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Multiobjective genetic algorithm (MOGA) is a direct search method for multiobjective optimization problems. It is based on the
process of the genetic algorithm; the population-based property of the genetic algorithm is well applied in MOGAs. Comparing
with the traditional multiobjective algorithm whose aim is to find a single Pareto solution, the MOGA intends to identify numbers
of Pareto solutions. During the process of solving multiobjective optimization problems using genetic algorithm, one needs to
consider the elitism and diversity of solutions. But, normally, there are some trade-offs between the elitism and diversity. For some
multiobjective problems, elitism and diversity are conflicting with each other. Therefore, solutions obtained by applying MOGAs
have to be balanced with respect to elitism and diversity. In this paper, we propose metrics to numerically measure the elitism and
diversity of solutions, and the optimum order method is applied to identify these solutions with better elitism and diversity metrics.
We test the proposed method by some well-known benchmarks and compare its numerical performance with other MOGAs; the
result shows that the proposed method is efficient and robust.

1. Introduction

In this paper, we consider the following multiobjective opti-
mization problem:

(MOP) Minimize F (𝑥)

Subject to 𝑥 ∈ 𝑋,
(1)

where F(𝑥) = (𝑓
1
(𝑥), 𝑓
2
(𝑥), . . . , 𝑓

𝑝
(𝑥))
𝑇 is a multiobjective

function (vector valued function), 𝑋 = {𝑥 ∈ R𝑛 : 𝑙
𝑏
≤ 𝑥 ≤

𝑢
𝑏
} ⊂ R𝑛 is a box set, and 𝑙

𝑏
and 𝑢
𝑏
are lower bound and upper

bound, respectively. We assume that each function in F(𝑥) is
Lipschitz continuous but not necessarily differentiable.

The multiobjective optimization has extensive applica-
tions in engineering andmanagement [1–3].Most of the opti-
mization problems appearing in the real-world application

have multiple objectives; they can be modeled as multiobjec-
tive optimization problems. However, due to the theoretical
and computational challenges, it is not easy to numerically
solve multiobjective optimization problems. Therefore, the
multiobjective optimization attracted lots of researches over
the last decades [4–8].

So far, there are two types ofmethods to solvemultiobjec-
tive optimization problems: the indirect method and direct
method. The indirect method converts multiple objectives
into a single one. One strategy is to combine the multiple
objective functions using the utility theory [9] or theweighted
sum method [10, 11]. The difficulty for such method is the
selection of the utility function or proper weights so as
to satisfy the decision-maker’s preference. Another indirect
method is to formulate the multiple objectives, except one,
as constraints. However, it is not easy to determine the
upper bounds of these objectives. On the one hand, small
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upper bounds could exclude some Pareto solutions; on the
other hand, large upper bounds could enlarge the objective
function value space which leads to some sub-Pareto solu-
tions. Additionally, the indirect method can only obtain a
single Pareto solution in each run. However, in practical
applications, decision-makers often prefer a number of Pareto
solutions so that they can choose one strategy according to
their preferences.

Direct methods are devoted to exploring the entire set
of Pareto solutions or a representative subset. However, it is
extremely hard or impossible to obtain the entire set of Pareto
solutions for most multiobjective optimization problems,
except for some simple cases. Therefore, stepping back to
a representative subset is preferred. Genetic algorithm, as
a population-based algorithm, is a good choice to achieve
this goal. The generic single-objective genetic algorithm can
be modified to find a set of nondominated solutions in a
single run [12–14]. The ability of the genetic algorithm to
simultaneously search different regions of a solution space
makes it possible to find a diverse set of solutions for
difficult problems. The crossover and mutation operators of
the genetic algorithm can be applied to various domains
defined by different objectives, which in return creates new
nondominated solutions in unexplored parts of the Pareto
front. In addition, multiobjective genetic algorithm does not
require the user to prioritize, scale, or weight objectives.
Therefore, the genetic algorithm is one of the most popular
metaheuristic approaches for solving multiobjective opti-
mization problems [15–17].

The first multiobjective optimization method based on
the genetic algorithm, called the vector evaluated genetic
algorithm (VEGA), was proposed by Schaffer [18]. After-
wards, several multiobjective evolutionary algorithms were
developed, such as multiobjective genetic algorithm
(MOGA) [19], niched Pareto genetic algorithm (NPGA) [20],
weight-based genetic algorithm (WBGA) [21], random
weighted genetic algorithm (RWGA) [22], nondominated
sorting genetic algorithm (NSGA) [23], strength Pareto evo-
lutionary algorithm (SPEA) [24], improved SPEA (SPEA2)
[25], Pareto-archived evolution strategy (PAES) [26], Pareto
envelope-based selection algorithm (PESA) [27].

There are two basic criteria to measure a set of solutions
for the multiobjective optimization problem [28].

(1) Elitism. The obtained solutions should be as close
to the real Pareto solutions as possible. This can be
measured by the closeness between the real Pareto
frontier and the image of the obtained solutions since
the image set of the real Pareto solutions is the real
Pareto frontier.

(2) Diversity. In order to extensively describe Pareto
solutions, the obtained solutions should distribute
uniformly over the set of real Pareto solutions. The
diversity of the obtained solutions is measured by the
diversity of their images.

These two criteria of Pareto solutions are often in conflict
with each other. Therefore, one has to balance the trade-off
between elitism and diversity. The aim of this paper is to

introduce new techniques to tackle these issues. The rest of
the paper is organized as follows. In Section 2, we review
some basic definitions of multiobjective optimization and
the process of genetic algorithm. In Section 3, we propose
an improved genetic algorithm for solving multiobjective
optimization problems. In Section 4, some numerical exper-
iments are carried out and the results are analyzed. Section 5
concludes the paper.

2. Preliminaries

In this section, we first review some definitions and theorems
in the multiobjective optimization and then introduce the
general procedure of genetic algorithm.

2.1. Definitions inMultiobjective Optimization. First of all, we
present the following notationswhich are often used in vector
optimization. Given two vectors

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

, 𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)
𝑇

∈ R
𝑛
, (2)

then
(i) 𝑥 = 𝑦 ⇔ 𝑥

𝑖
= 𝑦
𝑖
for all 𝑖 = 1, 2, . . . , 𝑛;

(ii) 𝑥 < 𝑦 ⇔ 𝑥
𝑖
< 𝑦
𝑖
for all 𝑖 = 1, 2, . . . , 𝑛;

(iii) 𝑥 ≤ 𝑦 ⇔ 𝑥
𝑖
≤ 𝑦
𝑖
for all 𝑖 = 1, 2, . . . , 𝑛, and there is

at least one 𝑖 ∈ {1, 2, . . . , 𝑛} such that 𝑥
𝑖
< 𝑦
𝑖
; that is,

𝑥 ̸= 𝑦;
(iv) 𝑥 ≦ 𝑦 ⇔ 𝑥

𝑖
≤ 𝑦
𝑖
for all 𝑖 = 1, 2, . . . , 𝑛.

“>,” “≥,” and “≧” can be defined similarly. In this paper,
we call 𝑥 ≤ 𝑦 by 𝑥 dominates 𝑦 or 𝑦 is dominated by 𝑥
(in some literatures, 𝑥 ≥ 𝑦 is called 𝑥 dominates 𝑦 or 𝑦
is dominated by 𝑦; we reverse this definition since we are
solving minimization problem in this paper).

Definition 1. Suppose that 𝑥 ⊆ R𝑛 and 𝑥∗ ∈ 𝑋. If 𝑥∗ ≦ 𝑥 for
any 𝑥 ∈ 𝑋, then 𝑥∗ is called an absolute optimal point of X.

Absolute optimal point is an ideal point, but it may not
exist.

Definition 2. Let 𝑥 ∈ R𝑛 and 𝑥∗ ∈ 𝑋. If there is no 𝑥 ∈ 𝑋

such that

𝑥 ≤ 𝑥
∗

(or 𝑥 < 𝑥∗) , (3)

then 𝑥∗ is called an efficient point (or weakly efficient point).

The sets of absolute optimal points, efficient points, and
weakly efficient points of𝑋 are denoted as𝑋ab,𝑋ep, and𝑋wp,
respectively. For the problem MOP, 𝑋 ⊆ R𝑛 is called the
decision variable space and its image set F(𝑋) = {𝑦 ∈ R𝑝 |

𝑦 = F(𝑥), 𝑥 ∈ 𝑋} ⊂ R𝑝 is called the objective function value
space.

Definition 3. Suppose that 𝑥∗ ∈ 𝑋. If

F (𝑥∗) ≦ F (𝑥) , (4)

for any 𝑥 ∈ 𝑋, 𝑥∗ is called an absolute optimal solution of
the problem MOP. The set of absolute optimal solutions is
denoted as 𝑆as.
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The concept of the absolute optimal solution is a direct
extension of that for single-objective optimization. It is the
ideal solution but may not exist for most cases.

Definition 4. Suppose that 𝑥∗ ∈ 𝑋. If there is no 𝑥 ∈ 𝑋 such
that

F (𝑥) ≤ F (𝑥∗) (or F (𝑥) < F (𝑥∗)) ; (5)

that is, F(𝑥∗) is an efficient point (or weakly efficient point) of
the objective function value space F(𝑋), then 𝑥∗ is called an
efficient solution (or weakly efficient solution) of the problem
MOP. The sets of efficient solutions and weakly efficient
solutions are denoted as 𝑆es and 𝑆ws, respectively.

Another name of the efficient solution is Pareto solution,
which was introduced by Koopmans and Reiter in 1951 [29].
The meaning of the Pareto solution is that if 𝑥∗ ∈ 𝑆es, then
there is no feasible solution 𝑥 ∈ 𝑋, such that any𝑓

𝑖
(𝑥) of F(𝑥)

is not worse than that of F(𝑥∗). In other words, 𝑥∗ is the best
solution in the sense of “≤.” Another intuitive interpretation
of Pareto solution is that it cannot be improved with respect
to any objective without worsening at least one of the other
objectives. The set of Pareto solutions is denoted by P∗. Its
image set F(P∗) is called the Pareto frontier, denoted by
PF∗. The following two theorems are well known.

Theorem 5 (see [6]). For the multiobjective optimization, it
holds that

𝑆as ⊂ 𝑆es (P
∗
) ⊂ 𝑆ws ⊂ 𝑋. (6)

Theorem 6 (see [6]). For the objective function value space
F(𝑋), if the sets of efficient points and weakly efficient points
(i.e., 𝐹es and 𝐹ws, resp.) are known, then, in the feasible set𝑋, it
holds that

𝑆es = ⋃

F∈𝐹es

{𝑥 ∈ 𝑋 | F (𝑥) = F} ,

𝑆ws = ⋃

F∈𝐹ws

{𝑥 ∈ 𝑋 | F (𝑥) = F} .
(7)

Theorem 5 illustrates the relationship of the sets of
absolute optimal solutions, efficient solutions, and weakly
efficient solutions. Theorem 6 reveals that the preimage of
efficient points (or weakly efficient points) in 𝐹(𝑋) is efficient
solutions (or weakly efficient solutions) of the problemMOP.

2.2. Genetic Algorithm. Genetic algorithm is one of the most
important evolutionary algorithms. It was introduced by
Holland in the 1960s and then developed by his students and
colleagues at the University of Michigan between the 1960s
and 1970s [30]. Over the last two decades, the genetic algo-
rithm was increasingly enriched by plenty of literatures, such
as [31–34]. Nowadays various genetic algorithms are applied
in different areas, for example, mathematical programming,
combinational optimization, automatic control, and image
processing.

Suppose that 𝑃(𝑡) and 𝑂(𝑡) represent parents and off-
spring at the 𝑡th generation, respectively. Then, the general

structure of genetic algorithm can be described in the
following pseudocode.

General Structure of Genetic Algorithm

(1) Initialization

(1.1) Generate the initial population 𝑃(0).
(1.2) Set crossover rate, mutation rate, and maximal

generation time.
(1.3) Let 𝑡 ← 0.

(2) Since the maximal generation time is not reached, do
the following.

(2.1) Crossover operator: generate 𝑂
1
(𝑡).

(2.2) Mutation operator: generate 𝑂
2
(𝑡).

(2.3) Evaluate 𝑂
1
(𝑡) and 𝑂

2
(𝑡): compute the fitness

function.
(2.4) Select operator: build the next population.
(2.5) 𝑡 ← 𝑡 + 1, go to (2.1).

End

End.

From the pseudocode, we can see that there are three
important operators in a general genetic algorithm: the
crossover, mutation, and selection operators. The implemen-
tation of these operators is highly dependent on the way of
encoding.

3. A New Multiobjective Genetic Algorithm

In this section, we present a new multiobjective genetic
algorithm for solving the problem MOP. We first propose
a ranking strategy called the optimum order method and
thenmetrics for the elitism and diversity of solutions. Finally,
a new selection operator for genetic algorithm is designed
using the optimum order method and the elitism and diver-
sity metrics.

Theoretically, the terminology “solution”means the point
in the decision variable space, while the corresponding point
in the objective function value space is named as “image
of solution.” However, most of the following discussions are
in the objective function value space. In order to simplify
the description, we indiscriminately call the point from the
decision variable space and its corresponding image from the
objective function value space as the “solution,” if there is no
confusion to do so.

3.1. The OptimumOrder Method. In numerical optimization,
in order to compare the numerical performance of different
solutions, it is necessary to assign a fitness value for each
solution. For the single-valued function, fitness is normally
assigned as its function value. However, to assign the fitness
of a multiobjective function is not straightforward. So far,
there are three typical approaches. The first one is weighted
sum approach [22, 35], which converts themultiple objectives
into a single one using normalized weight ∑𝑝

𝑖=1
𝜆
𝑖
= 1,
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𝜆
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑝. The decision of weight parameters

is not an easy task for this approach. The second one is
to alter the objective functions [18, 25], which randomly
divides the current population into 𝑝 equal subpopulations:
𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑝
. Then, each solution in the subpopulation 𝑃

𝑖

is assigned a fitness value based on the objective function
𝑓
𝑖
. In fact, this approach is a straightforward extension of

the single-objective genetic algorithm.The last one is Pareto-
ranking approach [4, 23, 36], which is a direct application of
the definition of Pareto solution. In the following, we present
a rank strategy called the optimum order method [6].

Definition 7. Let 𝑃 = {1, 2, . . . , 𝑝} and 𝑁 = {1, 2, . . . , 𝑛}; for
any 𝑥𝑖, 𝑥𝑗 ∈ 𝑋, define

𝑎
𝑖𝑗𝑙
=

{{{{

{{{{

{

1, if 𝑓
𝑙
(𝑥𝑖) < 𝑓

𝑙
(𝑥𝑗) ;

0.5, if 𝑓
𝑙
(𝑥𝑖) = 𝑓

𝑙
(𝑥𝑗) ;

0, if 𝑓
𝑙
(𝑥𝑖) > 𝑓

𝑙
(𝑥𝑗) or 𝑖 = 𝑗.

(8)

Then,

𝑎
𝑖𝑗
= ∑
𝑙∈𝑃

𝑎
𝑖𝑗𝑙

𝑖, 𝑗 ∈ 𝑁 (9)

is called the optimal number of 𝑥𝑖 corresponding to 𝑥𝑗 for all
objectives. Furthermore, 𝐾

𝑖
= ∑
𝑗∈𝑁

𝑎
𝑖𝑗
is defined as the total

optimal number of 𝑥𝑖 corresponding to all the other solutions
for all objectives.

Obviously, for a minimization problem, a larger optimal
number corresponds to a better solution. Therefore, optimal
numbers can be considered as criteria for ranking a set of
solutions. Due to this observation, we propose the following
algorithm to rank a population of solutions.

Algorithm 8 (optimum order method (OOM)). Consider the
following steps.

Step 1 (input). It includes the population of solutions and their
objective function values.

Step 2 (compute optimal numbers). Compute the optimal
number and total optimal number of each solution; fill these
numbers into Table 1 according to (8).

Step 3 (rank the solution). Rearrange the order of solutions
according to the decreasing order of the total optimal num-
bers 𝐾

𝑖
. More precisely, denote

𝐾
𝛼
1

= max
𝑖∈𝑁

{𝐾
𝑖
} ,

𝐾
𝛼
2

= max
𝑖∈𝑁\{𝛼

1
}

{𝐾
𝑖
} ,

(10)

and so on.

The solutions 𝑥𝛼1 and 𝑥𝛼2 , which are corresponding to
𝐾
𝛼
1

, 𝐾
𝛼
2

, and so forth, are called the best solution, the second
best solution, and so forth.The new order is called the optimal

Table 1: Table of optimal numbers.

𝑥
𝑖 𝑥𝑗

𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑗 ⋅ ⋅ ⋅ 𝑥𝑛 𝐾
𝑖

𝑥1 0 𝑎
12

⋅ ⋅ ⋅ 𝑎
1𝑗

⋅ ⋅ ⋅ 𝑎
1𝑛

𝐾
1

𝑥2 𝑎
21

0 ⋅ ⋅ ⋅ 𝑎
2𝑗

⋅ ⋅ ⋅ 𝑎
2𝑛

𝐾
2

...
...

...
...

...
...

𝑥
𝑖

𝑎
𝑖1

𝑎
𝑖2

⋅ ⋅ ⋅ 𝑎
𝑖𝑗

⋅ ⋅ ⋅ 𝑎
𝑖𝑛

𝐾
𝑖

...
...

...
...

...
...

𝑥𝑛 𝑎
𝑛1

𝑎
𝑛2

⋅ ⋅ ⋅ 𝑎
𝑛𝑗

⋅ ⋅ ⋅ 0 𝐾
𝑛

order. It is worthmentioning that the optimumordermethod
does not necessarily rank Pareto solutions in the frontier
positions; however, those solutions who are more reasonable
with respect to all objectives are more likely to be ranked in
the foremost positions.This property is different fromPareto-
ranking approach.

Lemma 9. Suppose that 𝑥𝑖, 𝑥𝑗 ∈ 𝑋. If F(𝑥𝑖) ≤ F(𝑥𝑗), then
𝑎
𝑖𝑗
> 𝑎
𝑗𝑖
.

Proof. Let

𝐴 = {𝑙 ∈ 𝑃 | 𝑓
𝑙
(𝑥
𝑖
) < 𝑓
𝑙
(𝑥
𝑗
)} , 𝑎 = |𝐴| ;

𝐵 = {𝑙 ∈ 𝑃 | 𝑓
𝑙
(𝑥
𝑖
) = 𝑓
𝑙
(𝑥
𝑗
)} , 𝑏 = |𝐵| ,

(11)

where | ⋅ | denotes the number of components in a set.
Obviously, we have 𝑎 > 0, 𝑏 > 0 and 𝑎 + 𝑏 = 𝑝. Then,

𝑎
𝑖𝑗𝑙
=
{

{

{

1, 𝑙 ∈ 𝐴,

0.5, 𝑙 ∈ 𝐵,

𝑎
𝑗𝑖𝑙
=
{

{

{

0, 𝑙 ∈ 𝐴,

0.5, 𝑙 ∈ 𝐵.

(12)

Therefore,

𝑎
𝑖𝑗
= ∑
𝑙∈𝐴

𝑎
𝑖𝑗𝑙
+∑
𝑙∈𝐵

𝑎
𝑖𝑗𝑙
= 𝑎 + 0.5𝑏,

𝑎
𝑗𝑖
= ∑
𝑙∈𝐴

𝑎
𝑗𝑖𝑙
+∑
𝑙∈𝐵

𝑎
𝑗𝑖𝑙
= 0.5𝑏.

(13)

Since 𝑎 > 0, 𝑎
𝑖𝑗
> 𝑎
𝑗𝑖
.

Lemma 10. Suppose that 𝑥𝑖, 𝑥𝑗 ∈ 𝑋. If F(𝑥𝑖) ≤ F(𝑥𝑗), then,
for any 𝑥𝑘 (𝑘 ̸= 𝑖, 𝑗, 𝑘 ∈ 𝑁), 𝑎

𝑖𝑘
> 𝑎
𝑗𝑘
.

Proof. For any 𝑥𝑘 (𝑘 ̸= 𝑖, 𝑗, 𝑘 ∈ 𝑁), let

𝐴 = {𝑙 ∈ 𝑃 | 𝑓
𝑙
(𝑥
𝑘
) < 𝑓
𝑙
(𝑥
𝑖
)} , 𝑎 = |𝐴| ;

𝐵 = {𝑙 ∈ 𝑃 | 𝑓
𝑙
(𝑥
𝑘
) > 𝑓
𝑙
(𝑥
𝑖
)} , 𝑏 = |𝐵| ;

𝐶 = {𝑙 ∈ 𝑃 | 𝑓
𝑙
(𝑥
𝑘
) = 𝑓
𝑙
(𝑥
𝑖
)} , 𝑐 = |𝐶| .

(14)

Then, we have 𝑎, 𝑏, 𝑐 ≥ 0 and 𝑎 + 𝑏 + 𝑐 = 𝑝.
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(i) When 𝑙 ∈ 𝐴. Since F(𝑥𝑖) ≤ F(𝑥𝑗), we have

𝑓
𝑙
(𝑥
𝑘
) < 𝑓
𝑙
(𝑥
𝑖
) ,

𝑓
𝑙
(𝑥
𝑘
) < 𝑓
𝑙
(𝑥
𝑗
) .

(15)

Therefore,

𝑎
1

𝑖𝑘
= ∑
𝑙∈𝐴

𝑎
𝑖𝑘𝑙
= 0 ⋅ 𝑎 = 0,

𝑎
1

𝑗𝑘
= ∑
𝑙∈𝐴

𝑎
𝑗𝑘𝑙

= 0 ⋅ 𝑎 = 0.

(16)

(ii) When 𝑙 ∈ 𝐵. We have 𝑓
𝑙
(𝑥𝑘) > 𝑓

𝑙
(𝑥𝑖). Thus,

𝑎
2

𝑖𝑘
= ∑
𝑙∈𝐵

𝑎
𝑖𝑘𝑙
= 1 ⋅ 𝑏 = 𝑏. (17)

On the other hand, let

𝑀
1
= {𝑙 ∈ 𝐵 | 𝑓

𝑙
(𝑥
𝑘
) < 𝑓
𝑙
(𝑥
𝑗
)} , 𝑚

1
=
󵄨󵄨󵄨󵄨𝑀1

󵄨󵄨󵄨󵄨 ;

𝑀
2
= {𝑙 ∈ 𝐵 | 𝑓

𝑙
(𝑥
𝑘
) = 𝑓
𝑙
(𝑥
𝑗
)} , 𝑚

2
=
󵄨󵄨󵄨󵄨𝑀2

󵄨󵄨󵄨󵄨 ;

𝑀
3
= {𝑙 ∈ 𝐵 | 𝑓

𝑙
(𝑥
𝑘
) > 𝑓
𝑙
(𝑥
𝑗
)} , 𝑚

3
=
󵄨󵄨󵄨󵄨𝑀3

󵄨󵄨󵄨󵄨 .

(18)

Obviously, 𝑚
1
, 𝑚
2
, 𝑚
3
≥ 0 and 𝑚

1
+ 𝑚
2
+ 𝑚
3
= 𝑏.

Therefore,

𝑎
2

𝑗𝑘
= 𝑚
1
⋅ 0 + 𝑚

2
⋅ 0.5 + 𝑚

3
⋅ 1 ≤ 𝑏. (19)

(iii) When 𝑙 ∈ 𝐶. We have

𝑎
3

𝑖𝑘
= ∑
𝑙∈𝐶

𝑎
𝑖𝑘𝑙
= 0.5 ⋅ 𝑐. (20)

On the other hand, let

𝑀
1
= {𝑙 ∈ 𝐶 | 𝑓

𝑙
(𝑥
𝑘
) < 𝑓
𝑙
(𝑥
𝑗
)} , 𝑚

1
=
󵄨󵄨󵄨󵄨𝑀1

󵄨󵄨󵄨󵄨 ;

𝑀
2
= {𝑙 ∈ 𝐶 | 𝑓

𝑙
(𝑥
𝑘
) = 𝑓
𝑙
(𝑥
𝑗
)} , 𝑚

2
=
󵄨󵄨󵄨󵄨𝑀2

󵄨󵄨󵄨󵄨 .

(21)

Note that it is not possible to have 𝑓
𝑙
(𝑥𝑘) > 𝑓

𝑙
(𝑥𝑗).

Otherwise, we will have 𝑓
𝑙
(𝑥𝑖) > 𝑓

𝑙
(𝑥𝑗), which is

contrary to F(𝑥𝑖) ≤ F(𝑥𝑗). Again, we have𝑚
1
, 𝑚
2
≥ 0

and𝑚
1
+ 𝑚
2
= 𝑐. Thus,

𝑎
3

𝑗𝑘
= ∑
𝑙∈𝐶

𝑎
𝑗𝑘𝑙

= 𝑚
1
⋅ 0 + 𝑚

2
⋅ 0.5 ≤ 0.5𝑐. (22)

In light of (16)–(22), we have

𝑎
𝑖𝑘
=

3

∑
𝛼=1

𝛼
𝛼

𝑖𝑘
≥ 𝑎
𝑗𝑘
=

3

∑
𝛼=1

𝑎
𝛼

𝑗𝑘
. (23)

Theorem 11. If 𝐾
𝑒
= max

𝑖∈𝑁
{𝐾
𝑖
}, then the solution 𝑥𝑒 corre-

sponding to 𝐾
𝑒
must be an efficient solution (Pareto solution).

Proof. If 𝑥𝑒 is not an efficient solution, then there exists an
𝑥𝑠 ∈ 𝑋, such that

F (𝑥𝑠) ≤ F (𝑥𝑒) . (24)

Therefore, according to Lemma 9,

𝑎
𝑒𝑠
< 𝑎
𝑠𝑒
. (25)

Due to Lemma 10, we have, for any 𝑥𝑗 (𝑗 ∈ 𝑁, 𝑗 ̸= 𝑒, 𝑠),

𝑎
𝑒𝑗
≤ 𝑎
𝑠𝑗
. (26)

Based on (25), (26) and 𝑎
𝑒𝑒
= 𝑎
𝑠𝑠
= 0, we have

𝐾
𝑒
= ∑
𝑗∈𝑁

𝑎
𝑒𝑗
< ∑
𝑗∈𝑁

𝑎
𝑠𝑗
= 𝐾
𝑠
, (27)

which is a contradiction to the assumption 𝑘
𝑒
= max

𝑖∈𝑁
{𝐾
𝑖
}.

The proof is completed.

Based onTheorem 11, the following results are obvious.

Corollary 12. If 𝑥𝑎 is an absolute optimal solution, then

𝐾
𝑎
= max
𝑗∈𝑁

{𝐾
𝑗
} . (28)

Corollary 13. If 𝑥𝑒 is corresponding to 𝐾
𝑒
= max

𝑗∈𝑁
{𝐾
𝑗
} and

𝑥𝑠 is corresponding to 𝐾
𝑠
= max

𝑗∈𝑁\{𝑒}
{𝐾
𝑗
}, then 𝑥𝑠 is an

efficient solution of the population without 𝑥𝑒.

Theorem 11 and Corollary 13 reveal the rationality of the
optimum order method because the best solution must be an
efficient solution, and the second best solution, althoughmay
not be an efficient solution, is an efficient solution without
the best one.This statement is true until the solution with the
smallest total optimal number (ranked as the last reasonable
solution).Therefore, It is reasonable for us to choose solutions
with large total optimal numbers as parents for the next
generation.

3.2. The Elitism Metric. Over the last two decades, a number
of different evolutionary algorithms were suggested to solve
multiobjective optimization problems, such as MOGA [37],
NSGA [23], NPGA [20], SPEA [24], PAES [38], and NSGA-
II [4]. Among them, MOGA, NSGA, and NPGA did not
introduce any elitism strategy at all. Therefore, although they
were successful in finding solutions for many test problems
and a number of engineering problems, researchers realized
that they are still needed to be improved in the sense of
obtaining better Pareto solutions [28]. Elitism is one of the
main issues considered to be improved. After that, SPEA,
PAES, and NSGA-II started to take into account the elitism
of solutions.

SPEA introduces an external population which stores
all nondominated solutions discovered so far beginning
from the initial population. At each generation, a combined
population based on the external population and the current
population is generated firstly. Then, all the nondominated
solutions in the combined population are identified and
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assigned a fitness based on the number of solutions they dom-
inate. Furthermore, the dominated solutions are assigned a
fitness which is worse than the worst fitness of the nondom-
inated solution. Then, the next generation is selected based
on the fitness of each solution. This elitism strategy makes
sure that the search is directed toward the nondominated
solutions. Although the computational complexity of SPEA
is 𝑂(𝑀𝑁

3) (where 𝑀 is the number of objectives and 𝑁 is
the size of the population), with proper bookkeeping, the
complexity can be reduced to 𝑂(𝑀𝑁2).

PAES uses a single-parent single-offspring evolutionary
algorithm which is similar to (1 + 1)-evolution strategy.
In PAES, the elitism strategy is implemented by comparing
between one parent and one offspring. If the offspring domi-
nates the parent, the offspring is accepted as the next parent;
on the other hand, if the parent dominates the offspring, the
offspring is replaced by another mutated solution (a new off-
spring) and the comparison between the parent and offspring
is made again. However, if the parent and the offspring do
not dominate each other, the choice between them is made
by comparing them with an archive of the best solutions
found so far. More specifically, if the offspring dominates any
solution stored in the archive, then the offspring is accepted
by the archive and all the dominated solutions are eliminated
from the archive. On the contrary, if the offspring does not
dominate any solution stored in the archive, then the parent
and offspring are accepted by the archive after checking the
diversity.The computational complexity of PAES is calculated
as 𝑂(𝑎𝑀𝑁), where 𝑎 is the length of the archive. Since the
archive size is usually chosen proportional to the population
size𝑁, the overall complexity of PAES is 𝑂(𝑀𝑁

2).
NSGA implements the elitism strategy using naive non-

dominated sorting approach. For a population of solutions,
the naive nondominated sorting first identifies the nondom-
inated solutions in the population and then the nondomi-
nated solutions without considering the solutions which have
already been identified. This process is repeated until all
the solutions in the population have been identified. In this
way, the solutions are classified into different Pareto frontiers
and selected based on their Pareto ranking. The native
nondominated sorting approach is based on the definition
of Pareto frontier. It is easy to be implemented, but in the
worst case, the task of identifying all the Pareto frontier
requires a computational complexity of 𝑂(𝑀𝑁

3). In order
to reduce the complexity of NSGA, NSGA-II improved the
sorting approach and presented the fast nondominated sort-
ing approach. NSGA-II introduced two entities, domination
count (𝑛

𝑝
) and dominated count (𝑆

𝑝
). The domination count

represents the number of solutions which dominates the
solution 𝑝; the dominated count represents the number of
solutions which are dominated by the solutions 𝑝.

All solution in the first nondominated front will have
their domination count as zero. Now, for each solution 𝑝

with 𝑛
𝑝
= 0, we visit each member (𝑞) of its set 𝑆

𝑝
and

reduce its domination count by one. In doing so, if for any
member 𝑞 the domination count becomes zero, we put it
in a separate list 𝑄. These members belong to the second
nondominated front. Now, the above procedure is continued

with each member of 𝑄 and the third front is identified.
This process continues until all frontiers are identified. It
is evident to observe that the naive nondominated sorting
approach and the fast nondominated sorting approach lead
to the same Pareto ranking for a population of solutions. The
overall computational complexity of the fast nondominated
sorting approach is 𝑂(𝑀𝑁

2).
The previous elitism strategies use the definitions of

domination or Pareto ranking, but they do not quantify the
elitism of solutions. In this paper, we introduce a new elitism
strategy which is still based on Pareto ranking but quantifies
the elitism of solutions.

Definition 14. Suppose that𝑃
1
is a population of solutions, we

define the elitismmetric of the nondominated solutions in 𝑃
1
,

say 𝐹
1
, as 1; define the elitism metric of the nondominated

solutions in 𝑃
2
= 𝑃
1
\ 𝐹
1
, say 𝐹

2
, as 2; and so forth; and define

the elitismmetric of the nondominated solutions in𝑃
𝑖
= 𝑃
𝑖−1
\

𝐹
𝑖−1

, say 𝐹
𝑖
as 𝑖.

Remark 15. The process in Definition 14 is the same as
the native nondominated sorting approach. And the elitism
metric of each solution is actually its index of Pareto ranking.

According to Definition 14, the elitism measure of solu-
tions can be taken as a function of the solutions, the value
of the function is the elitism metric of solutions. We call this
function the elitism function. Mathematically,

𝜃 : 𝑃
1
󳨀→ Z

+
,

where 𝑃
1
⊂ R
𝑛 is a population and

Z
+ is the positive integer.

(29)

It is obvious that a small value of 𝜃(𝑥) means that 𝑥 enjoys
a good Pareto ranking. Therefore, in order to find solutions
with better Pareto ranking, we should minimize function
𝜃(𝑥). In the following, we present a method to calculate the
value of function 𝜃.

Suppose that 𝑃
1
= {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
}, we calculate the value

of 𝛼(𝑥
𝑖
, 𝑥
𝑗
) by

𝛼 (𝑥
𝑖
, 𝑥
𝑗
)

=

{{{{{

{{{{{

{

1, if 𝑥
𝑖
dominates 𝑥

𝑗
;

−1, if 𝑥
𝑖
dominated by 𝑥

𝑗
;

0, if 𝑥
𝑖
and 𝑥

𝑗
are not dominated by each other.

(30)

Then we construct the domination table (see Table 2).
Obviously, entries of Table 2 are just −1, 0, and 1. Now

we successively check every row of the table, if any row, say
the 𝑖th one, whose entries are only 0 or 1; then we can claim
that there is no solution dominating 𝑥

𝑖
, which means that

𝑥
𝑖
’s elitism metric is 1. Then discard the rows and columns
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Table 2: The domination table of 𝑃
1
.

𝑥
1

𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑁−1

𝑥
𝑁

𝑥
1

— 𝛼(𝑥
1
, 𝑥
2
) ⋅ ⋅ ⋅ 𝛼(𝑥

1
, 𝑥
𝑁−1

) 𝛼(𝑥
1
, 𝑥
𝑁
)

𝑥
2

𝛼(𝑥
2
, 𝑥
1
) — ⋅ ⋅ ⋅ 𝛼(𝑥

2
, 𝑥
𝑁−1

) 𝛼(𝑥
2
, 𝑥
𝑁
)

...
...

... d
...

...

𝑥
𝑁−1

𝛼(𝑥
𝑁−1

, 𝑥
1
) 𝛼(𝑥

𝑁−1
, 𝑥
2
) ⋅ ⋅ ⋅ — 𝛼(𝑥

𝑁−1
, 𝑥
𝑁
)

𝑥
𝑁

𝛼(𝑥
𝑁
, 𝑥
1
) 𝛼(𝑥

𝑁
, 𝑥
2
) ⋅ ⋅ ⋅ 𝛼(𝑥

𝑁
, 𝑥
𝑁−1

) —

in which these solutions with elitism metric of 1 locate. This
means that we do not consider these solutions any more in
the following process since they have already been identified.
This process is repeated again and the identified solutions are
assigned with elitism metric of 2 and so forth until all the
solutions are identified.

In Table 2, it is evident that 𝛼(𝑥
𝑖
, 𝑥
𝑗
) = −𝛼(𝑥

𝑗
, 𝑥
𝑖
), where

1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑁. So the computational complexity of assigning
elitism metrics for the population is 𝑂((1/2)𝑀(𝑁 − 1)

2
).

We provide the following example to illustrate the process
described above.

Figure 1 illustrated a population of solutions. There are
35 solutions in this population. The numbers on the side are
indexes of these solutions. Table 2 is the domination table of
this population. First, we successively check rows of Table 3;
rows with only 0 and 1 are 1, 2, 5, 8, 9, 10, 16, 17, 19, 20,
and 28. So solutions corresponding to these rows are in the
first Pareto frontier and should be assigned elitism metric 1.
Then, discard the corresponding rows and columns from the
domination table and do the same search again.We assign the
solutions corresponding to the identified rows with elitism
metric 2. This process is repeated until all the rows of the
domination table are discarded. We depict the elitism metric
assignment in Figure 2.

3.3. The Diversity Metric. As discussed before, diversity of
solutions is another criterion for solutions obtained by the
multiobjective genetic algorithm. In order to obtain uni-
formly distributed solutions, it is important to maintain the
diversity of the population in the iteration process. Without
this, solutions in the population tend to form relatively
few clusters. This phenomenon is known as genetic drift.
Several approaches have been developed to maintain the
diversity of solutions. Among them, the sharing function
approach [19, 39] is one of the earliest approaches.The sharing
function approach degrades the objective fitness of solutions
by setting a threshold 𝜃share. This threshold is still called
sharing parameter. For a solution𝑥

𝑖
in the current population,

a niche count 𝑚
𝑖
is first calculated. The niche count 𝑚

𝑖
= 1 if

there is no solution in the 𝜃share-niche (neighborhood) of 𝑥𝑖
(i.e., there is no solution whose distance with 𝑥

𝑖
is less than

𝜃share); the niche count 𝑚
𝑖
> 1 if there are some solutions

in the 𝜃share-niche (neighborhood) of 𝑥𝑖 (i.e., there are some
solutions whose distances with 𝑥

𝑖
) less than 𝜃share. Then, the

degradation is obtained through dividing the objective fitness
by the niche count, that is, 𝑓

𝑖
/𝑚
𝑖
. This proportion is called

the shared fitness. The original NSGA [23] used the sharing
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Figure 1: The population of solutions.
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Figure 2: The elitism metric assignment for the population.

function approach to maintain the diversity of solutions.
The performance of the sharing function approach terribly
depends on the sharing parameter 𝜃share. However, 𝜃share is a
user-decided parameter and it is difficult to choose a proper
one. Since each solution must be compared with all other
solutions in the population, the overall complexity of the
sharing function approach is 𝑂(𝑀𝑁

2
).

Deb et al. [4] introduced the crowding distance approach
to maintain the diversity of solutions. This approach calcu-
lates the density estimation of a solution by summarizing
the average distance of two solutions on either side of this
solution along each of the objective function.Thedensity esti-
mation, which is still called crowding distance, serves as an
estimate of the perimeter of the cuboid formed by using the
nearest neighbors as the vertices. Obviously, a solution with a
smaller value of crowding distance is more crowded by other
solutions. Thus, the crowding distance can be considered as
a measure of the diversity of a solution. The crowding dis-
tance approach does not require any user-defined parameter.
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Table 3: The domination table of 𝑃
1
.

𝑥 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1 — 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 — 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 −1 −1 — 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 −1 0 — 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 — 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 −1 −1 −1 −1 −1 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 −1 −1 −1 −1 −1 0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 — 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 — 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 — 1 1 1 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1
11 0 0 0 0 0 0 0 0 0 −1 — 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 −1 0 −1 −1 0 0 −1 −1 −1 −1 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 −1 −1 −1 −1 0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 −1 0 0 0 — 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0
15 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 — 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1
18 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 1 −1 — 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
21 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 −1 1 −1 −1 −1 −1 — 0 0 0 0 0 0 0 0 0 1 0 0 0 0
22 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 1 −1 −1 −1 −1 0 — 1 0 1 1 0 0 0 0 1 0 1 1 1
23 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 −1 1 −1 −1 −1 −1 0 −1 — 0 0 0 0 0 0 0 1 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 — 1 1 1 0 1 1 1 1 1 1 1
25 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 −1 1 −1 −1 −1 −1 0 −1 0 −1 — 0 0 0 0 0 1 0 0 0 0
26 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 −1 1 −1 −1 −1 −1 0 −1 0 −1 0 — 0 0 0 0 1 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 −1 −1 0 0 0 −1 0 0 — 0 1 1 1 1 1 1 1
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 1 1 1 1 1 1 1
29 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 −1 0 −1 −1 0 0 0 −1 0 0 −1 −1 — 1 1 1 1 1 1
30 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 1 −1 −1 −1 −1 0 0 0 −1 0 0 −1 −1 −1 — 1 1 1 1 1
31 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 −1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 — 0 0 0 0
32 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 1 −1 −1 −1 −1 0 0 0 −1 0 0 −1 −1 −1 −1 0 — 1 1 1
33 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 1 −1 −1 −1 −1 0 −1 0 −1 0 0 −1 −1 −1 −1 0 −1 — 1 0
34 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 1 −1 −1 −1 −1 0 −1 0 −1 0 0 −1 −1 −1 −1 0 −1 −1 — 0
35 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 1 −1 −1 −1 −1 0 −1 0 −1 0 0 −1 −1 −1 −1 0 −1 0 0 —

Its computational complexity is 𝑂(𝑀𝑁 log𝑁), which is
better than the sharing function approach. However, the
crowing distance just reflects the local diversity of a solution.

The cell-based density approach [6, 26, 38, 40, 41] divides
the objective space into 𝑝-dimensional cells. The number of
solutions in each cell is defined as the density of the cell,
and the density of a solution is equal to the density of the
cell in which the solution locates. An efficient approach to
dynamically divide the objective function space into cells is
proposed by Lu and Yen [40, 41]. The main advantage of the
cell-based density approach is that a global density map of
the objective function value space can be obtained. But the
process of the cell-based density approach is complicated.
For a single solution, in the worst case, it requires 𝑂(𝐿𝑀)

comparison to locate the solution into a proper cell, where𝐿 is
the number of cells for each objective function.Thus, the total

complexity of the cell-based density approach is 𝑂(𝐿𝑀𝑁).
And furthermore, 𝐿 is a user-defined parameter which is not
easy to be chosen properly.

In this section, we define the metric about measuring the
degree of crowdedness around a solution. Then, a specifical
diversity metric is introduced.

Definition 16. Suppose that 𝑃
1
is a population, 𝑥

𝑖
and 𝑥

𝑗

are two solutions from 𝑃
1
, and 𝜙

𝑖
and 𝜙

𝑗
are two scalars

corresponding to 𝑥
𝑖
and 𝑥

𝑗
, respectively.We call 𝜙

𝑖
and 𝜙
𝑗
the

diversity metrics of 𝑥
𝑖
and 𝑥

𝑗
, respectively, if 𝜙

𝑖
< 𝜙
𝑗
implies

that solutions around𝑥
𝑗
aremore crowded than those around

𝑥
𝑖
.

Definition 16 is just a qualitative description of the
diversity metric. In the following, we introduce a specifical
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definition of the diversity metric which quantitatively mea-
sures the degree of crowdedness around a solution.

Definition 17. Suppose that 𝑃
1
is a population with 𝑁 solu-

tions, 𝑥
𝑖
is a solution in 𝑃

1
. We provide a function 𝜙 : 𝑃

1
󳨃→

R+ as

𝜙 (𝑥
𝑖
) =

𝑁

∑
𝑗=1,𝑗 ̸=𝑖

𝛽 (𝑑
𝑖𝑗
) , (31)

where 𝛽 : R+ 󳨃→ R+ is a decrease function and 𝑑
𝑖𝑗
is the

Euclidean distance between solutions 𝑥
𝑖
and 𝑥

𝑗
. Then we call

the value of 𝜙(𝑥
𝑖
) the global diversity metric of 𝑥

𝑖
.

It is obvious that the global diversity metric is coincident
with the definition of diversity metric. One improvement of
the global diversity metric is that it reflects the diversity of
𝑥
𝑖
with respect to all the other solutions since the function 𝜙

involves the whole population. The requirement for calculat-
ing the global diversity metric is only the Euclidean distance
between any two solutions, so the computational complexity
of the global diversity metric is 𝑂((1/2)(𝑁 − 1)

2
). A proper

choice of function 𝛽 is

𝛽 (𝑑) = 1 −
1

𝐷
𝑑, (32)

where𝐷 = max
1≤𝑖,𝑗≤𝑁

{𝑑
𝑖𝑗
}.

As an example, Figure 3 illustrates the global diversity
metric of the population presented in Figure 1. FromFigure 3,
one can observe that these solutions which are less crowded
enjoy smaller global diversity metrics, such as solutions 𝑥

35

and 𝑥
34

(the index of the solution can be found in Figure 1)
with 7.1157 and 15.6234, respectively. On the contrary, these
solutionswhich aremore crowded have larger global diversity
metrics, such as solutions 𝑥

15
, 𝑥
17
, and 𝑥

21
with 19.3926,

29.3777, and 29.3826, respectively.

3.4. A New Selection Operator. As discussed before, the
core criteria for multiobjective optimization are to obtain
solutions with better elitism and, at the same time, maintain
the diversity of solutions. If we tackle these criteria from a
multiobjective optimization point of view, we need to solve
a multiobjective optimization problem with two objectives:
minimizing the elitismmetric and the global diversity metric
of the solution. Noting the definition of the elitism metric
𝜃(𝑥) and the global diversity metric 𝜙(𝑥) presented in the
previous subsections, we design the following multiobjective
subproblem:

Minimize H (𝑥)

Subject to 𝑥 ∈ 𝑃
1
,

(33)

where H(𝑥) = (𝜃(𝑥), 𝜙(𝑥))
𝑇 is a multiobjective function and

𝑃
1
⊂ 𝑋 is a population of candidate solutions. It is clear that

the image ofH(⋅)

𝐻 = {(𝜃 (𝑥) , 𝜙 (𝑥))
𝑇

| 𝑥 ∈ 𝑃
1
} (34)
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Figure 3: The global diversity metric for the population.

is a finite set whose cardinal is the same as𝑃
1
. One property of

the multiobjective subproblem (33) is that its domain 𝑃
1
and

image set 𝐻 are finite; that is, the problem (33) is discrete.
Thus, if we rank points in 𝐻 by the optimum order method
(Algorithm 8), it is reasonable to say that those points who
have smaller optimal orders are better points; that is, solutions
corresponding to these points should be maintained to the
next generation.This process is summarized by the following
algorithm.

Algorithm 18 (multiobjective selection operator). Consider
the following steps.

Step 1. Input the selection pool 𝑃
1
and its objective function

values 𝐹(𝑃
1
) = {F(𝑥) | 𝑥 ∈ 𝑃

1
}. Input the prefixed population

size𝑁 (𝑁 is less than the cardinal of 𝑃
1
).

Step 2. Calculate the elitism metric and global diversity
metric of the solution in 𝑃

1
using the function (29) and (31),

respectively. Let the result be

Θ = {𝜃 (𝑥) | 𝑥 ∈ 𝑃
1
} ,

Φ = {𝜙 (𝑥) | 𝑥 ∈ 𝑃
1
} .

(35)

Step 3. Construct the objective function value space of the
multiobjective subproblem

𝐻 = {(𝜃
𝑥
, 𝜙
𝑥
)
𝑇

| 𝜃
𝑥
∈ Θ, 𝜙

𝑥
∈ Φ} . (36)

Step 4. Rank points in 𝐻 by the optimum order method
(Algorithm 8) and take the first𝑁 solutions according to their
optimal orders as parents for the next generation.

In Table 4, we use the multiobjective selection operator
to evaluate the population presented in Figure 1. In this table,
𝜃
𝑖
, 𝜙
𝑖
, 𝐾
𝑖
, and 𝜎

𝑖
represent the elitism metric, global diversity

metric, total optimal number, and optimal order of solution
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Table 4: The total optimal number and optimal order without pre-
treatment of the diversity metric.

𝑥
𝑖

𝜃
𝑖

𝜙
𝑖

𝐾
𝑖

𝜎
𝑖

𝑥
1

1 25.8013 59.0 1
𝑥
2

1 26.5934 57.0 2
𝑥
3

2 26.7268 47.5 5
𝑥
4

2 27.7626 44.5 8
𝑥
5

1 28.2829 49.0 4
𝑥
6

3 28.0889 36.5 10
𝑥
7

3 28.3563 33.5 17
𝑥
8

1 28.6122 47.0 6
𝑥
9

1 28.8617 45.0 7
𝑥
10

1 28.8972 44.0 9
𝑥
11

2 29.0363 33.5 18
𝑥
12

3 29.0259 28.5 26
𝑥
13

3 29.2131 24.5 28
𝑥
14

2 29.2940 26.5 27
𝑥
15

2 29.3926 21.5 30
𝑥
16

1 29.3800 32.0 25
𝑥
17

1 29.3777 33.0 20
𝑥
18

3 29.4494 14.5 34
𝑥
19

1 29.3475 34.0 16
𝑥
20

1 29.2939 36.0 11
𝑥
21

4 29.3826 12.0 35
𝑥
22

4 29.2878 18.0 31
𝑥
23

5 29.2419 15.5 33
𝑥
24

2 29.0505 32.5 22
𝑥
25

5 29.0794 17.5 32
𝑥
26

5 28.7751 23.5 29
𝑥
27

3 28.1192 35.5 12
𝑥
28

1 27.8471 52.0 3
𝑥
29

4 27.7568 35.0 14
𝑥
30

5 27.4767 32.5 23
𝑥
31

6 26.1417 32.5 24
𝑥
32

6 22.9761 34.5 15
𝑥
33

7 21.0339 33.5 19
𝑥
34

8 15.6234 33.0 21
𝑥
35

7 7.1157 35.5 13

𝑥
𝑖
, respectively. We can observe that the multiobjective

selection operator systematically considers the criteria of
elitism and diversity. We select 15 solutions whose optimal
orders are the smallest as parents of the next generation.
They are marked as red squares in Figure 4. However, from
Figure 4, distribution of the selected points is not ideal. This
is because there are some irregular distributed points, such as
points 33, 34, and 35.They are far away from the others, which
means that they should be eliminated. But because of their
very small diversity metric, they are selected by the selection
operator. In order to tackle this issue, we pretreat the diversity
metric before running the selection operator.

In sport matches, the statistician always eliminates the
highest and the lowest marks before calculating the aver-
age. We borrow this idea to pretreat the diversity metric.

Table 5:The total optimal number and optimal order with pretreat-
ment of the diversity metric.

𝑥
𝑖

𝜃
𝑖

𝜙
𝑖

𝐾
𝑖

𝜎
𝑖

𝑥
1

1 25.8013 59.0 1
𝑥
2

1 26.5934 57.0 2
𝑥
3

2 26.7268 47.5 4
𝑥
4

2 27.7626 44.5 6
𝑥
5

1 28.2829 49.0 5
𝑥
6

3 28.0889 36.5 15
𝑥
7

3 28.3563 33.5 17
𝑥
8

1 28.6122 47.0 7
𝑥
9

1 28.8617 45.0 12
𝑥
10

1 28.8972 44.0 8
𝑥
11

2 29.0363 33.5 21
𝑥
12

3 29.0259 28.5 24
𝑥
13

3 29.2131 24.5 26
𝑥
14

2 29.2940 — —
𝑥
15

2 29.3926 — —
𝑥
16

1 29.3800 — —
𝑥
17

1 29.3777 33.0 19
𝑥
18

3 29.4494 — —
𝑥
19

1 29.3475 34.0 18
𝑥
20

1 29.2939 36.0 10
𝑥
21

4 29.3826 12.0 27
𝑥
22

4 29.2878 18.0 22
𝑥
23

5 29.2419 15.5 25
𝑥
24

2 29.0505 32.5 13
𝑥
25

5 29.0794 17.5 23
𝑥
26

5 28.7751 23.5 20
𝑥
27

3 28.1192 35.5 9
𝑥
28

1 27.8471 52.0 3
𝑥
29

4 27.7568 35.0 11
𝑥
30

5 27.4767 32.5 14
𝑥
31

6 26.1417 32.5 16
𝑥
32

6 22.9761 — —
𝑥
33

7 21.0339 — —
𝑥
34

8 15.6234 — —
𝑥
35

7 7.1157 — —

We simply identify the 10%pointswith the highest and lowest
diversity metric and eliminate them before the running of
selection operator. In the example, the 10% points with the
highest and lowest diversity metrics are 14, 15, 16, and 18 and
32, 33, 34, and 35, respectively. Thus, we run the selection
operator without considering them.

Table 5 presents the total optimal number and optimal
order with pretreatment of the diversity metric. It can be
observed that points 14–16, 18, and 32–35 are excluded in the
ranking process. This gives more chance to some point close
to the Pareto frontier. For example, points 24 and 30 (which
were ranked as 22 and 23, resp.) were not selected without
pretreatment of the diversity metric, but they are selected
(ranked as 13 and 14, resp.) after considering the pretreatment
of the diversity metric. From Figure 5, we can see that the
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Figure 4: The selected point without pretreatment of the diversity
metric.
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Figure 5: The selected point with pretreatment of the diversity
metric.

selected points are now well distributed and closer to the
Pareto frontier.

3.5. A NewMultiobjective Genetic Algorithm. Given the mul-
tiobjective selection operator, we are now ready to propose a
new multiobjective genetic algorithm.

Algorithm 19 (optimum order multiobjective genetic algo-
rithm (OOMOGA)). Consider the following.

(1) Initialization

(1.1) Generate the initial population 𝑃(0).
(1.2) Set the crossover rate, mutation rate, and num-

ber of maximal generations.
(1.3) Let 𝑡 ← 0.

(2) Since the number of maximal generations has not
been reached, do the following.

(2.1) Run the crossover operator: generate the off-
spring 𝑂

1
(𝑡).

(2.2) Run the mutation operator: generate the off-
spring 𝑂

2
(𝑡).

(2.3) Construct a selection pool 𝑆(𝑡) by combining
𝑃(𝑡), 𝑂

1
(𝑡), and 𝑂

2
(𝑡); that is, 𝑆(𝑡) = 𝑃(𝑡) ∪

𝑂
1
(𝑡) ∪ 𝑂

2
(𝑡). Compute their multiobjective

function values; that is, 𝐹𝑆(𝑡) = {F(𝑥) | 𝑥 ∈

𝑆(𝑡)}.
(2.4) Run the multiobjective selection operator

(Algorithm 18) by inputting 𝑆(𝑡) and 𝐹𝑆(𝑡); the
selected solutions are maintained as the parents
of the next generation, that is, 𝑃(𝑡 + 1).

(2.5) Let 𝑡 ← 𝑡 + 1; go to (2.1).
End

End.

4. Numerical Experiments

In this section, we investigate the numerical performance of
OOMOGA. In order to evaluate the numerical performance
of solvers, we use the performance metric IGD proposed in
[42]. Suppose that 𝑃∗ is a set of uniformly distributed points
along the Pareto frontier (in the objective function value
space). Let𝐴 be a set of solutions obtained by a certain solver.
Then, the average distance from 𝑃

∗ to 𝐴 is defined as

IGD (𝐴, 𝑃
∗
) =

∑V∈𝑃∗ 𝑑 (V, 𝐴)
|𝑃∗|

, (37)

where 𝑑(V, 𝐴) is the minimum Euclidean distance between V
and the points in 𝐴; that is,

𝑑 (V, 𝐴) = min
𝑦∈𝐴

󵄩󵄩󵄩󵄩V − 𝑦
󵄩󵄩󵄩󵄩 . (38)

In fact, 𝑃∗ represents a sample set of the real Pareto frontiers,
if |𝑃∗| is large enough to approximate the Pareto frontier
very well, IGD(𝐴, 𝑃∗) could measure both the diversity and
convergence of 𝐴 in a sense. A smaller IGD(𝐴, 𝑃∗) means
the set 𝐴 is closer to the real Pareto frontier and has better
diversity.

The referential algorithms are those submitted to the
special session on performance assessment of unconstrained/
bound constrained multiobjective optimization algorithms
at CEC’09. There are 13 algorithms submitted to the special
session. They are listed as follows:

(1) MOEAD [43];
(2) GDE3 [44];
(3) MOEADGM [45];
(4) MTS [46];
(5) LiuLiAlgorithm [47];
(6) DMOEADD [48];
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Figure 6: The objective function value space for test problems.

(7) NSGAIILS [49];
(8) OWMOSaDE [50];
(9) ClusteringMOEA [51];
(10) AMGA [52];
(11) MOEP [53];
(12) DECMOSA-SQP [54];
(13) OMOEAII [55].

The benchmarks are taken from [42] which are still used
in CEC’09. Figure 6 illustrates the objective function value
space of these test problems (the figure of test problem
2 is ignored here since it is similar to that of the test
problem 1); the red curve/surface represents their Pareto
frontiers. Among these test problems, Problems 1–7 have
two objective functions, whereas Problems 8–10 have three
objective functions. The Pareto solutions of Problems 5, 6,
and 9 are disconnected, while the others are connected.

In order to keep consistency with the final report of
CEC’09 [56], in the implementation of OOMOGA, we set

the population size as 100 for problems with two objectives
and 150 for problems with three objectives; the number
of function evaluations is less than 300,000. For each test
instance, we run OOMOGA independently for 30 times.The
numerical performance evaluated by IGD is illustrated in
Table 6.

From Table 6, the proposed solver OOMOGA performs
the best at solving the test problem 2; its IGD evaluation is
0.00527, which is better than all the other solvers. In solving
the test Problem 9, OOMOGA (whose IGD evaluation is
0.0601) performs only worse than DMOEADD (whose IGD
evaluation is 0.4896) but better than all the other solvers. In
solving the test Problem 3, the IGD evaluation of OOMOGA
(0.0331) is ranked in the third position, worse than MOEAD
(0.0072) and LiuLiAlgorithm (0.01497). In solving the test
Problem 4, the IGD evaluation of OOMOGA (0.0347) is
ranked in the fourth one, worse than MTS (0.02356), GDE3
(0.0265), andDECMOSA-SQP (0.03392).The numerical per-
formance of OOMOGA is moderate in solving test Problems
1, 6, and 8; the IGD ranks are 8, 9, and 9, respectively. For test
Problems 5 and 10, the numerical performance of the solver
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Table 6: The numerical performance evaluated by IGD.

Rank UF1 UF2 UF3
1 MOEAD 0.00435 OOMOGA 0.00527 MOEAD 0.00742
2 GDE3 0.00534 MTS 0.00615 LiuLiAlgorithm 0.01497
3 MOEADGM 0.0062 MOEADGM 0.0064 OOMOGA 0.0331
4 MTS 0.00646 DMOEADD 0.00679 DMOEADD 0.03337
5 LiuLiAlgorithm 0.00785 MOEAD 0.00679 MOEADGM 0.049
6 DMOEADD 0.01038 OWMOSaDE 0.0081 MTS 0.0531
7 NSGAIILS 0.01153 GDE3 0.01195 ClusteringMOEA 0.0549
8 OOMOGA 0.0118 LiuLiAlgorithm 0.0123 AMGA 0.06998
9 OWMOSaDE 0.0122 NSGAIILS 0.01237 DECMOSA-SQP 0.0935
10 ClusteringMOEA 0.0299 AMGA 0.01623 MOEP 0.099
11 AMGA 0.03588 MOEP 0.0189 OWMOSaDE 0.103
12 MOEP 0.0596 ClusteringMOEA 0.0228 NSGAIILS 0.10603
13 DECMOSA-SQP 0.07702 DECMOSA-SQP 0.02834 GDE3 0.10639
14 OMOEAII 0.08564 OMOEAII 0.03057 OMOEAII 0.27141
Rank UF4 UF5 UF6
1 MTS 0.02356 MTS 0.01489 MOEAD 0.00587
2 GDE3 0.0265 GDE3 0.03928 MTS 0.05917
3 DECMOSA-SQP 0.03392 AMGA 0.09405 DMOEADD 0.06673
4 OOMOGA 0.0347 LiuLiAlgorithm 0.16186 OMOEAII 0.07338
5 AMGA 0.04062 DECMOSA-SQP 0.16713 ClusteringMOEA 0.0871
6 DMOEADD 0.04268 OMOEAII 0.1692 MOEP 0.1031
7 MOEP 0.0427 MOEAD 0.18071 DECMOSA-SQP 0.12604
8 LiuLiAlgorithm 0.0435 MOEP 0.2245 AMGA 0.12942
9 OMOEAII 0.04624 ClusteringMOEA 0.2473 OOMOGA 0.1411
10 MOEADGM 0.0476 DMOEADD 0.31454 LiuLiAlgorithm 0.17555
11 OWMOSaDE 0.0513 OWMOSaDE 0.4303 OWMOSaDE 0.1918
12 NSGAIILS 0.0584 NSGAIILS 0.5657 GDE3 0.25091
13 ClusteringMOEA 0.0585 OOMOGA 0.7695 NSGAIILS 0.31032
14 MOEAD 0.06385 MOEADGM 1.7919 MOEADGM 0.5563
Rank UF7 UF8 UF9
1 MOEAD 0.00444 MOEAD 0.0584 DMOEADD 0.04896
2 LiuLiAlgorithm 0.0073 DMOEADD 0.06841 OOMOGA 0.0601
3 MOEADGM 0.0076 LiuLiAlgorithm 0.08235 NSGAIILS 0.0719
4 DMOEADD 0.01032 NSGAIILS 0.0863 MOEAD 0.07896
5 MOEP 0.0197 OWMOSaDE 0.0945 GDE3 0.08248
6 NSGAIILS 0.02132 MTS 0.11251 LiuLiAlgorithm 0.09391
7 ClusteringMOEA 0.0223 AMGA 0.17125 OWMOSaDE 0.0983
8 DECMOSA-SQP 0.02416 OMOEAII 0.192 MTS 0.11442
9 GDE3 0.02522 OOMOGA 0.2137 DECMOSA-SQP 0.14111
10 OMOEAII 0.03354 DECMOSA-SQP 0.21583 MOEADGM 0.1878
11 MTS 0.04079 ClusteringMOEA 0.2383 AMGA 0.18861
12 AMGA 0.05707 MOEADGM 0.2446 OMOEAII 0.23179
13 OWMOSaDE 0.0585 GDE3 0.24855 ClusteringMOEA 0.2934
14 OOMOGA 0.1267 MOEP 0.423 MOEP 0.342
Rank UF10
1 MTS 0.15306
2 DMOEADD 0.32211
3 AMGA 0.32418
4 MOEP 0.3621
5 DECMOSA-SQP 0.36985
6 ClusteringMOEA 0.4111
7 GDE3 0.43326
8 LiuLiAlgorithm 0.44691
9 MOEAD 0.47415
10 MOEADGM 0.5646
11 OMOEAII 0.62754
12 OOMOGA 0.7269
13 OWMOSaDE 0.743
14 NSGAIILS 0.84468
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Figure 7: The approximated Pareto frontier of Problems 1, 2, 4, and 9.

OOMOGA is not so good, ranking in 13 and 12, respectively.
The worst performance of OOMOGA appears in solving the
test Problem 7; the IGD evaluation is 0.1267, which is worse
than all the other solvers.

It is not uncommon that the numerical performance of
the proposed solver OOMOGA is unstable among different
test problems because the numerical results are not only
affected by the performance of solvers, but also impacted by
the linearity and structure of objective function themselves.
Furthermore, the crossover and mutation operators are also
affected by the distribution of points in the objective function
value space. Generally speaking, if a new point generated by
the crossover or mutation operators has a higher probability
of locating around the Pareto frontier, then the Pareto frontier
can be well approximated by the solver, for example, the
test Problems 2, 3, and 4. On the contrary, if it is hard for
the crossover or mutation operators to generate new point
around the Pareto frontier, then the problem is difficult to be
solved by MOGAs, for instance, the test Problems 5, 6, and 7.
In fact, this instability still appears in the other solvers, such
as MOEAD which is reported to be the best solver in [56].

The IGD evaluation of MOEAD in solving the test Problems
4, 5, and 10 is not very good, ranking in 14, 7, and 9,
respectively.

Figure 7 demonstrates Pareto frontiers of test Problems 1,
2, 4, and 9, respectively. From Figures 7(a) and 7(b), we can
observe that, for the test Problems 1 and 2, the proposed solver
obtained very good representations of their Pareto frontiers.
Results for the test Problem 4 (see Figure 7(c)) is not very
uniformly distributed, which may affect the performance
of IGD evaluation. Figure 7(d) illustrates the approximate
Pareto frontier of the test Problem 9; we can see that the
structure is more or less an approximation of the real Pareto
frontier.

5. Conclusion

This paper proposed a solver based on genetic algorithm
for multiobjective optimization. In the process of using
genetic algorithm to solve multiobjective optimization, the
evolutionary procedure prefers to select individuals with
better elitism and diversity. Therefore, in the algorithm, we
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have to consider the trade-off between elitism and diversity.
To tackle this issue, we first developed strategies to measure
the elitism and diversity of populations. Then we used the
proposed elitism and diversity metrics to construct a discrete
multiobjective subproblem. Finally, the new selection oper-
ator is designed by applying the optimum order method to
solve the multiobjective subproblem. We tested the proposed
solver by the test instances used in CEC’09 and compared
the numerical result with the referential solvers proposed
in CEC’09. The numerical performance analysis shows that
the proposed solver is good at solving problems whose
objective function value space is high density around the
Pareto frontier.

We will further study this topic from the following two
points of view.

(i) Improving the performance of crossover and muta-
tion operators of the genetic algorithm: the crossover
and mutation operators are very important for the
diversity of solutions. However, the distribution of
new individuals generated by the current crossover
and mutation operators is coincident with the distri-
bution of parents. This leads the excessive search of
the “rich” area, but insufficient search of the “poor”
area.

(ii) Introducing some more reasonable diversity metrics:
it is very important to maintain the diversity of
population in the evolutionary process of genetic
algorithm. However, measuring diversity is not an
easy task.The global diversity metric proposed in this
paper is a proper diversity metric, but it is far from
perfect.
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