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Liver progenitor cells are necessary for repair in chronic liver disease since the remaining 

hepatocytes cannot replicate. However, liver progenitor cell numbers also correlate with 

disease severity and hepatocellular carcinoma risk. Thus, the progenitor cell response in 

diseased liver may be regulated to optimise liver regeneration and minimise likelihood of 

tumorigenesis. How this is achieved is currently unknown. Human and mouse diseased liver 

contain two subpopulations of macrophages with different ontogenetic origins; prenatal yolk 

sac-derived Kupffer cells (KCs), and peripheral blood monocyte-derived macrophages 

(MDMs). We examined the individual role(s) of KCs and MDMs in the induction of LPC 

proliferation using clodronate liposome deletion of KCs and adoptive transfer of monocytes, 

respectively, in the choline-deficient, ethionine-supplemented diet model of liver injury and 

regeneration. Clodronate liposome treatment reduced initial liver monocyte numbers together 

with the induction of injury and LPC proliferation. Adoptive transfer of monocytes increased 

induction of liver injury, LPC proliferation, and TNFα production.   Conclusion: Kupffer 

cells control the initial accumulation of monocyte-derived macrophages. These infiltrating 

monocytes are in turn responsible for the induction of liver injury, the increase in TNFα, and 

the subsequent proliferation of liver progenitor cells.   
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The liver has two avenues to regeneration. Replication of pre-existing hepatocytes is the main 

pathway to replace cells lost through acute damage such as that induced by acetaminophen 

toxicity. In contrast, an alternate pathway of hepatocyte replacement involving liver 

progenitor cells (LPCs) is invoked in some chronic liver injury models (1). Various murine 

lineage tracing models report no conversion, but others report up to 2.45% conversion of 

LPCs to hepatocytes (2). Different tracing strategies in diverse models may explain the 

variation; but importantly LPCs converted to hepatocytes in the CDE model used in this 

study. A recent study in humans confirmed the existence of a bipotent liver stem cell (3). The 

LPC pathway is induced in chronic liver diseases including alcoholic and non-alcoholic fatty 

liver diseases, viral hepatitis (B and C), and Hereditary Hemochromatosis (4-6). Importantly, 

all these liver diseases are associated with increased hepatocellular carcinoma (HCC) 

incidence. The propensity to develop HCC is reduced in murine models such as the TNF 

receptor Type 1 knockout mouse and pharmacological inhibition by c-kit inhibitor, imatinib 

mesylate, where LPC numbers are reduced in response to an hepatocarcinogenic diet (7, 8). 

Thus, regulation of LPC numbers may be a process whereby regeneration and tumorigenesis 

risks may be balanced. 

 

Liver progenitor cells are bipotential cells located in the portal zone, with a high nuclear to 

cytoplasmic ratio and an ovoid nucleus, which are able to give rise to cholangiocytes or 

hepatocytes (9). LPCs express cytokeratins 7 and 19, OV-6, and EpCam (CD326). Mitogenic 

LPC cytokines include tumor necrosis factor (TNF) α, interleukin (IL)-6, lymphotoxin (LT) 

β, TNF-like weak inducer of apoptosis (TWEAK), interferon (IFN) γ, and hepatocyte growth 

factor (HGF) (1). Whilst there are many cellular sources of these cytokines within the liver, 

macrophages are likely to be key producers and/or regulators of their production. Indeed, 

MDM-derived TWEAK increases LPC numbers in vivo (10). 



6	  
	  

 

Liver macrophages comprise two subpopulations; the tissue-resident Kupffer cells (KCs) and 

infiltrating peripheral blood monocyte-derived macrophages (MDMs). Recent lineage tracing 

studies have shown KCs are derived prenatally from embryonic yolk-sac progenitors, rather 

than from hematopoietic stem cells, and under homeostatic conditions, repopulate locally 

rather than from peripheral blood monocytes as previously assumed (11). Importantly, the 

distinct ontological origins of KCs and MDMs suggest they may play functionally distinct 

roles in liver injury and subsequent regeneration. We have previously shown the number of 

KCs and MDMs both increase in the liver prior to induction of LPC proliferation in murine 

chronic liver injury models. KCs and MDMs also spatially co-localize with LPCs in a niche, 

suggesting they may regulate LPC numbers (12). Further, we and others have shown 

increased MDM numbers in human chronic liver diseases including alcoholic liver disease, 

non-alcoholic fatty liver disease, and viral hepatitis (B and C), which also have increased 

LPC numbers (13, 14). However, the specific roles of each liver macrophage subpopulation 

in the inductive phase of LPC-mediated regeneration have not been examined to date.  

 

There is currently much interest in delivering therapy for liver disease via macrophages (15, 

16). To assess the therapeutic potential of each liver macrophage population requires 

fundamental insights into their respective role(s).  Hence, this study’s aim was to determine 

if, and how, tissue-resident KCs and infiltrating MDMs each regulate the inductive phase of 

LPC proliferation in hepatocytic liver regeneration. To accomplish this, we have utilized a 

novel clodronate liposome injection regime, which depletes only KCs. We have then 

adoptively transferred monocytes to specifically assess how MDMs influence induction of 

LPC proliferation. Significantly, we found KCs and MDMs play interconnecting roles in 

induction of LPC-mediated liver regeneration.	   	  
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Materials	  and	  Methods 

Animals. Male C57Bl/6 and CD45.1 (B6.SJL-Ptprca Pep3b/BoyJ) mice were from the Animal 

Resources Centre (Murdoch, WA, Australia). All animal experiments were conducted in 

accordance with National Health and Medical Research Council of Australia and The 

University of Western Australia Animal Ethics Committee guidelines.  

 

Kupffer Cell Depletion. Clodronate liposomes were prepared as previously described (17). To 

deplete KCs, five week old C57Bl/6 mice were injected intravenously with clodronate 

liposomes (CL; 100µl) 24 h prior to being placed on a CDE diet (18). The mice were re-

injected with clodronate liposomes (100µl) 24 h after being placed on a CDE diet. Control 

groups were injected with PBS liposomes (PL; 100µl). Mice on normal chow diet were sham-

injected with 0.9% (w/v) saline (100µl) at the same time. Mice remained on CDE or normal 

chow diets for times indicated. Clodronate was a gift of Roche Diagnostics. 

 

Monocyte Adoptive Transfer. Monocytes were isolated from the bone marrow of tibia and 

femur of CD45.1+ C57Bl/6 mice by magnetic-assisted cell separation using the CD115 

microbead kit (Miltenyi Biotec Australia, North Ryde, NSW, Australia). Isolated monocyte 

purity was confirmed by flow cytometry. Monocytes (2 X 106 cells in 10 µl of PBS) or PBS 

(100µl) were injected intravenously into CD45.2+ C57Bl/6 recipient mice 2 days after mice 

were placed on the CDE diet. 

 

More information on materials and methods can be found in the Supporting Information. 
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Results	  

Kupffer cell depletion delays the increase in MDM numbers.   To investigate the role of KCs 

in LPC proliferation, we administered two intravenous clodronate liposome (CL) injections 

of 100µl each, rather than the commonly-used single dose of 200µl (21), to deplete KCs. The 

first was administered 24h prior to initiating liver injury with the choline-deficient, ethionine-

supplemented (CDE) diet, and the second 24h after initiating liver injury (Fig. 1A). The drug 

control was PBS liposomes (PL). Mice on normal chow diet were saline sham-injected. KC 

depletion was confirmed by Complement Receptor for Immunoglobulin Superfamily (CRIg) 

and F4/80 immunostaining (Fig. 1B-D). 

 

We then examined the effect of CL treatment on MDM numbers by CD11b immunostaining 

of liver sections (Fig. 1E). MDMs were reduced in CL-treated livers (CDE + CL), compared 

to PL-treated livers, at 2 days after diet commencement by approximately 70% (Fig. 1F). 

Liver MDM numbers in CL-treated livers then increased to levels similar to PL-treated livers 

by 4 days after diet commencement. To further investigate if KCs recruit monocytes, we 

examined whether CL-treatment reduced blood and/or liver MDM numbers after the second 

injection. Liver MDM numbers were not significantly increased at 1 day after diet 

commencement nor depleted by CL-treatment (Fig. S2A). Additionally, CL-treatment 

delayed the CDE diet-induced increase in Ly6Chi MDM compared to PL-treatment (Fig. 

S2B). Importantly, this CL injection regime did not reduce blood monocyte numbers, but 

increased their numbers 10-fold compared to PL 24h after the second injection. Blood 

monocyte numbers remained elevated during the study (Fig. 1G). We then examined whether 

there were changes in the monocyte phenotype. For this analysis, we defined the Ly6C 

expression levels as Ly6Clo, Ly6Cint, and Ly6Chi as shown in Fig. S3A). Clodronate 

liposome-treated mice fed the CDE diet had a significantly higher proportion of more highly 
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differentiated monocytes expressing lower Ly6C (i.e. Ly6Cint) levels compared to PL-treated 

mice (Fig S3B), suggesting monocytes were not being recruited to peripheral  tissue in the 

CL-treated mice and instead could differentiate to a more mature blood monocyte. Finally, 

we examined if CL-treatment reduced expression of the monocyte chemokine, CCL2 (Fig. 

S…). We found CCL2 expression was … . Taken together, these data indicate KCs are 

necessary for optimal early monocyte recruitment to the liver during initiation of CDE diet-

induced injury and regeneration. 

 

Kupffer cell depletion reduces LPC proliferation induction.  We next examined the effect of 

KC-depletion on LPC numbers present after 6 days on the CDE diet. Liver progenitor cells 

were identified as small pan cytokeratin (pCK)+ cells with oval-shaped nucleus and scant 

cytoplasm, whilst biliary cells were identified as pCK+ cells in ductal structures (Fig. 2A). 

located within 1 cell from the portal vein. As  expected, LPC numbers were significantly 

increased in the PL-treated mice fed the CDE diet (Fig. 2C), and were similar in CDE-fed 

saline-treated mice (Fig S1). The CDE diet-induced expansion in LPC numbers, however, 

was abrogated in CL-treated mice. Proliferating LPC (Ki67+pCK+) numbers were also 

significantly reduced in CL-treated mice (Fig. 2B, D). Biliary cell numbers, however, were 

unchanged in response to both CDE diet and CL treatment (Fig. 2E). We also found no 

evidence CL reduced in vitro LPC viability (data not shown). These data indicate KCs are 

required for induction of LPC proliferation. 

 

Kupffer cell depletion reduces CDE diet-induced hepatic damage but not hepatic steatosis.  

The CDE diet induces hepatic steatosis which promotes liver injury required for induction of 

LPC proliferation. Previous literature suggests KCs regulate both steatosis and injury (22-27). 

CDE diet-induced steatosis, as quantitated by Oil Red O staining, was not reduced by CL 
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treatment (Fig. 3A-B).  Serum ALT activity, an indicator of hepatic damage, was also 

increased by the CDE diet at day 2 but, in contrast to steatosis, tended to be reduced in CL-

treated livers (Fig. 3C). Liver TUNEL staining confirmed a reduction in apoptotic hepatocyte 

numbers in CL-treated livers at day 2 (Fig. 3A, D). These data indicate KCs do not regulate 

steatosis but promote maximal liver damage. 

 

Kupffer cell depletion reduces hepatic LPC mitogen levels.  We characterized the LPC 

mitogens KCs secreted and/or influenced their secretion in the liver at 6 days after the mice 

were placed on the CDE diet. TNFα, IFNγ, and HGF mRNA levels were all significantly 

reduced, and IL-6 was ablated, in CL-treated livers compared to PL-treated livers (Fig. 4A-

D). Lymphotoxin β and TWEAK levels were unchanged by any treatment (data not shown). 

 

The LPC niche contains activated hepatic stellate cells (HSCs) which can secrete the LPC 

mitogens, TNFα, IL-6, and HGF (28). Accordingly, we determined if KCs could indirectly 

regulate production of these mitogens by activating HSCs. As expected, activated HSC 

numbers in the liver were significantly increased by the CDE diet (CDE + PL), as assessed by 

α-SMA immunostaining (Fig. 4E, F).  Activated HSC numbers were reduced, although not 

statistically significantly, in CL-treated livers (CDE + CL). 

 

We then explored whether KCs may indirectly influence LPC numbers by recruiting innate 

and/or adaptive immune cells which could secrete LPC mitogens (Fig. 4G-I). We focused on 

neutrophils which can secrete TNFα (29), and B and CD4+ T cells which can secrete TNFα, 

IL-6, and IFNγ (30-32). Neutrophil (Fig. 4G) and B cell (Fig 4H) numbers were significantly 

increased in response to the CDE diet (CDE + PL), and reduced, although not statistically 

significantly, in CL-treated livers. In contrast, CD4+ T cell numbers were increased with CDE 
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diet, although not significantly, but unchanged by KC-depletion (Fig. 4I). Taken together, 

these data indicate KCs may directly produce the LPC mitogens or indirectly regulate their 

levels via HSC activation or recruitment of neutrophils and B cells. 

 

Inflammatory and non-classical monocyte numbers increase in CDE diet-injured liver.  The 

delayed increase in liver MDM numbers (Fig. 1F) in KC-depleted livers could also reduce 

LPC numbers (Fig. 2C). We characterized the intrahepatic monocyte/macrophage population 

6 days after the mice were placed on a CDE diet by flow cytometry analysis to determine if 

inflammatory or non-classical monocytes predominated. A distinct population of monocytic 

cells were identified using the myeloid marker, CD11b, and the macrophage marker, F4/80 

(Fig. S4A). The CD11b+F4/80-/lo cells were further classified as Ly6G- monocytes or Ly6G+ 

neutrophils. Monocytes were then subdivided into Ly6C+ inflammatory or Ly6C- non-

classical cells. Ly6C- monocytes are derived from Ly6C+ monocytes, at least under 

homeostatic conditions (11). Liver Ly6C+ monocyte numbers were significantly increased by 

7-fold in response to CDE diet-induced liver injury, whilst Ly6C- non-classical monocytes 

were increased 3.5-fold (Fig. S4B).  

 

Monocyte adoptive transfer induces proliferation of Kupffer cells and LPCs.  To ascertain if 

monocyte recruitment can regulate LPC proliferation, monocytes were purified from 

CD45.1+ C57Bl/6 murine bone marrow by magnetic-assisted cell separation, and adoptively 

transferred into CD45.2+ C57Bl/6 recipient mice fed the CDE diet. Importantly, monocytes 

were transferred into mice that had been fed the CDE diet for 2 days (Fig. 5A), representing 

the same time MDMs were reduced after KC-depletion (Fig. 1F). Monocyte purity, as 

determined by flow cytometry analysis of the monocyte marker, CD115, was 93% (Fig.5B). 

The adoptively transferred monocytes trafficked into the liver, as confirmed by CD45.1 
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immunohistochemistry (Fig. S5), and MDM numbers were significantly increased by 

adoptive transfer (Fig. 5C). Monocyte adoptive transfer also significantly increased KC 

numbers (CRIg+, F4/80+) in mice fed the CDE diet for 6 days (Fig. 5D, E), due to 

proliferation, as indicated by increased Ki67+CRIg+ KC numbers (Fig. 5F-G). These data 

indicate monocytes promote CDE diet-induced KC proliferation. 

 

We then examined the effect of monocyte adoptive transfer on CDE diet-induced LPC 

proliferation. Liver progenitor cell, but not biliary cell, numbers were significantly increased 

by monocyte adoptive transfer (Fig 6A-B), with proliferating LPC (Ki67+pCK+) numbers 

also augmented (Fig. 6C). Interestingly, there was a small increase in biliary cells in response 

to CDE diet-induced injury when monocytes were not transferred (Fig. 6D). As the CDE diet 

induces hepatocyte-directed, as opposed to cholangiocyte-directed, LPC-mediated liver 

regeneration (33, 34), and liver macrophages have been shown to regulate hepatocytic 

specification (35), we examined if monocytes can explicitly promote this specification. 

Monocyte adoptive transfer enhanced hepatocyte specification of the LPCs, as evidenced by 

the significant increase in HNF4α+ LPC numbers (Fig. 6E-F). These data indicate monocytes 

induce LPC proliferation and their differentiation into hepatocytes in vivo. 

 

Monocyte adoptive transfer induces CDE diet-induced hepatic damage.  As KCs are required 

for initial monocyte recruitment (Fig. 1F) and maximal induction of liver damage (Fig. 3C-

D), we examined if monocytes could induce hepatic damage. We found monocyte adoptive 

transfer increased hepatic damage as evidenced by elevated serum ALT levels (Fig. 7A), and 

this was accompanied by a significant increase in weight loss (Fig. 7B). Similarly to KC-

depletion (Fig. 3B), there was no corresponding change in steatosis as determined by Oil Red 

O staining (Fig 7C). 
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TNFα expression is enhanced by monocyte adoptive transfer.  Kupffer cell depletion 

attenuated LPC numbers and reduced TNFα, IL-6, IFNγ, and HGF levels (Figs. 2C, 4A-D). 

As monocyte adoptive transfer increased LPC proliferation (Fig. 6C), we explored which 

LPC mitogen(s) was up-regulated by this treatment. We also examined if TWEAK 

expression increased, as monocytes may directly provide TWEAK. Surprisingly, monocyte 

adoptive transfer only enhanced TNFα expression (Fig. 7D). This suggests TNFα is the 

critical cytokine for induction of LPC proliferation, and is consistent with our previous report 

TNF receptor Type I signalling is required for LPC proliferation and HCC development (7). 

 

Monocyte adoptive transfer induces hepatic stellate cell activation and immune cell 

recruitment.  As KC depletion tended to reduce hepatic stellate cell activation (Fig 4E-F), we 

investigated if monocyte adoptive transfer also affected activation of these cells. The number 

of activated hepatic stellate cells, as assessed by αSMA immunohistochemistry, significantly 

increased in response to monocyte adoptive transfer (Fig. 7E). 

 

We then examined if monocytes could, similarly to KCs, increase numbers of other immune 

cells which may supply TNFα to the LPCs. Monocyte adoptive transfer significantly elevated 

liver neutrophil, B cell, and CD4+ T cell numbers (Fig. 7F-H). Taken together, these data 

indicate monocytes activate HSCs and induce immune cell recruitment which may contribute 

to liver TNFα levels. 
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Discussion	  

We have previously shown KC and MDM numbers increase prior to the increase in LPCs 

(12). We have now used a novel clodronate liposome injection regime, in which only half the 

usual dose of clodronate liposomes was injected, to selectively deplete KCs, but not blood 

monocytes, to assess how KCs specifically regulate the induction of LPC-mediated liver 

repair. We then examined how monocytes regulate LPC proliferation by adoptively 

transferring monocytes. Importantly, we have shown KCs are required for the initial maximal 

CDE diet-induced liver injury and monocyte recruitment. The monocytes induce TNFα 

production, with concomitant initiation of LPC proliferation and hepatocyte specification 

(Fig. 8). 

 

Our study indicates monocytes initiate CDE diet-induced liver injury. However, KCs increase 

injury by initially enhancing monocyte recruitment. Other as yet unidentified liver cells may 

also contribute to monocyte recruitment since MDM numbers are only transient reduced 

when KCs are depleted. Potential candidates include sinusoidal endothelial cells and HSCs 

which are both able to produce monocyte chemotactic protein-1 (or CCL2) (36, 37). 

Monocytes also contribute to acetaminophen- and carbon tetrachloride-induced liver injury, 

but KC involvement in monocyte recruitment in these liver injury models is unknown (38, 

39). Similarly, KCs promote both ethanol- and Concanavalin A-induced liver injury, but 

these studies did not address whether injury was via KC-mediated monocyte recruitment (25-

27). Importantly, monocyte numbers correlate with liver injury severity in chronic viral 

hepatitis (B and C) and primary biliary cirrhosis patients (13, 40). Our data suggests these 

monocytes may contribute to ongoing liver damage in patients with these diseases. 
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Furthermore, adoptive transfer in our study demonstrates monocytes promote LPC 

proliferation. Monocytes may influence LPC proliferation by one or a combination of the 

following mechanisms. Firstly, LPC proliferation requires an unspecified signal from 

apoptotic hepatocytes (41) and, we have shown in our study monocytes induce hepatocyte 

death. Secondly, monocytes may directly secrete the LPC mitogen(s). Thirdly, monocytes 

increase the number of activated HSCs, and immune cells such as neutrophils, B cells, and T 

cells in the liver which may secrete the LPC mitogen(s). Further, our study suggests TNFα is 

crucial to induction of LPC proliferation as it is the only cytokine that positively correlates 

with LPC numbers when KC or monocyte numbers are modulated. Importantly, we have 

previously shown monocytes express approximately five times the level of TNFα compared 

to KCs (12), suggesting monocytes rather than KCs are key providers of TNFα. We have also 

previously shown TNF receptor Type I is critical for increased LPC numbers in vivo (7), and 

TNFα directly modulates LPC proliferation (42). 

 

Our data differ from that of van Hul and colleagues (2010) who reported KCs did not 

influence LPC numbers. Importantly, van Hul used a larger (150 µl) dose of clodronate 

liposomes administered at 3 day intervals throughout the study, and evaluated LPC numbers 

at 10 days after the mice were placed on the CDE diet, without reporting the status of MDMs. 

Our approach allows for a more precise documentation of the sequence of events following 

KC depletion. 

 

Lipid deposition is crucial for CDE diet-induced liver injury, and studies in methionine and 

choline-deficient and high fat diet models suggest liver macrophages are required for lipid 

deposition (22-24). However, in our study, neither KCs nor monocytes altered lipid 
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deposition. This disparity could reflect differences in hepatic lipid deposition mechanisms as 

a result of the different diets used. 

 

The CDE diet is the only liver injury model in which LPCs differentiate into hepatocytes (33, 

34). A seminal study by Forbes and colleagues (35) showed that acquisition of a 

hepatocellular fate by LPCs, as opposed to a cholangiocytic fate, required macrophages and 

the Wnt signaling pathway. However, Forbes and colleagues did not distinguish the liver 

macrophage subpopulation involved in this process. We now show monocytes can induce 

LPC specification to hepatocytes as indicated by increased numbers of HNF4α+ LPCs (Fig. 

6F). We suggest monocytes promote LPC specification to hepatocytes by inducing both 

hepatocyte apoptosis and LPC proliferation. 

 

Studies of macrophage functions in liver pathology have typically not distinguished between 

KCs and MDMs, as the methods used likely depleted both subpopulations, or focused only on 

MDMs. Importantly, our study now distinguishes between and examines KC and MDM 

interactions in LPC-mediated liver regeneration (Fig. 9). Kupffer cells have distinctive 

functions in LPC-mediated liver regeneration, when compared to MDMs, including 

participation in blood monocyte recruitment to initiate the liver injury as well as promotion of 

liver IL-6, IFNγ, and HGF production. On the other hand, MDMs promote KC proliferation, 

which may be a homeostatic response to clear apoptotic hepatocytes (43). Kupffer cells and 

MDMs both promote TNFα production, LPC proliferation, and HSC activation, although KC 

regulation of these is likely due to monocyte recruitment. Thus, KCs and MDMs perform 

both different and complementary roles. 
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In situ therapy to prevent further liver injury and/or to regenerate liver is urgently required. 

Transplant of whole bone marrow improves liver function in human disease as well as mouse 

models of liver fibrosis (44, 45). Both hematopoietic and mesenchymal stem cells, derived 

from bone marrow, improve liver function, although the mechanism(s) of action is presently 

unknown. More recent work by Forbes and colleagues suggests injection of macrophages 

derived from bone marrow in the presence of colony stimulating factor-1 may be a viable 

treatment for liver regeneration by reducing fibrosis and increasing LPC numbers (46). Our 

study indicates the source of macrophages for transplant to improve liver function may be 

extremely important; for whilst bone marrow monocytes enhance LPC-mediated liver 

regeneration, they also significantly increase liver damage. The major difference between our 

study and that of Forbes and colleagues is they use CSF-1 to convert the bone marrow 

monocytes into comparatively less inflammatory macrophages. 

 

In conclusion, this study demonstrates KCs and monocytes play interacting roles in the 

inductive phase of LPC-mediated liver regeneration. Importantly, monocytes play a crucial 

role in development of liver injury which results in LPC proliferation. As monocyte numbers 

are increased in much liver pathology, reducing their numbers in diseased liver warrants 

serious consideration as a strategy to balance the development of cirrhosis/HCC resulting 

from chronic liver injury and liver repair through LPC proliferation. 
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Figure Legends 

Figure 1. Clodronate liposomes ablate Kupffer cells. (A) Experimental design. Mice were 

injected with saline, PBS liposomes (PL), or clodronate liposomes (CL). They were then 

placed on normal chow (NC) or CDE diet 24h after the injections. The mice were again 

injected with saline, PL or CL 24h after being placed on diet, and sacrificed at times 

indicated. (B) Representative CRIg immunohistochemistry (bar, 50µm). (C) CRIg+ and (D) 

F4/80+ cell numbers. Data represent means ± SEM, n = 3-4. *p <0.05. ND, not detected. (E) 

Representative CD11b immunohistochemistry (bar, 50µm). (F) CD11b+ cell numbers. (G) 

Flow cytometry quantitation of blood monocytes. Data represent means ± SEM, n = 3-4. *p 

<0.05. 

 

Figure 2. Kupffer cell depletion reduces induction of LPC proliferation. Mice were injected 

with saline, PBS liposomes (PL), or clodronate liposomes (CL). They were then placed on 

normal chow (NC) or CDE diet 24h after the injections. The mice were again injected with 

saline, PL, or CL 24h after being placed on diet, and sacrificed after 6 days on diet. (A) 

Representative immunohistochemistry for pan cytokeratin (pCK)-positive cells which were 

classified as LPCs (arrow heads) or biliary cells (arrows) based on morphology (arrows) (bar, 

50µm). (B) Representative immunofluorescence for Ki67+ pCK+ LPCs (arrows) (bar, 20µm). 

(C) pCK+ LPC, (D) Ki67+pCK+ LPC, and (E) pCK+ biliary cell numbers. Data represent 

pooled means ± SEM of two independent experiments, n = 6-8. *p <0.05. 

 

Figure 3. Kupffer cell depletion reduces hepatic damage. Mice were injected with saline, PBS 

liposomes (PL), or clodronate liposomes (CL). They were then placed on normal chow (NC) 

or CDE diet 24h after the injections. The mice were again injected with saline, PL, or CL 24h 

after being placed on diet, and sacrificed at times indicated. (A) Representative Oil Red O 
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histochemistry and TUNEL immunohistochemistry after 2 days on the diet (bars, 50µm). 

Quantitation of (B) steatosis, as indicated by Oil Red O staining, (C) serum ALT activity, (D) 

TUNEL+ hepatocytes. Data represent means ± SEM, n = 3-4. *p <0.05. 

 

Figure 4. Kupffer cell depletion reduces hepatic LPC mitogen levels. Mice were injected with 

saline, PBS liposomes (PL), or clodronate liposomes (CL). They were then placed on normal 

chow (NC) or CDE diet 24h after the injections. The mice were again injected with saline, 

PL, or CL 24h after being placed on diet, and sacrificed after 6 days on diet. (A) TNFα, (B) 

IFNγ, (C) HGF, and (D) IL-6 mRNA expression levels.  (E) Representative αSMA liver 

immunohistochemistry after 6 days on diet (bar, 100µm). (F) αSMA quantitation. (G) Ly6G+ 

neutrophil, (H) B220+ B cell, and (I) CD4+ T cell numbers. Data represent pooled means ± 

SEM of two independent experiments, n = 6-8. *p <0.05. 

 

Figure 5. Monocyte adoptive transfer induces KC proliferation. (A) Experimental design. 

Mice were placed on normal chow or CDE diet. Monocytes were isolated from CD45.1 

mouse bone marrow and injected intravenously into CD45.2+ C57Bl/6 recipients 2 days after 

mice were placed on CDE diet. Another group on the CDE diet and mice on normal chow 

were injected with PBS. Mice were sacrificed after 6 days on diet. (B) Enrichment of CD115+ 

monocytes after MACS separation. (C) CD11b+ monocyte, (D) CRIg+, and (E) F4/80+ 

Kupffer cell numbers.  (F) Representative immunofluorescence showing Ki67+CRIg+ Kupffer 

cells, as indicated by white arrows (bar, 20µm). (G) Ki67+CRIg+ Kupffer cell numbers. Data 

represent means ± SEM, n = 4-5. *p <0.05. 

 

Figure 6. Monocyte adoptive transfer induces LPC proliferation. Mice were placed on normal 

chow or CDE diet. Monocytes were isolated from CD45.1 mouse bone marrow and injected 
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intravenously into CD45.2+ C57Bl/6 recipients 2 days after mice were placed on CDE diet. 

Another group on the CDE diet and mice on normal chow were injected with PBS. Mice 

were sacrificed after 6 days on diet. (A) Representative pan cytokeratin (pCK) 

immunohistochemistry (bar, 50µm). (B) pCK+ LPCs, (C) Ki67+ pCK+ LPCs, and (D) pCK+ 

biliary cell numbers. (E) Representative pCK and HNF4α immunohistochemistry on serial 

sections. Arrows indicate HNF4α+ pCK+ LPCs. (F) HNF4α+ pCK+ LPC numbers. Data 

represent means ± SEM, n = 4-5. *p <0.05. 

 

Figure 7. Monocyte adoptive transfer enhances hepatic damage, and increases TNFα 

expression. Monocytes were isolated from CD45.1 mouse bone marrow and injected into 

CD45.2+ C57Bl/6 recipients 2 days after mice were placed on CDE diet. Another group on 

the CDE diet and mice on normal chow were injected with PBS. Mice were sacrificed after 6 

days on diet. (A) Serum ALT activity, (B) weight loss (#p<0.05 vs ND + CDE, ^p<0.05 vs 

CDE + PBS), (C) steatosis, as indicated by Oil Red O staining. (D) TNFα mRNA levels. (E) 

αSMA quantitation. (F) Ly6G+ neutrophil, (G) B220+ B cell, (H) CD4+ T cell numbers. Data 

represent means ± SEM, n = 4-5. *p <0.05. 

 

Figure 8.  Kupffer cell and monocyte-derived macrophage interaction during induction of 

LPC-mediated liver regeneration. Kupffer cells (KC) are identified immunohistochemically 

by CRIg and F4/80 expression, and monocyte-derived macrophages (MDM) by CD11b 

expression. Kupffer cells initiate MDM accumulation, which in turn induces hepatocyte 

apoptosis. Monocyte-derived macrophages also induce KC proliferation, and neutrophil, B 

cell, and T cells recruitment. Monocyte-derived macrophages and KCs activate hepatic 

stellate cells (HSC). Monocyte-derived macrophages, KCs, HSC, neutrophils, and B cells 

provide TNFα for LPC proliferation. 




