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Abstract- Optimal power flow (OPF) problems are important optimization problems in power 

systems which aim to minimize the operation cost of generators so that the load demand can be met 

and the loadings are within the feasible operating regions of the generators. This brief paper 

emphasizes two essential issues related to solving the OPF problems and which are rarely addressed 

in recent research into power systems: 1) the necessity to validate operational constraints on OPF, 

which determine the feasibility of power systems designed for the OPF problems; and 2) and the 

necessity to develop conventional methods for solving OPF problems which can be more effective 

than the commonly-used heuristic methods. 

Index Terms — Optimal problem flow problems, economic dispatch problem, operational constraints, 

heuristic methods, particle swarm optimization, evolutionary computation, conventional methods 

 
1.   Introduction 
 
For the past few decades, modern control centers of power systems have been equipped with 

computational tools to perform complex and extensive off-line studies in order to provide electrical 

power with minimum costs and minimum power interruptions, since the amount of power supply is 

more demanding and more stable supplies are required in the competitive environment [Wood and 

Wollenberg 1996]. It is necessary to maintain the power systems operating at a minimum cost, and to 

ensure a satisfactory power supply to all users. This can be transformed into the commonly-known 

optimal power flow (OPF) problem which aims to determine optimal control variables for an 

efficient and robust power system [Chatuervedi et al. 2008, Chiang 2005, Esmin 2005, Meng 2010, 

Yuryevich and K.P. Wong 1999]. 
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 The OPF problems generally consist of a cost function and a set of constraint functions. The cost 

function aims to achieve an optimal outcome for a specific objective such as fuel cost or network 

loss, by setting the system control variables. The constraint functions are intended to ensure that the 

generated power supply is adequate for all users and to compensate for the power loses due to the 

transmissions, while satisfying all constraints imposed by operational and physical limitations of the 

power system. However, research has mostly focused on the minimization of the cost functions, but 

very little attention has been paid to satisfying the constraint functions which aim to ensure the 

generated power satisfactorily meets the user demands and the power losses [Bakirtzis et al 2002, 

Devaraj and Yegnanarayana 2005, Paranjothi and Anburaja 2002, Todorovski and Rajicic 2006, 

Chiang 2005, Yuryevich and Wong 1999, Mo et al. 2007, Chatuervedi et al. 2008, Esmin 2005, 

Meng 2010]. This can lead to an undesirable situation, where a small generation cost can be achieved 

but unsustainable power is produced. Although this is an essential issue to consider when solving the 

OPF problems, it is rarely addressed. 

Also, the OPF problems are generally non-convex due to the presence of the valve-point loading 

effects in generators and the involvement of the flexible alternating current transmission systems 

[Yuryevich and Wong 1999]. This is why the heuristic algorithms such as evolutionary algorithms 

have commonly been used to solve the OPF problems [Bakirtzis et al 2002, Devaraj and 

Yegnanarayana 2005, Paranjothi and Anburaja 2002, Todorovski and Rajicic 2006, Chiang 2005, 

Yuryevich and Wong 1999], since such approaches can be easily applied when solving difficult 

optimization problems [Man et al. 1996]. More recent research also showed that particle swarm 

optimization (PSO) [Clerc and Kennedy 2002] is a more robust and efficient method than genetic 

algorithms when solving the OPF problems [Mo et al. 2007, Chatuervedi et al. 2008, Esmin 2005, 

Meng 2010]. They use heuristic operators in order to obtain the global optimal solution, since 

conventional gradient-based methods can find only a local optimal solution [Yuryevich and Wong 

1999]. However, heuristic methods are also local search methods with no guarantee that the solution 
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obtained will be either a global optimal solution or even a local optimal solution [Reeves 1994, 

Vaessens et al. 1992]. Hence, they might not be the most suitable approaches for solving the OPF 

problems. Conventional gradient-based methods could perform more effectively and effectively in 

solving OPF problems. However, recent research on solving the OPF problems tends to focus on the 

development of advanced heuristic methods, and research on the development of local search 

methods is rarely conducted. The development of local search methods is another essential issue 

when solving the OPF problems. 

This brief paper aims to discuss the two essential issues which were rarely addressed in the recent 

research on solving the OPF problems. Section 2 provides an overview of OPF problems and one 

particular OPF problem, namely the economic dispatch (ED) problem, is introduced. Then, an 

effective local search method namely Sequential Quadratic Programming (SQP) with active set 

strategy [Powell 1977] is applied to solve the ED problem. Section 3 presents and compares the 

results obtained by the applied local search method and the heuristic method. A conclusion is given 

in Section 4. 

 

2.  Overview of optimal power flow problems 

The OPF problem aims to optimize the performance of the steady state power system with respect to 

a cost function f which is the total generation cost for active and reactive power dispatch. It could 

represent the total generation cost or the total network loss. Generally, an OPF problem can be 

formulated as [Kirchmayer 1958]: 
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where 1[ ,..., ]T n
nx x R x  is the OPF decision vector with its components being those variables such 

as active/reactive power of swing buses, voltage angle/magnitude of swing and load buses, tap 

position of LTCs. In (1a), f  is the cost function which is continuously differentiable with respect to 

all its arguments. ,  1,..., ,  and  ,  1,..., ,i E i Ig i N h i N   are continuously differentiable with respect to 

all their arguments. The equality constraints (1b) are the nodal power constraints which are the 

operational constraints on the specified power flow conditions, such as the requirements on the load 

demands and system losses. The inequality constraints (1c) are the bounds of the decision variables 

1[ ,..., ]T
nx xx . 

As presented in [Chatuervedi 2008, Chiang 2005, Devaraj and Yegnanarayana 2005, Esmin 2005, 

Meng 2010, Paranjothi and Anburaja 2002, Todorovski 2006, Yuryevich and Wong 1999], the 

penalty function method is used to approximate Problem (1) as formulated by the following 

optimization problem: 

    2
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min :  ( ( ))                                                       (2a)

subject to ( ) 0,    1,...,                                                      (2b)
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where   is a sufficiently large penalty parameter, and ( )J x is known as the augmented cost 

function. Problem (2) is, in general, non-convex due to the presence of the valve-point loading effects 

in generators and the involvement of the flexible alternating current transmission systems.  

 

2.1 Economic dispatch problem 

Consider a common OPF problem, or equivalently called an economic dispatch (ED) problem, in the 

form of Problem (1) [Kirchmayer 1958], where  

1 1 1 1 ,,..., , ,..., , ,..., , ,..., , 1,..., .
G G B B

T

G GN G GN N N k TP P Q Q V V T k N    x        (3) 



 5

The decision variables ,  1,..., ,Gi GP i N ,  1,..., ,  Gi GQ i N ,  1,..., ,j BV j N ,  1,..., ,j Bj N  and 

,  1,..., ,  k TT k N denote the real and reactive power generations, bus voltage magnitudes and angles, 

and transformer tap-settings, where GN , NB and NT are the number of generators, buses and 

transformers, respectively. 

The inequality constraints (1c) are specified by 

min max
Gi Gi GiP P P  , min max

Gi Gi GiQ Q Q  , 1, , Gi N   

min max
j j jV V V  , min max

j j j    , 1, , Bj N  ;                 (4) 

min max
k k kT T T  , 1, , .Tk N   

They can be expressed as: 

min max,   ,    1,...,Gi Gi Gi Gi GP P P P i N     , min max,    ,    1,...,Gi Gi Gi Gi GQ Q Q Q i N     , 

min max,    ,   1,..., ,j j j j BV V V V j N                           (5) 

min max,   ,   1,...,k k k k TT T T T k N     . 

The cost function (1a) is given by  

   2

1

+ sin
GN

t i i Gi i Gi i i Gi
i

f x C a b P c P e f P


    ,                  (6) 

where tC  is the generation cost; ia , ib , ic , ie  and if  are the cost coefficients of the i-th generator. 

The equality constraints (1b) are specified below by the following equality constraints which 

represent the power generations, power loads and power losses through transmission: 

 
1

0 cos
BN

Gi Di i j ij i j ij
j

P P V V Y   


                         (7a) 

and 

 
1

0 sin
BN

Gi Di i j ij i j ij
j

Q Q V V Y   


     ,                    (7b) 
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where 1, 2,.., Bi N ; DiP  (or GiP ) and DiQ  (or GiQ ) are the real and reactive power loads (or 

generations) at the bus i, respectively; ijY and ij are the admittance magnitude and angle between the 

bus i and the bus j, which are varied with respect to kT . 

For the corresponding version of Problem (2), f  is specified by equation (6). 

,  with 1,..., ,i Eg i N  is specified by equation (7a) and ,  with 1,..., ,i Ih i N  is specified by equation 

(7b), where 2 ,E GN N and 4 4 2 .I G B TN N N N    

The objective of the cost function (6) is to minimize the generation cost, tC , by optimizing the 

generated real powers, 1 1,  ,...,  and 
GG G GNP P P . The equality constraint (7a) aims to ensure that all the 

generated real power, 1 1,  ,...,  and ,
GG G GNP P P can adequately supply all the demands, 

1 1,  ,...,  and 
GD D DNP P P , and compensate for the transmission losses, while the equality constraint (7b) 

aims to ensure that the generated reactive powers are satisfactory. Therefore, it is necessary to find a 

feasible solution in order to satisfy both the equality constraints (7a) and (7b). Although some 

infeasible solutions may achieve small generation costs, only unsustainable power can be produced 

since the solution cannot satisfy the equality constraints (7a) and (7b) and is therefore infeasible. 

 

2.2 Proposed local search algorithm 

To solve the augmented cost function ( )J x  in (2), the conventional gradient-based methods could 

be used. However, the augmented cost function ( )J x  is non-differentiable due to the presence of 

the terms,  sin ,i i Gie f P 1,..., Gi N  in (6). Therefore, it is necessary to transform the non-

differentiable terms into a differentiable estimate. Based on the approach on page 185 of [Teo 1991], 

the terms,  sin i Gif P  with 1,..., Gi N , can be approximated by , (sin( ))i i GiL f P , where 
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.                   (8) 

Using the approximation formulated in (8), the augmented cost function (2) can be transformed as 

the following corresponding approximate augmented cost function:
 

    2 2

1 1

, , ,  ( ( ))  ( ( ))  
E IN N

i j
i j

J f g h    
 

   x x x x           (9)
 

where 

   2
,

1 1

+ (sin )
G GN N

t i i Gi i Gi i i i Gi
i i

f C a b P c P e L f P 
 

    x .    

It is clear that  , , ,J   x  is differentiable and its gradient can be readily obtained. Thus, by 

making the penalty parameters   and   sufficiently large, and the smoothing parameter   

sufficiently small, this approximate augmented cost function  , , ,J   x
 
is minimized subject to 

the inequality constraints specified by (5) and the equality constraints specified by (7). 

Problem (9) can be solved by using the sequential quadratic programming algorithm with active set 

strategy (namely SQP algorithm), which has attracted the interest of many mathematicians and 

engineers when solving real-world problems involving nonlinear constrained optimization [Powell 

1997, 1978a, b]. To perform the algorithm, Problem (9) is formulated as the following quadratic 

programming sub-problem, namely kP  by (10) as, 

  

   

   
   

1
min          

2

subject to 0,       1,..., ,

                0,      1,..., .

Tk k k k
k

d

Tk k k
j j I

Tk k k
i i E

H f

h h j N

g g i N



   

   

d d x d

x d x

x d x

               (10) 

where kx  is the k-th iteration of the decision variable represented by (3); ,k     λ  is the 

associated multipliers in (9); kH  is the positive-definite approximation of the Hessian of the 
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Lagrangian function; and NI and NE are the numbers of inequality and equality constraints 

represented by (5) and (7) respectively. 

In (10), kd  is the solution of Problem kP , which is solved based on the active set strategy 

algorithm (discussed in the Appendix and detailed on pages 427 to 434 in [Sun and Yuan 2006]). 

With kd , the new iterates, 1kx , 1kλ  and 1kH  , can be determined by 

1k k k
k

  x x d                                 (11) 

 1 kk k k
k

   λ λ λ λ                             (12) 

 
 

 
 

1

T Tk k k k k k

k k
T Tk k k k k

H H
H H

H

   
γ γ s s

s γ s s
                     (13) 

where  

1k k k s x x ,                                  (14) 

   1 1, , , ,
T T

k k k k kJ J           x xγ x λ x λ ,                  (15) 

 0,1k   is the step-length parameter and 
k
λ  is the corresponding multipliers. Hence, kP  can be 

constructed and be solved consequently.  By repeating this process, the original constrained nonlinear 

optimization problem can be efficiently solved. The following SQP algorithm is proposed to solve 

kP : 

 

 

 

 

 

 

 



 9

SQP algorithm 
Begin 

Step 1: Set k:=0; Choose a starting point and a positive definite matrix 0H  for the 

sub-problem 0P . 

Step 2: Use the active set strategy algorithm (discussed in the Appendix) to obtain 
kd  by solving the sub-problem kP .  

Step 3: If 0k d , kx  is the KKT point and go to Step 7. 

Step 4: Update 1kx  based on (11). 

Step 5: Update 1kλ  and 1kH    by (12) and (13) respectively. 
Step 6: k:=k+1. Go to Step 2. 

Step 7: Return kx  as the optimal solution namely optx . 

End 
 

The optimization procedure is carried out by the optimization toolbox in MATLAB. The penalty 

parameter  in Problem (9) is set as 106, and the default value of inequality constraints is used in  .  

When the optimal solution of Problem (9), optx ,  is obtained, we can substitute optx  into the original 

augmented cost function (6) to obtain the actual optimal cost (i.e. the generation cost). Also, we can 

substitute optx  to the equality constraints (7a) and (7b) to check whether or not optx  is a feasible 

solution (i.e. to check whether sustainable power can be generated). 

 

3. Experimental results 
 

The effectiveness of the proposed SQP algorithm was evaluated by solving the OPF problems which 

are involved in the design of small, medium and large scale power systems, namely WSCC 9 bus-

system (with 3 generators), IEEE 30 bus-system (with 6 generators) and Poly-system (a power 

system with 36 generators). The numbers of decision variables in WSCC 9 bus-system, IEEE 30 bus-

system and Poly-system are 26, 76 and 304 respectively. The results obtained by the SQP algorithm 

were compared with those obtained by an effective heuristic method, namely advanced PSO 

[Chatuervedi 2008], which has been developed to solve OPF problems and non-convex parametrical 

problems.  
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 The advanced PSO is intended to overcome the limitation of the standard PSO [Eberhart and 

Kennedy 1995] which usually converges to a near-optimal solution.  It is integrated with the genetic 

mutation in order to help to obtain the optimum. Similar to the standard PSO algorithm, the advanced 

PSO starts by randomly generating a swarm of particles, and moves the particle positions iteratively 

based on the operations of genetic mutation and swarm movement. Chatuervedi [2008] has 

demonstrated that better results can be obtained when solving the OPF problems and some non-

convex parametrical problems, when comparing the standard PSO with the other evolutionary 

algorithms. Therefore, the advanced PSO is used in this research for comparison with the proposed 

SQP algorithm. 

Both the proposed SQP algorithm and advanced PSO were developed using the Matlab R2011b, 

whereby the Matlab subroutine ‘fmincon’ is used to determine the optimum of the power flow 

problems. The mechanism and parameters used for the advanced PSO are identical to those used in 

[Chatuervedi 2008], and Problem (9) was used as the fitness function on the advanced PSO. For the 

numbers of computational evaluations, both the advanced PSO and the SQP algorithm used 10000 

computational evaluations for solving the OPF on the two smaller scaled systems, WSCC 9 bus-

system and the IEEE 30 bus-system. They both used 50000 computational evaluations for the larger 

scale system, China-system. Thirty runs were performed using both methods for each power system; 

the initial swarm used in the advanced PSO and the initial starting point used in the SQP algorithm 

were generated randomly for each run. 

 Figures 2a, 2b and 2c illustrate the averaged results obtained by both the advanced PSO and the 

SQP algorithm among the 30 runs. Figure 1a illustrates the averaged results for the augmented cost 

 J x  formulated in Problem (2a). Figures 1b and 1c illustrate the generation cost  f x  and the 

sum of equality constraint values   2

1

gN

ii
g x

  
formulated in Problem (9), respectively. Figure 1a 

shows that the averaged augmented costs obtained by the SQP algorithm are smaller than those 

obtained by the advanced PSO. Figure 1b shows that the SQP algorithm outperforms the advanced 
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PSO for which smaller generation cost among all tested systems can be obtained except IEEE 30-bus 

system. Also, Figure 1c shows that the SQP algorithm outperforms the advanced PSO on handling 

the equality constraints for all the systems where the sum of the equality constraint values obtained 

by the SQP algorithm are smaller.  

These numerical results show the effectiveness of the SQP algorithm, where better power systems 

requiring small generation costs are produced. Hence, the power systems which are optimized by the 

SQP algorithm have lower fuel costs. Also, the equality constraints can be met by the SQP algorithm, 

but not by the advanced PSO. Addressing the equality constraints is important since it ensures that 

the generated power can   adequately supply all users and compensate the power loss due to the 

transmissions. This can lead to an undesirable situation if those equality constraints cannot be 

satisfied. However, the advanced PSO performed poorly when addressing this. 

Furthermore, Figures 2a, 2b and 2c illustrate the variances obtained by both the advanced PSO and 

the SQP algorithm for the 30 runs. The three figures illustrate the variances for the augmented cost 

 J x  in Problem (2a), the generation cost  f x  in Problem (9) and the sum of equality constraint 

values   2

1

gN

ii
g x

  
in Problem (9). They show that, in general, the variances obtained by the SQP 

algorithm are smaller than those obtained by the advanced PSO. Therefore, these results indicate that 

the SQP algorithm can produce more robust solution quality compared with the advanced PSO. 
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Fig. 1a Mean total cost , ( )J x   in (9) Fig. 1b Mean generation cost

 f x  in (9) 
Fig. 1c Mean sum of equality constraint 

values   2

ig x  in (9) 

   

 
 

Fig. 2a Variance of total costs , ( )J x   in (9) Fig. 2b Variance of generation 
costs  f x  in (9) 

Fig. 2c Variance of sum of equality 

constraint values   2

ig x  in (9) 
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The t-test is then used to evaluate the significance of the two algorithms, Advanced PSO and SQP 

algorithm for the three systems in terms of the total cost, the generation cost and the constraints. 

Table 1 shows that all t-values between the two algorithms for all cases are higher than 2.15. Based 

on the normal distribution table, if the t-value is higher than 2.15, the significance is 98% confident. 

Therefore, SQP algorithm significantly outperforms Advanced PSO with 98% confidence in the three 

power systems for all cases. 

Table 1: t-values between the two algorithms, Advanced PSO and SQP algorithm 

 WSCC9 IEEE 30 Poly 

Total cost 4.2053e+006 16.452 2.0122e+007 

Generation cost 4.2457 7.0609 8.1759 

Constraints 4.1611 16.454 20.122 

 

 
4.     Conclusion 
 
This brief paper emphasizes two essential issues on solving OPF problems: 1) It is necessary to 

validate the satisfaction of equality constraints, which are seldom addressed in OPF research. 

Without validation, infeasible power systems are likely to be generated. Hence, the generated power 

might not be adequate  to supply all users and compensate for the power loss due to the 

transmissions. 2) The experimental results showed that the tested conventional method can produce 

better solution quality and more robust solutions to the OPF problems. Hence, apart from developing 

heuristic algorithms for solving the OPF problems, the development of conventional methods should 

not be overlooked.  
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Appendix: Active set strategy algorithm 

The following quadratic programming optimization problem, namely QP  is considered: 

1
Minimize  

2

subject to ,       1,... ,

                ,       1,... ,

T T

T
i i

T
j j

Q

i M

j N



 

 

x x c x

a x b

a x b

 

where nRx  and n
l Ra , l I E  ,  1,...,I M  and  1,...,E N . QP  can be solved based on a 

sequence of linear equality constrained quadratic optimization problem using active set strategy. The 

active set   x  for any feasible solution, x , is defined by: 

     * 0 * 0T T
i i j ji b j b        x a x a x ,            (B1) 

A typical active set strategy algorithm for a standard quadratic programming problem is given 

below: 

Active Set Strategy Algorithm 

Begin 

Step 1: Choose an initial feasible solution 0x  of Problem QP  and identify the 

corresponding active set  0 x . Set k:=0. 

Step 2: Compute the search direction by solving the following problem: 

         1
min

2k

T Tk k k k k k kf Q Q f    
d

x d d d d x c x      (B2b) 

subject to  

     0,       AT k k k
i ib i   a x d x                 (B2a) 

Step 3: If 0k d , goto Step 4; Otherwise goto Step 7. 

Step 4: Based on TQ A  x λ c , compute the corresponding Lagrange multiplier 

vector  , Ak k k
i i   λ x . 

Step 5: Determine all 
 A

min
k

k k
j i

i I
 

 


x
, with all the index  j. 

Step 6:   If all 0k
j  , then  

set      \k k j  x x  and goto Step 7;  

Else  
goto Step 11. 
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Step 7: Compute the linear steplength k  using  min 1,k k  , where 

    
 \

min , 0
k k

T k
k T ki i

iT k
i I A

i

b


 
  

 x

a x
a d

a d
               (B3) 

Step 8: Set 1k k k k  x x d .  

Step 9: If 1k  , then 

set      1k k l   x x , where  \ A kl I x  is chosen such that the 

minimum of (B3) is achieved.  
Else  

1k  , set    1k k  x x . 

Step 10: Set k:=k+1, goto Step 2. 

Step 11: Return kx  as the optimal solution. 
End 

 


