitable one. With wide applications of dental ceramics, a 

special attention has been paid in discriminating their strength distributions. In this paper, 

three versatile functions, involving normal, log-normal and Weibull distributions, are applied 

to the analysis of ten strength data sets of dental ceramics with different compositions and the 

results are compared in terms of the Akaike information criterion and the Anderson-Darling 

test. It reveals that various microstructures and compositions in the investigated dental 

ceramics cause their strength distributions deviated from the Weibull distribution. The 

influence of microstructure induced fracture properties (multiple-modal flaw size distribution, 

R-curve behavior and subcritical crack growth) on strength distributions is discussed.

Keywords: B. Failure Analysis; C. Strength; D. Glass Ceramics; D. Porcelain; Statistical 

analysis
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1.  Introduction

Owing to their inertness, corrosion resistance and aesthetic properties, the use of 

ceramics in restorative and prosthetic dentistry is rapidly increasing. In determining the 

clinical success of ceramic restorations, however, the structural reliability of dental ceramics 

is a major factor due to the brittle trait [1]. This introduces the necessity to investigate the 

mechanical properties (e.g., strength, fracture toughness, etc.) and reliability of dental 

ceramics, which are normally polycrystalline solids and exist in glass form with various 

amounts and types of crystalline phases. According to glass-crystalline ratios, dental ceramics 

can be categorized into four main groups and a few subgroups [2]. Generally, the main 

challenge in the reliable design of dental ceramics is the exact estimation of their failure 

probabilities under prescribed loading and boundary conditions. The strength of a ceramic is 

inversely proportional to the square root of the critical size of crack-like defects that are 

randomly distributed in the material [3]. Due to the scatter of position, length and orientation 

of critical cracks, the strength of ceramics vary unpredictably from component to component, 

even if identical specimens are tested. Thus, in the design of dental ceramics, a probabilistic 

method is recommended [4–6]. Here, strength also depends on the stressed area or volume of 

the material because a larger area or volume increases the probability of existence of a critical 

flaw [7, 8].

The Weibull distribution is the most widely used function in describing strength data of 

ceramics [9–11]. For example, Quinn and Quinn [11] fitted the strength data of alumina, 

zirconia and two feldspathic porcelains with the Weibull distribution and then calculated their 

effective volumes in order to compare measured strengths from different test configurations. 

They concluded that the Weibull analysis has a strong theoretical basis and is of particular 

value in dental applications. There are also some cases, however, where the Weibull 

distribution fails to fit strength data of ceramics [12–16]. Danzer [12] reported that the 
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Weibull theory is inconsistent in estimating the strength of small specimens because their 

effective volumes become less than the fracture origin. Several potential reasons that cause 

deviation from the Weibull statistics were introduced, such as the multi-modal flaw size 

distribution, R-curve behavior, and subcritical crack growth [13]. In terms of a minimum 

information criterion, strength data of Si3N4, SiC and ZnO ceramics were fitted by normal and 

Weibull distributions [14]. It was shown that, compared to Si3N4 and SiC ceramics, for which 

the Weibull distribution is the most suitable function, the normal distribution fits the strength 

data of ZnO better than the Weibull distribution. By using a larger class of probability models 

including the Weibull, normal, log-normal, gamma and generalized exponential distributions, 

Basu et al. [15] carried out the statistical analysis of strength data of monolithic ZrO2, ZrO2-

TiB2 composites, glass and Si3N4. Based on goodness-of-fit tests (the minimum 2, the 

minimum Kolmogorov distance, and the maximum log-likelihood value), they reported that 

the gamma or log-normal distribution, in contrast to the Weibull, may more appropriately 

describe the measured strength data. Further investigations on strength data of ZnO nano-

wires, carbon nano-tubes and carbon nano-wires have also shown that, due to the collective 

interaction of flaws, an optimal strength distribution might be log-normal [16]. Although 

many studies have been conducted on strength distributions of advanced ceramics, there is 

very limited research on dental ceramics. In a recent work, Le and Bazant indicated that the 

introduction of a new theory based on atomistic fracture mechanics may provide more 

realistic predictions of the strength distribution of restorative dental ceramics [17]. 

In this paper, ten strength data sets of dental ceramics are fitted by three versatile 

distribution (i.e., Weibull, normal and log-normal) functions. In each main category, at least 

one data set is used. Based on the minimum information criterion and the Anderson-Darling 

test, the most suitable fitting distribution for categories with a special composition is 
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determined. The deviations from the Weibull distribution and their possible reasons are 

discussed.

2.  Strength data of dental ceramics

For convenience, dental ceramics are categorized according to their compositions. The 

strength data sets of ten dental ceramics were collected (see Table 1), including their specific 

names, the category, test methods and the source of data [18–22]. The details of categories of 

these dental ceramics are as follows:

(1) Category I: Materials contain silica with various amounts of alumina. Alumino-

silicates in nature, which are composed of potassium and sodium, are known as feldspars. 

These materials can be developed into very fine grain machinable blocks, such as Vitablocs 

Mark II.

(2) Category II: Materials contain a high rate of silica with different crystalline fillers 

(leucite, lithium disilicate, etc.). According to the type of fillers and their rates, this category 

is divided into four subgroups: Subcategory II1: Materials contain low-to-moderate leucite-

containing feldspathic glass called “feldspars”. VM 13 and Vita are two typical examples. 

Subcategory II2: Materials contain high leucite (approximately 50 wt. %). The most widely 

used one is the original IPS Empress®. Subcategory II3: This contains lithium-disilicate glass 

ceramics (IPS Empress® II). Porcelain veneering materials for lithium-disilicate glass 

ceramics are also alumino-silicate glasses that contain fluoroapatite crystals rather than 

leucite. Subcategory II4: Fluoromica glass ceramics (DICOR) belong to this subcategory. The 

mica crystals formed in DICOR are based on compositions of SiO2, K2O, MgO, Al2O3, and 

ZrO2, and fluorides are added to the mixture to help produce a degree of fluorescence in the 

finished prosthesis. For this reason, the formulation is called a fluoromica glass ceramic.
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(3) Category III: Crystalline-based systems (mainly alumina) with glass fillers belong to 

this category. In-Ceram (glass-infiltrated, partially sintered alumina) is one of the most 

important samples.

(4) Category IV: These contain polycrystalline solids (alumina, zirconia etc.) that are 

formed by directly sintering crystals without any intervening matrix to form a dense, air-free, 

glass-free, polycrystalline structure. 

3.  Statistical analysis

3.1.  Distribution functions

In mechanical design of advanced ceramic structures, one must ensure an extremely low 

failure probability such as 10–6. For such a low failure probability, it is difficult and even 

impossible to determine the tail of a probability density function (pdf) directly by 

experimental tests. Therefore, a statistical model is usually used for the determination of a pdf 

tail indirectly. Choosing a correct or best-fitting distribution for a given set of strength data is 

an important issue, especially when the tail probability, which is sensitive to the assumed 

model, is of interest. In this paper, three versatile functions are used such as the Weibull, 

normal and log-normal distributions.

The Weibull distribution is one of the most widely used lifetime distributions in design of 

ceramic restorations. It is a distribution that can take on the characteristics of other types of 

distributions, based on the shape parameter. The simplest form of a Weibull function can be 

written as [13, 14]
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where P(σ, V) is the cumulative failure probability of a ceramic component due to flaws, V is 

the volume of the component, V0 is the unit volume, σ is the uniaxial applied stress, m is the 
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Weibull modulus which describes the scatter of strength, and σ0 is the characteristic stress at 

which the failure probability is 63.2% for a specimen with V = V0. For a set of nominally 

identical samples (i.e., V = V0), the cumulative failure probability is 
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and its pdf is
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By maximizing its log-likelihood function, the two unknown parameters in the Weibull 

distribution are given as
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where i is strength of the i-th sample and n is the number of samples or tests.

The strength distribution of a brittle material without surface preparation may be 

symmetrical and therefore the normal distribution is a potential distribution to fit its strength 

data [23]. The pdf of a normal distribution can be represented as
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where  and α2 are the mean and variance, respectively. Their maximum likelihood 

estimators are
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The log-normal distribution is a distribution of a random variable whose logarithm is 

normally distributed. Thus, its pdf can be written as



Page 7 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

7

 










 


2

2

2

ln
exp

2

1
)(





p                                               (7)

where the mean of a log-normal distribution is  2exp 2   and the variance 

is     1exp2exp 22   . For maximum likelihood estimators, the same procedure as the 

normal distribution can be used. 

3.2.  Akaike information criterion

The χ2 test is one of the strongest goodness-of-fit indices, by which an appropriate 

strength distribution can be identified. However, in the case of small sample sizes, it is 

difficult to distinguish between two distributions. Therefore, the Akaike information criterion 

(AIC) is used, which is based on the similar consideration as the log-likelihood ratio and is a 

more promising method to obtain the confidence bounds. The AIC measures the goodness-of-

fit of an estimated statistical model by linking the likelihood to a distance between true 

(experimental) and assumed distributions [24]. The AIC index which has been used in a 

number of areas as an aid to select between competing models is defined as

kLAIC 2ˆln2                                                                   (8)

where k is the number of parameters to be fitted (for example, k = 2 for a two-parameter 

Weibull distribution), L̂ln is the maximized log-likelihood for a given model and can be 

calculated by
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where n is the number of data and f(Yi) is the pdf of an estimated distribution. The AIC values 

can be directly compared, preferring the distribution which gives the smallest value. In typical 

cases, the difference in AIC values of at least 1.5 to 2, i.e., ΔAIC > 1.5–2, corresponds to a 

reliable indication that one distribution is superior to another [24–26].



Page 8 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

8

3.3.  Anderson-Darling test

The Anderson-Darling test is used in order to decide whether a set of data comes from a 

population with a specific distribution. It is one of the most powerful statistical tools for 

detecting departures from normality [27]. The Anderson-Darling test is a modification of the 

Kolmogorov-Smirnov test, in which a more weight is given to the tails. The formula for the 

Anderson-Darling statistic A of the ordered data {Y1 < Y2 …< Yi … < Yn} is

SnA 2                                                                                        (10)

with
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where F is the cumulative distribution function of a specified distribution. Normally, the 

Anderson-Darling statistic A is compared to a critical value and then it is determined whether 

data come from a specified distribution. In this paper, the distribution type with the smallest A

value is favored among the three distributions.

4.  Results and discussion

In Table 2, the fitting parameters are listed for individual data sets by using the Weibull, 

normal and log-normal distributions. The sample size n, AIC index and Anderson-Darling test 

statistic A values are given in Table 3. Each data set contains at least 26 strength values. In the 

calculation of AIC, the normal distribution is used as a reference because strength cannot be 

negative. In Table 3, the minus value of AIC means that a log-normal distribution fits 

strength data better than the Weibull distribution; otherwise, it is just opposite. Based on the 

AIC criterion, when AIC > 2, an optimal distribution can be identified [24–26]. According to 

AIC values in Table 3, for data sets 1–5, there is no big difference between the Weibull and 
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log-normal distributions. For data sets 6 and 7, the log-normal distribution fits strength data 

better than the Weibull distribution. For data sets 8, 9 and 10, however, the Weibull 

distribution gives the lowest AIC values and is more suitable to fit those strength data. Based 

on the Anderson-Darling test, the distribution which provides the smallest A value is more

suitable function for the investigated strength data among other distributions [27]. 

Comparison of results in Table 3 shows that AIC and Anderson-Darling tests give the same 

conclusions.

For categories I (feldspathic porcelain), II1 (feldspathic porcelain), and II2 (Leucite-

reinforced porcelain), the normal distribution is an appropriate function in fitting strength 

data. For tetrasilicic fluoromica glass-ceramic (II4), the log-normal distribution provides the 

best fitting ability. For category III, there are two different results: log-normal is the best 

distribution for lanthanum-glass infiltrated alumina ceramic and Weibull is the most 

appropriate distribution for alumina-glass-infiltrated alumina porcelain. Finally, in the case of 

category IV (3 mol.% yttria stabilized zirconia), the Weibull distribution shows the best 

fitting for zirconia produced by two different suppliers. 

In Fig. 1, the empirical survivor functions (defined as a probability that is equal to one 

minus its cumulative distribution) are given for four typical data sets (1, 6, 7 and 10), each 

from one of four categories, fitted by the Weibull, normal and log-normal distributions. For 

data sets 1, 6 and 7, the Weibull distribution fits strength data worse than other two functions

(see Fig. 1(a-c)). However, Fig. 1(d) presents a noticeable success of the Weibull distribution 

in fitting strength data.

Results show that the most favorable distribution for feldspathic porcelain is the normal 

distribution function. For data sets 1, 2 and 4, a high rate of deviation from the Weibull 

distribution was observed. There are two important prerequisites for the occurrence of a 

Weibull distribution: (i) The structure fails if one single flaw becomes critical (weakest link 
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hypothesis) and (ii) dangerous flaws do not interact. A negligible interaction between flaws is 

only possible if the flaw density is low. Thus in most cases, the Weibull theory does not apply 

to porous materials. Feldspathic porcelains (e.g., Vitablocs II, Vitadur-alpha dentin, 

Deguceram Gold, Vita WMK 68) are porous materials, in which pore or grain is covered by 

small cracks. In Fig. 2, the clusters of leucite (B) around the glass matrix (A) are shown for 

leucite-based feldspathic porcelain. The cracks around the leucite clusters are observed. A 

group of pores as well as their interaction would affect the final fracture rather than only the 

largest one as the weakest-link model (or the Weibull distribution) postulated [29]. The size 

effect is a natural consequence of the Weibull distribution and by checking the existence of 

size effect, it can be determined whether a data set is Weibull distributed or not. If a pore 

diameter is large compared to the grain size, action of the pore is to triple an applied stress; 

otherwise, it has no influence on strength [30]. Under these conditions, strength depends on 

the sizes of a crack in front of the pore and its surrounding grains. As a result, the size effect 

on strength disappears. If the size of a pore is less than grains, existence of pores in ceramics 

causes multiple flaw populations. In general, ceramic components fail due to surface flaws [4,

5]; however, as the number and size of pores increase, the failure probability due to volume 

flaws also increases. If failure occurs due to only surface flaws (microcracks) or only volume 

flaws (pores), then either the surface flaw or pore size distribution will govern the strength 

distribution. However, if some specimens fail due to surface flaws and others fail due to 

volume flaws, it is then obvious that each individual flaw population (i.e., volume or surface 

flaws) will have its typical size distribution and lead to distributions with different Weibull 

parameters. As a result, the strength distribution resulting from different flaw populations will 

overlap and it cannot be modeled by one single flaw size distribution tail. In the case of two 

flaw types, the failure probability for a given stress can be defined as failure caused by flaw 

type I (volume flaws) and flaw type II (surface flaws) [31], respectively, that is
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where σ01, m1 and σ02, m2 are the Weibull parameters of two distributions. Orlovskaja et al. 

[32] performed bending tests with 100 specimens of recrystallized siliconcarbide, a porous 

material, and investigated the bimodality of strength distributions due to high rate of pores. In 

Fig. 3, the Weibull plot of measured strength values is represented [32]. It is seen that two 

distributions with different Weibull parameters are obtained. Moreover, Vieira and Monteiro 

[33] investigated the strength distribution of typical porcelain, fired at 1180 C˚ and composed 

of the mixture of plastic kaolinitic clay with feldspar, quartz, kaolin and talc, and they 

observed two groups of points with different slopes due to a bimodal flaw distribution. Thus, 

the strength prediction of a specimen, which fails due to volume flaws, would lead to wrong 

results by using strength data of specimens which fail due to surface flaws.

In Fig. 4(a-b), typical Weibull plots of data set 1 (Vitablocs Mark II) and data set 3 

(Deguceram Gold) are shown, respectively. For Vitablocs Mark II, similar to recrystallized 

siliconcarbide in Fig. 3, it is evident that there are two different types of Weibull distributions 

(see Fig. 4(a)). As shown in Fig. 4(b), a kink occurs in the linear Weibull plot due to the 

bimodal distribution of cracks, which has to be fitted by a bimodal distribution [13]. For high 

strength values (fracture due to pores), strength data obey the Weibull distribution, however, 

for small strength values (fracture due to surface flaws), strength data deviate from the 

Weibull function. That is, it is bi- and multi-modal flaw size distributions that cause the 

deviation of strength data from the Weibull distribution.

The principal difference between normal and Weibull distributions can be appreciated in 

the predicted lower-bound response at the tail of a distribution. If measured strength data do 

not follow the Weibull distribution, extrapolating towards low strength values by the fitted 

distribution may result in wrong estimates for the lower tail of strength, which is of 
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significance in estimating the failure probability of ceramic structures. Similarly, predicting 

the failure probability of a dental ceramic, whose strength is normally distributed, with a 

Weibull distribution may result in lower or larger values than that predicted with the normal 

distribution. If the Weibull distribution gives a lower failure probability than the normal 

distribution, an unexpected failure may occur at lower stress levels. In the opposite case, 

additional material has to be used to provide a larger size, which causes an expensive and 

larger end-product. For example, for a Vitablocs Mark II (data set 1) specimen with a unit 

volume, the failure probability under the maximum tensile stress of 75 MPa is 5.2×10−6

according to the normal distribution function, and 1.8×10−3 according to the Weibull 

distribution function. Using the Weibull distribution is safer in this case because it gives a 

higher failure probability. However, in order to be in the reliable region, according to the 

Weibull distribution, the failure probability has to be decreased. This can be achieved either 

by decreasing the maximum tensile stress or by increasing the volume of ceramic restoration. 

Whereas strength is normally distributed and, according to the normal distribution, the 

specimen is in the reliable region. This shows the importance of determination of a best fitting 

function for strength data of dental ceramics.

Data sets 2–5 contain different amounts of leucite (KAlSi2O6) within a glass matrix [34–

36]. The microstructure of a leucite-containing dental porcelain (IPS Empress I) is shown in 

Fig. 5. The thermal expansion coefficients of glass and leucite are about 8.6×10−6/°C and 

25×10−6/°C [37, 38], respectively. Such a large difference between thermal expansion 

coefficients causes radial tensile and tangential compressive stresses within and around 

crystals. Above a critical particle size, stress created during cooling can induce microcracks 

circumferential to leucite particles (see Fig. 2 and Fig. 6 (a)). The probability of micro-

cracking increases as the size of leucite particles increases because, due to the high thermal 

coefficient of leucite, the presence of tetragonal leucite in dental ceramics increases their 
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coefficients of thermal expansion [39]. The correlation between the thermal expansion 

coefficient and the weight fraction of leucite is shown in Fig. 6(b) [39]. Micro-cracking 

results in crack bridging during crack propagation since branching of a primary crack into a 

greater number of secondary cracks, or simultaneous growth of many cracks, leads to an 

increase in fracture path, which results in an increase of fracture resistance (R-curve). Here, 

the existence of R-curve is the main reason of deviation of strength distributions from the 

Weibull distribution.

Data set 6 (DICOR) is a mica based machinable glass-ceramic, consisting of SiO2, K2O, 

MgO, and small amounts of Al2O3 and ZnO2. The machinability of DICOR glass-ceramic is 

made possible by the presence of a tetrasilic fluormica (KMg2.5Si4O10F2) as a major 

crystalline phase. Fluorides are added to the mixture to help produce the degree of 

fluorescence in the finished prosthesis. During sintering, needle-like (rod-like) crystals occur 

at random angles rather than plate-like crystals. The grains of DICOR are characterized by 

elongated rod-like structures with various sizes depending on whether the material is fine, 

medium or coarse grained. According to the characteristic strength, the investigated DICOR is 

a coarse-grained material [40], which contains rod-like grains in a residual glassy phase. 

Crack propagation is not likely to occur across the crystals and is more probable along the 

glass matrix [41]. If a crack, whenever nucleated, takes a tortuous path through the glass 

ceramic, more energy will be absorbed in surface production, and fracture toughness can be 

improved. The residual glass phase is of major importance because stress developed at the 

interface between crystal and glass will, to a large extent, determine the crack path. This has 

the advantage of forming an interlocking matrix that gives added flexural strength to the 

ceramic body.  In DICOR, there are two different failure modes, brittle and quasi-plastic 

modes, which are driven by shear stress [42, 43]. In coarse-grained glass ceramics, the 

occurrence of quasi-plastic mode is high due to a high partition of residual glassy phase [44]. 
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This quasi-plastic behavior is the main reason for the deviation of strength data of DICOR 

from the Weibull distribution.

In In-Ceram systems, the alumina slip casting technique is used to form an open-pore 

microstructure. Since the melting point of alumina is too high to produce full densification, a 

porous structure is obtained. Then, the porous structure is infiltrated with lanthanum glass that 

has a low viscosity at high temperatures, so that the molten glass is able to penetrate into 

pores and results in a dense ceramic (see Fig. 7(a)) [34]. The alumina particles act as crack 

stoppers. As shown in Fig. 7(b), the crack propagation path in In-Ceram is presented [45], 

where the arrow indicates the direction of a crack. Here, the possible toughnening 

mechanisms include the pull-out of grains (A), bridging (B), and crack deflection (C). The 

crack propagates through (transgranular) and/or around (intergranular) alumina grains, 

generating asymmetric cracks and longer cracking paths and dissipating a more amount of 

energy. The energy dissipation with the crack propagation results in an R-curve behavior and 

causes a deviation from the Weibull distribution [46, 47].

Based on linear elastic fracture mechanics, the stress intensity factor increases with 

increasing the applied load until a critical value of KI is reached, at which a crack is still in 

equilibrium and above which the unstable crack propagation takes place. Such a critical value 

is called as fracture toughness KIC. When there is an R-curve effect due to toughening, the 

crack growth resistance increases with crack extension [48]. In other words, the stable crack 

propagation occurs before an unstable failure. The crack propagation behavior is no more 

characterized by a single value KIC but with KIR, which increases from KI0, an onset value of 

crack growth (crack-tip toughness). As a result, failure occurs when the following conditions

are satisfied [31].

ad

Kd

a

K
KK IRI

IRI 




const

and      


  (13)
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In Fig. 8 (a-b), the experimentally measured fracture toughness (resistance) KIR of leucite-

reinforced porcelain and In-Ceram Alumina is given as a function of crack extension Δa, 

respectively. As crack propagates, fracture toughness (resistance) increases, which is the 

indication of R-curve behavior.

In the existence of short (small) cracks in a material with R-curve, the applied stress 

intensity factor reaches KI0 and the unstable crack propagation occurs since the condition KI >

KI0 is always fulfilled. As a result, there is no stable crack propagation [31]. When a long 

crack exists in a material, no crack propagation occurs for the lowest load case, as shown in 

Fig. 8(b). However, as the condition KI = KI0 is satisfied, the crack starts to propagate in a 

stable manner. The unstable crack propagation occurs at a KI value more than KI0 after the 

stable crack growth [31]. Therefore, it is obvious that the R-curve effect influences the 

strength of components with large cracks, but has no important effect on specimens with 

small defects. 

The R-curve can be described as

 niIR aaCK    (14)

where C and n are the fitting parameters and n represents the steepness of R-curve and takes 

values of n < 0.5. The increasing crack growth resistance leads to an increase in the Weibull 

modulus m, which can be formulized as [31]

n

m
m

21
*


  (15)

where m* is the Weibull modulus of a material with the R-curve effect. According to these 

foundations, it can be concluded that, if a series of strength measurements are performed, 

specimens with large cracks (low strength) have a higher Weibull modulus than that with 

small cracks (high strength). Therefore, in a Weibull plot, the slope decreases as the measured 

strength value increases. In Fig. 9 (a-b), Weibull plots of measured strengths of IPS Empress 



Page 16 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

16

and In-Ceram are shown, respectively. The dashed lines indicate the original population and 

solid lines show the effect of toughening mechanism due to R-curve behavior. For low 

strength data (failure due to large cracks), the Weibull modulus is higher than that for the high 

strength data (failure due to small cracks).

Another important aspect of critical cracks in dental ceramics is related to the slow and 

stable crack growth (SCG). SCG is a crack propagation process at stress intensity factor (KI) 

level lower than the critical stress intensity factor (KIC). Long-term and repetitive low-level 

loading may cause pre-existing subcritical flaws to slowly grow until failure occurs at a level 

of loading that is insufficient to cause unstable failure. SCG in ceramics can be characterized 

by the coefficient, n, which can be calculated using the following empirical power law

n

IC

I

K

K
v

dt

dc
v 








 0   (16)

where v is the crack velocity at an applied stress intensity factor KI, c is the crack size, t is 

time, v0 is the critical velocity of the crack at the moment of fracture, and KIC is fracture 

toughness. Since KI/KIC is lower than 1, as n increases, the resistance to SCG and service life 

increase. 

SCG occurs especially in the presence of water or water vapor when water molecules 

approach the crack tip that is under stress, resulting in a chemical reaction between water and 

ceramic, which breaks metal oxide bonds with subsequent production of hydroxides. Such a 

phenomenon eventually leads to strength degradation over time. For example, due to the 

heterogeneous distribution of leucite clusters in porcelain, cracks are more likely to propagate 

through the large areas of glassy matrix, which are more susceptible to the slow crack growth

[34]. For in vitro testing, the stress rate dependence of strength is a characteristic sign of SCG

[50]. In order to determine SCG, dynamic fatigue tests, in which the flexural strength of 

specimens is measured as a function of the crosshead speed (at different stress rates) in a
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mechanical testing machine [51]. There have been some studies, in which the SCG of dental

ceramics was investigated [52-57]. For example, Cesar et al. [52] investigated the SCG of

seven dental porcelains (including Vitadur Alpha) with different leucite contents and they 

reported that the SCG parameters of Vitadur Alpha are n = 62 in air and n = 37 in saliva. This 

shows that, saliva decreases the service life of Vitadur Alpha. Marocho et al. [53] investigated 

the SCG under cyclic loading of glass-infiltrated alumina-based (In-Ceram) dental ceramics 

and measured the SCG parameter as n = 24.76 under wet conditions. Moreover, they observed 

that the crack propagation occurs at low KI (45% of KIC) values, which is the indication of 

SCG. Taskonak et al. [56] tested 150 Vitadur Alpha specimens in water at different stress 

rates and also in oil. They measured the median flexural strengths at stressing rates of 0.1, 1, 

10, 100 MPa/s as 46.9, 46.5, 51.0, 55.3 MPa in water and at stressing rate of 100 MPa/s as 

78.4 MPa in oil. Difference between the median flexural strengths shows the existence of 

subcritical crack growth. In Fig. 10 (a-b), the SEM images of fracture surfaces of feldspathic 

porcelain [57] and IPS Empress [34] are shown, respectively. Wake hackle (WH) markings 

are observable on these fracture surfaces. Wake hackles form under fatigue loading when the 

crack tip reaches a bubble or a discontinuity, which are indicators of the direction of crack 

propagation. 

In Fig. 11, the lifetime curves of feldspathic porcelain (VM7), IPS Empress and In-

Ceram are given [34]. The time axis is labeled for 1 day (1d), 1 year (1y) and 10 years (10y) 

and the lifetime curves are extended to above 10 years in order to predict the average strength 

after long-life-times. The slope of the curve is related to the subcritical crack growth 

parameter n (the lower the n value, the higher the slope). The effect of SCG on the Weibull 

parameter m was investigated by Peterlik [58]. The effect of SCG on the Weibull modulus is 

given as follows [58]

2

1
*





n

n
mm   (17)
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where n is the SCG parameter, m is the Weibull modulus, and m* is the Weibull modulus 

with SCG. According to Eq. (17), it is seen that the existence of SCG increases the Weibull 

modulus.

It is worth noting that, in this paper, approximately 30 strength data have been used for 

each material in the comparison of different distribution functions. The deviations from the 

Weibull distribution may also be due to the low sample size. Danzer et al. [13] suggested 

using more than 30 data in order to perform a more reliable comparison because the size of 

samples defines the width of the mapped flaw interval in a double logarithmic Weibull graph.

A commonly used estimator that has low bias, when used with linear regression analyses, is Pf

= (i − 0.5)/n, where i is the ith datum and n is the total number of data points. For the number 

of samples n = 30, the mapped interval includes failure probabilities of 1.7% and 98.3%. 

Trustrum and Jayatilaka [59] reported that for n > 20, this estimator gives parameter estimates 

with small bias and reasonable confidence limits.

Although Danzer et al. [13] suggested using more strength data; they also reported that 

the kink of the Weibull line caused by R-Curve behavior and multimodal flaw size occurs in 

the specified mapped interval when the size of specimens is appropriate. Therefore, it is 

possible to catch the deviation from Weibull distribution by using 30 specimens if the volume 

of a specimen is appropriate. For example, feldspathic porcelain is a porous material and 

pores occur mostly due to dissolved organic additives. After the sintering process, pores with 

a narrow size distribution occur in the material. If the second flaw size distribution in a 

bimodal flaw size distribution is narrowly peaked, the corresponding features can be seen 

directly in the Weibull plot of 30 specimens [60]. Moreover, the kink of a Weibull line due to 

multimodal flaw size can be realized if the specimen has an appropriate effective volume (Veff

≈ 7.5 mm3) [13]. The investigated Vitablocs Mark II (data set 1) specimens have dimensions 

of 3445 mm3 and the strength measurements were carried out by four-point bending tests
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according to European Standard EN 843 [18]. The effective volume of Vitablocs Mark II

(data set 1) specimens is equal to Veff = 11 mm3 [61]. Therefore, by using 30 specimens, it is 

possible to determine the deviation form the Weibull line for these specimens. 

Furthermore, in practical applications, at least 30 specimens should be used according to 

standards and also the Weibull parameters be determined by using the strength data of 30 

specimens although the distribution is not Weibull distributed. Therefore it is critical to 

determine the most suitable distribution function according to 30 strength data, which is the 

main issue of this paper. In addition, instead of increasing the number of samples, the 

reliability of comparison may be increased by testing specimens with different sizes or 

effective volumes.

5.  Conclusions

In this paper, procedures to ascertain a more suitable distribution have been proposed and 

applied to strength data of ten dental ceramics. It is shown that microstructures and 

compositions may affect the strength distribution of dental ceramics. The effects of

microstructure induced fracture behaviors (i.e., R-curve, SCG, and multi-modal flaw 

distribution) on deviations from the Weibull distribution are explained and discussed by using 

the experimentally measured strength data. There is no sufficient evidence that the Weibull 

distribution is always preferable to other distribution functions in fitting strength data of 

dental ceramics. As a result, the use of the Weibull distribution for the characterization of 

strength should be questioned and tested prior to the design of dental ceramics. Similar to 

strength data, the size and shape of grains and defects are equally important in determining 

mechanical properties of materials.
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Figure captions

Fig. 1. Survivor functions for data sets of (a) 1, (b) 6, (c) 7, and (d) 10 fitted by using

normal, log-normal and Weibull distribution functions.

Fig. 2. Photomicrograph of a leucite-based feldspathic porcelain (Vita Omega) reproduced 

with permission from Ref. [28], licensed under Creative Commons Attribution 

License (http://creativecommons.org/licenses/by-nc/3.0/)).

Fig. 3. A Weibull plot of measured strengths of recrystallized silicon carbide [31]. The 

dashed line is the original population and solid lines are volume and surface flaw 

populations.

Fig. 4. A Weibull plot of measured strengths of (a) data set 1 and (b) data set 2. The dashed 

line indicates the original population and solid lines indicate volume and surface flaw 

populations.

Fig. 5. (A) SEM micrograph of IPS Empress I (reproduced with permission from Ref. [34]),

and (B) XRD analysis showing the presence of leucite crystals in a glassy phase of 

IPS Empress core ceramic (reproduced with permission from Ref. [35]).

Fig. 6. (a) Defects in feldspathic porcelain, where numerals indicate (1) inclusion, (2) pore,

and (3) crack (reproduced with permission from Ref. [36]). (b) Correlation between 

the thermal expansion coefficient and weight fraction of leucite [39].

Fig. 7. (a) SEM micrograph of In-Ceram alumina (reproduced with permission from Ref. 

[34]), and (b) crack propagation and toughening mechanisms in In-Ceram 

(reproduced with permission from [45]).

Fig. 8. Fracture toughness KIR as a function of crack extension Δa for (a) leucite-reinforced 

dental porcelain [49] and (b) In-Ceram [46].
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Fig. 9. The Weibull plot of measured strengths of (a) data set 5 (IPS Empress) and (b) data 

set 7 (In-Ceram). The dashed lines indicate the original population and solid lines

show the effect of toughening mechanism due to R-curve behavior.

Fig. 10. SEM images of fracture surfaces of (a) VM7 feldspathic porcelain (reproduced with 

permission from [57]) and (b) IPS Empress (reproduced with permission from [34]) 

with wake hackles (WH).

Fig. 11. Lifetime curves for feldspathic porcelain (VM7), IPS Empress, and In-Ceram [34]. 
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Table 1

Strength data sets of ten dental ceramics, where 4PBT indicates the 4-point bending test and 

B3BT represents the ball-on-three-balls test [18–22].

Data 

set
Specimen

Test 

method
Category Ref.

1 Feldspathic porcelain [Vitablocs Mark II] 4PBT I [18]

2 Feldspathic porcelain [Vitadur-alpha dentin] Biaxial II1 [19]

3 Feldspathic porcelain [Deguceram Gold] 4PBT II1 [20]

4 Feldspathic porcelain [Vita VMK 68] 4PBT II1 [21]

5 Leucite-reinforced porcelain [IPS Empress] 4PBT II2 [21]

6 Tetrasilicic fluoromica glass-ceramic [DICOR] 4PBT II4 [21]

7 Lanthanum-glass infiltrated alumina [In-Ceram] 4PBT III [18]

8 Alumina-glass infiltrated alumina [In-Ceram] 4PBT III [21]

9 3 mol.% yttria stabilized zirconia 4PBT IV This paper

10 3 mol.% yttria stabilized zirconia B3BT IV [22]



Page 30 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

30

Table 2

The fitted parameters by using the Weibull, normal and log-normal distributions, respectively.

Weibull Normal Log-normal

Data set m 0 mean dev mean dev

1 10.85   134.16 128.57 12.85 4.85 0.10

2   6.93     54.19   50.75   7.99 3.91 0.16

3 13.33   107.58 103.57   8.90 4.64 0.09

4   9.99     87.93   83.90   9.03 4.42 0.11

5   7.98     88.30   83.09 12.12 4.41 0.15

6   5.83    75.80   70.65 12.01 4.24 0.17

7   4.84   447.64 410.49 91.52 5.99 0.22

8   6.03   464.74 430.33 85.55 6.04 0.22

9 12.86   411.04 394.62 36.79 5.97 0.10

10 27.42 1000.93 981.05 43.35 6.89 0.04
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Table 3

The AIC values calculated by using the Weibull (AICw), normal (AICn) and log-normal 

(AICln) distributions, where AIC = AICln  AICw. Also listed are the Anderson-Darling test 

statistic (A) values by the three distributions.

Akaike information criterion Anderson-Darling test

Data set n AICw AICn AICln AIC Aw An Aln

1 29 235.21 234.28 236.56    1.35 1.01 0.86 0.92

2 30 215.17 213.70 213.94 −1.23 0.65 0.61 0.62

3 30 220.20 220.19 221.27   1.07 0.53 0.52 0.59

4 32 237.58 235.52 236.49 −1.09 0.67 0.56 0.65

5 32 253.98 254.35 255.64   1.66 0.58 0.57 0.64

6 30 242.44 238.19 237.15 −5.29 1.01 0.76 0.63

7 29 349.36 348.16 346.65 −2.91 0.72 0.69 0.62

8 30 354.57 355.99 360.08   5.51 0.75 0.76 0.87

9 26 264.07 265.18 266.14   2.07 0.61 0.67 0.75

10 31 323.52 325.58 326.38   2.86 0.49 0.68 0.72
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5
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Fig. 6
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Fig. 7



Page 39 of 42

Acc
ep

te
d 

M
an

us
cr

ip
t

39

Fig. 8
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Fig. 9
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Fig. 10
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Fig. 11


