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Abstract 

The cascade control is a well-known technique in process industry to improve regulatory control 

performance. The use of the conventional PI/PID controllers has often been found to be 

ineffective for cascade processes with long time-delays. Recent literature report has shown that 

the multi-scale control (MSC) scheme is capable of providing improved performance over the 

conventional PID controllers for processes characterized by long time-delays as well as slow 

RHP zeros. This paper presents an extension of this basic MSC scheme to cascade processes 

with long time-delays. This new cascade MSC scheme is applicable to self-regulating, 

integrating and unstable processes. Extensive numerical studies demonstrate the effectiveness of 

the cascade MSC scheme compared with some well-established cascade control strategies. 

KEYWORDS: Time-Delay, Cascade Control, Modified Smith Predictor, PID, Multi-Scale 

Control 
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1. Introduction 

One of the most common control strategies adopted in process industry in order to improve 

disturbance rejection performance is the cascade control strategy introduced in [1]. Many process 

control textbooks advocate the benefits of cascade control strategy, i.e., see [2-4]. One of the 

well-known benefits of cascade control strategy is the ability to correct for certain disturbances 

in advance before they can seriously influence the primary or main controlled variable.  

One well-known example of cascade control application is in reactor temperature control, e.g., 

polymerization reactor [5]. Here, the cascade control strategy uses the jacket reactor temperature 

as an extra measurement (secondary output). The role of the secondary controller is to quickly 

reject any disturbance that initially affects the jacket reactor temperature before the disturbance 

can seriously affect the primary reactor temperature. 

A number of researchers have extensively studied the applications of cascade control scheme 

to single-input and single-output (SISO) stable processes, e.g., see works by [6-10]. However, 

much fewer number of researchers have focused on the design of cascade control strategies for 

unstable or integrating processes with long time-delays. The design of cascade control for these 

types of processes has been known to be a challenging task due to the presence of unstable 

modes and delays, which often impose limitation on the achievable control performance. For 

stable (non-cascade) SISO processes with time-delays, one can improve the regulatory control 

performance by using the classical Smith predictor [11]. Interestingly, some researchers have 

also proposed extensions of the classical Smith predictor to SISO non-self-regulating 

(integrating/unstable) processes, e.g., see works on modified Smith predictors in [12-14]. 

Additionally, several cascade control strategies based on the Smith predictor have also been 

developed for non-self-regulating processes with time-delays. Among these cascade control 
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strategies based on the Smith predictor are the schemes reported in [15-21]. It should be noted 

that, the existing modified Smith predictor schemes for the unstable and integrating cascade 

processes require the design of several controllers. Hence, these Smith predictor-based cascade 

control systems are rather difficult to design and implement in practice. 

In this work, we present a new cascade control strategy constructed based on the SISO multi-

scale control (MSC) scheme recently reported in Nandong and Zang [22-23]. The key principle 

of the MSC scheme is to decompose a given plant into a sum of basic modes with distinct speed 

of responses. It follows that an individual sub-controller is specifically designed to control each 

of the plant modes. Finally, an overall multi-scale controller is synthesized by combining all of 

the sub-controllers in such a way that the faster sub-controller is used as a slave to a slower sub-

controller; in other words, the sub-controllers are assembled in a cascaded manner. The rationale 

behind this cascaded combination of all the sub-controllers is to enhance the cooperation among 

the different plant modes in order to optimize the overall control performance. The works by 

Nandong and Zang [22-23] have demonstrated that this MSC scheme is able to provide improved 

nominal performance as well as performance robustness over some well-established control 

schemes for the nonminimum-phase (NMP) processes. The main novelty of the present work is 

to extend this SISO MSC scheme to cascade processes which are characterized by long time-

delays, where the processes could be stable or integrating or unstable. 

The rest of this paper is laid out as follows. In Section 2, some relevant preliminaries are 

presented. We also describe the basic idea of the multi-scale control (MSC) scheme for a single-

input and single–output (SISO) process. Then in Section 3, we present the extension of this basic 

MSC scheme to cascade processes as well as a general controller design procedure. Section 4 

provides some illustrative examples to demonstrate the effectiveness of the proposed cascade 
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MSC scheme as compared to some well-established cascade control schemes. Section 5 finally 

highlights some concluding remarks and future works. 

2. Preliminaries 

2.1. Standard Cascade Control Strategy 

Fig. 1 depicts the block diagram of a standard (conventional) cascade control scheme, which 

consists of a secondary process 2P  cascaded with a primary process 1P . Note that, for the 

cascade control scheme to work effectively, the secondary control-loop must be faster than the 

primary control-loop. With respect to Fig. 1, the secondary controller 2cG  is often referred to as 

a slave controller while the primary controller 1cG  as a master controller. Here, 1D  and 2D  

represent the input and output disturbance (w.r.t. secondary process) signals respectively. 

Based on Fig. 1, the closed-loop transfer function from the master controller output E  to the 

secondary process output 2Y  is given as 
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Meanwhile, the closed-loop transfer function from the external setpoint R  to the primary process 

output Y can be expressed as follows 
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where rF  denotes the setpoint pre-filter. The setpoint pre-filter is normally a first order transfer 

function with a unity gain. The filter time constant can be tuned to give a desired setpoint 

tracking response, e.g., to achieve a desired overshoot for setpoint tracking. 
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2.2. Plant Decomposition 

Consider a rational transfer function P  (with numerator N and denominator D ), which can be 

decomposed via partial fraction expansion into a sum of 1+n  factors or modes as follows: 

nPPPP
D

N
P ++++== ...210  (3) 

where }..,,.2,1,0{, niPi ∈∀  is the plant factor or mode, which is either a first- or second-order 

system with real coefficients. The plant factors in (3) are arranged from the slowest factor 0P  to 

the fastest nP , i.e. the dynamic of iP is slower than that of 1+iP for 1...,,2,1,0 −= ni . Here, 0P

is called the outermost factor and }...,3,2,1{, niPi ∈∀  the inner-layer factor. 

2.3. Deadtime Approximation  

When a given plant model contains a deadtime or time-delay component, the time-delay 

component is first approximated by a rational transfer function before the plant decomposition is 

performed as in (3). One of the approximation approaches for the deadtime component is based 

on the Padé rational approximation [24]: 
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The first-order or 1/1 Padé formulae is often sufficient for many practical applications 
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 (6) 

After approximating the time-delay using either (4) or (6), one can then decompose the 

approximated plant model as follows 

ntdmo
s

mom PPPGPePP +++=≈= − ...10
θ

 (7) 

where moP
 
denotes the delay-free part of the plant model mP  and θ  the time-delay. 

2.4. Fundamental of Multi-Scale Control Scheme 

Fig. 2 shows the realization block diagram of a 2-layer multi-scale control (MSC) scheme for a 

single-input and single-output (SISO) process; see [22-23] for further details. The block diagram 

shown in Fig. 2 implies that the given plant P can be decomposed into a sum of 2 factors or 

modes with distinct speeds of responses (time-scales) to a similar input. Here, 0K and 1K

denote the sub-controllers corresponding to the outermost and inner-layer factors, respectively; 

1W is called the multi-scale predictor. 

For the 2-layer MSC scheme (Fig. 2), the multi-scale predictor is chosen as 

11 PW =
 (8) 

where 1P denotes the nominal model for the plant factor 1P . The inner-loop of the MSC scheme 

(Fig. 2a) can be reduced to a standard single-loop feedback control (Fig. 2b). Based on Fig. 2b, 

we can write the closed-loop inner-layer transfer function as follows 
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The augmented overall plant transfer function is given by 

PGPc 1=
 (10) 

Hence, the overall closed-loop setpoint transfer function from R  to Y  can be obtained as 
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and the overall closed-loop disturbance transfer function from 
2

D  to Y  as 
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Notice that in (11) and (12), the time-delay component remains embedded in the characteristic 

equations (feedback loop) even at the nominal condition. Hence, this indicates that there is no 

cancellation of the time-delay component as in the case of the deadtime compensator approach, 

e.g., the Smith predictor [11]. 

3. The Proposed Cascade Multi-Scale Control Scheme 

3.1. Extension of the MSC Scheme to Cascade Processes 

Fig. 3 illustrates the realization block diagram of a two-level Cascade Multi-Scale Control 

(CMSC) scheme. For the proposed CMSC scheme, each secondary and primary process has only 

one inner-layer factor and one outermost factor, i.e., 2-layer MSC scheme for each secondary 

and primary process; please note that, many real processes can be sufficiently approximated by 

two basic modes only. 

With respect to the secondary process 2P , the secondary sub-controllers 2R∈ssssKKKK  
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As for the primary process 1P , the primary sub-controllers 2R∈ppppKKKK  
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We can write the closed-loop inner-layer transfer function for the secondary process as 
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where 1sW  denotes the multi-scale predictor for the secondary process (control system).  

The augmented overall secondary plant transfer function can be expressed as 
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Subsequently, the overall closed-loop transfer function from 1pC
 
to 2Y  is obtained as  
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The closed-loop inner-layer transfer function for the primary process is 
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where 
1p

W  denotes the multi-scale predictor for the primary process.  

The augmented overall primary plant transfer function is written as 
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Note that, the overall closed-loop transfer function from R  to Y  is 
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3.2. Generalized Cascade Multi-scale Control Scheme 

Consider a generalized cascade MSC (CMSC) system where the secondary and primary 

processes can be decomposed into 1+n  and 1+m  sums of basic factors, respectively: 
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where the secondary and primary multi-scale predictors are chosen as },,2,1{, niPW sisi K∈∀=

and },,2,1{, miPW pipi K∈∀= ,  respectively. The generalized CMSC scheme is shown in Fig. 

4. Referring to Fig. 4b, snsssT GGGKK L210=  denotes the overall (master) multi-scale controller 

corresponding to the secondary process 
2

P  where },,2,1{, niGsi K∈∀  is given by a vector of 

closed-loop inner-layer transfer functions nR∈ssssGGGG  
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Next, we also construct a vector of augmented inner-layer transfer functions 1−∈ nRssssQQQQ  
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It is important to note that, ssssQQQQ  is useful for the synthesis of { }niKsi ,...,3,2,1, ∈∀  as will be 

shown in the next Section 3.3. 

We can write the generalized augmented overall secondary plant transfer function as follows 
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Meanwhile, the overall closed-loop transfer function for the secondary process is given by 
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To obtain the overall (slave) MSC controller for the secondary process, use 
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It should be noted that the MSC controller (26) can be easily rearranged into an equivalent PID 

controller augmented with a filter; see [23]. 

Based on Fig. 4b, a vector of closed-loop (primary) inner-layer transfer functions mR∈ppppGGGG  is 

expressed as 
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Subsequently, a vector of augmented (primary) inner-layer transfer function 1−∈ mRppppQQQQ  is 

constructed as follows 
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where the augmented overall primary plant transfer function can be written as 
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From (29), we can obtain the overall closed-loop transfer function from R  to Y as follows 
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Note that, the overall master MSC controller for the primary process can generally be 

expressed as 
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where the augmented filter takes the form of 
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For a case where the primary process is only decomposable into 2 basic modes, the filter is 
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It should be noted that, the overall MSC controller (31) can be reduced to an equivalent PID 

controller augmented with a filter. When the filter (32) and (33) takes a high-order form, we can 

reduce the order of the filter using a model order reduction technique, e.g., available in the 

Matlab Control System Toolbox. 

3.3. Controller Synthesis for the CMSC Scheme 

We propose a general procedure to synthesize CMSC system for a two-level cascade process. 

Step 1: Assuming that both primary and secondary processes are with deadtimes, apply the 1/1 

Padé formula to first approximate the deadtime components by rational transfer functions. Then, 

use partial fraction expansion to decompose the approximated primary and secondary plant 

models into a sum of 1+m  and 1+n  basic modes, respectively. 

Step 2: Design the sub-controllers for the secondary process assuming that the secondary multi-

scale predictors are selected as },,2,1{, niPW sisi K∈∀= .  

Step 2.1: Design the innermost sub-controller snK
 
first based on snsn PW = . 

Step 2.2: Derive 1−snQ
 
as in (23), and then design the sub-controller 1−snK

 
based on 1−snQ . 
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Step 2.3: Derive 2−snQ  as in (23), which is then used to design 2−snK . Repeat this step to 

design the remaining (secondary) inner-layer sub-controllers ( 143 ,,, ssnsn KKK K−− ).  

Step 2.4: Derive the augmented overall secondary plant transfer function soP  as in (24). Then, 

design the secondary outermost sub-controller 0sK
 
based on soP . The overall PID controller can 

be obtained as in [23]. 

Step 3: Design the sub-controllers for the primary process assuming that the primary multi-scale 

predictors are chosen as },,2,1{, miPW pipi K∈∀= . 

Step 3.1: Construct the transfer function pmG  as in (27). Based on pmG , design the innermost 

sub-controller pmK . 

Step 3.2: Construct the transfer function 1−pmQ  as in (28), and use 1−pmQ  to synthesize 1−pmK . 

Repeat this step to synthesize 132 ,,, ppmpm KKK K−− . 

Step 3.3: Develop the augmented overall plant transfer function poP
 
as in (29). Finally, the 

primary outermost sub-controller 0pK  is synthesized based on poP . The overall MSC controller 

is obtained using (31). This overall controller can then be rearranged in the form of a PID 

controller augmented with a filter. 

Remark: For the inner-layer sub-controllers (either primary or secondary process), it is 

recommended to use a simple control law, e.g., a proportional (P) controller because it only 

requires simple tuning and thus, simplifying the overall multi-scale controller synthesis. The 

outermost sub-controller for the secondary process can also be chosen as a P controller but if a 

desired performance cannot be achieved, then one can try to use a more complex control 

algorithm, e.g., proportional-integral (PI) controller. As for the outermost sub-controller used in 
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the primary control-loop (process), it is recommended to use at least a PI controller to remove 

the steady-state offset. If a desired performance cannot be met, then one can try to use a more 

complex control algorithm, e.g., a PID with a lag filter or an LQG controller. The proposed 

design procedure for the CMSC scheme can be easily implemented with the aid of Matlab SISO 

Design Tool available from the Matlab Control System Toolbox. In this work, the Matlab SISO 

Design Tool is adopted to synthesize the required controllers i.e., automated controller tuning is 

applied. Note that, we use the tuning procedure based on the minimum Integral Absolute Error 

(IAE) criterion for the P/PI/PID controller design. 

4. Illustrative Examples 

The applicability and effectiveness of the proposed CMSC scheme are demonstrated using 3 

examples. Please note that, all the P/PI/PID controllers used in the proposed CMSC and standard 

cascade PID control schemes are designed via the Matlab SISO Design Tool where the tuning is 

based on the minimum IAE criterion. The simulation is carried out using Matlab Simulink where 

the stiff ode15ssolver is adopted due to the multi-scale dynamics of the systems involved. 

Example 1: Assume the following two stable cascade processes given by 
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In equations (34) and (35), i∆  and iδ  represent modeling errors for the gain and time-delay 

(TD) of a given process iP  respectively. 
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CMSC scheme: The multi-scale controllers are synthesized using the design procedure given in 

Sub-Section 3.3 and with the aid of Matlab SISO Design Tool. Upon approximating the delays in 

(34) and (35) using the 1/1 Padé formula, we then perform the decomposition which yields: 
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The multi-scale predictors for the primary and secondary processes are chosen as 11 pp PW =

and 11 ss PW = , respectively. Here, P  denotes the nominal model for P . For the primary 

process, the outermost sub-controller 0pK  is chosen as a PID controller. All other sub-controllers 

are chosen as P-only controllers. The following sub-controllers are obtained: 1.20 −=sK  and 

6.21 −=sK
 

for the secondary process; sssK p /)11.16(09.0 2
0 ++=  and 1.11 =pK  for the 

primary process. All of the sub-controllers are tuned based on the minimum IAE criterion (in 

Matlab SISO Design Tool). The equivalent PID controller settings corresponding to the multi-

scale sub-controllers are shown in Table 4. Notice that for the primary process, the master MSC 

controller is equivalent to a PID controller augmented with a second-order filter, while for the 

secondary process the slave MSC controller is the same as a P-only controller augmented with a 

lead-lag filter. Therefore, the proposed CMSC scheme is not much more complex than the 

standard cascade PID control; the only major difference between the two schemes lies is the 

augmented filter. Here, the proposed CMSC structure provides an effective way to design the 

augmented filter for a PID controller. 
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Standard Cascade PID scheme: For the standard cascade PID control as shown in Fig. 1, the 

controllers are designed as follows. The slave controller 2cG  is designed first and followed by 

the master controller 1cG . A PI controller is selected for 2cG  while a PID controller with a lag 

filter is chosen for 1cG . The slave controller 2cG  is designed based on the nominal model of the 

secondary process. Subsequently, the master controller 1cG  is designed based on 1PH RS , where 

RSH  is as in (17) and 1P  is the nominal model for primary process 1P . Note that, all the delay 

components appearing in the characteristic equations (17) and (20) are approximated first using 

the second-order Padé formula. In this case, we use a higher order approximation of the delay in 

order to perform more accurate Nyquist stability margin analysis. Please note that, for the 

purpose of CMSC design, the first order approximation of the delay is quite sufficient; however, 

a higher order approximation will be used if the delay is very long, i.e., larger than the dominant 

time-constant of the process involved. The Matlab SISO Design Tool is used to obtain the PID 

controllers based on the minimization of IAE tuning. We obtain a PI (slave) and PID (master) 

controllers as displayed in Table 4. 

For this example, the same set point pre-filter )11.0/(1 += sF
r  is used for the proposed CMSC 

and the standard cascade PID control schemes. The performances of the 2 different control 

schemes are compared based on 1 unit step change in R  at t = 5, subsequently followed by -0.5 

units step change in the input disturbance 1D  at t = 200, and then by -0.5 units step change in the 

output disturbance 2D  at t = 400. To compare the performance robustness of the 2 control 

schemes, the following 4 perturbed conditions are considered: 

i. Case A: 2.021 =∆=∆  and 2.021 == δδ  (simultaneous increase in the gain and TD 

modeling errors of magnitude +20% each). 
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ii. Case B: 2.0,2.0 21 −=∆=∆ and 2.021 == δδ  (20% increases in the primary and 

decreases in the secondary process gains with 20% delay errors in both primary and 

secondary). 

iii. Case C: 2.0,2.0 21 =∆−=∆ and 2.021 == δδ  (20% decreases in the primary and 20% 

increases in the secondary process gains with 20% delay errors). 

iv. Case D: 2.0,2.0 21 −=∆−=∆  and 2.021 == δδ  (decrease in both the primary and 

secondary process gains with 20% delay errors). 

For all of the cases mentioned above, we are concerned with the effects of positive time-delay 

(TD) modeling errors ( 2,1,0 => iiδ ) and not with the negative errors ( 2,1,0 =< iiδ ) because 

the simultaneous increases in time-delays (positive modeling errors) tend to cause more serious 

degradation in control performance for a given set of gain modeling errors. 

The IAE values for the 2 control schemes at the nominal and perturbed conditions are as 

displayed in Table 1. The tabulated IAE values indicate that the proposed CMSC scheme 

outperforms the standard cascade PID scheme in terms of both nominal performance and 

performance robustness. On average, the CMSC provides about 30% improvement over the 

cascade PID in term of IAE. Fig. 5 shows the comparative closed-loop responses under a 

perturbed condition for the 2 different cascade control strategies. The proposed CMSC scheme 

shows improved setpoint tracking as well as regulatory control performances over the standard 

cascade scheme. Fig. 6 shows the plots of gain margin versus time-delay errors for two sets of 

gain modeling errors. From Fig. 6, notice that the CMSC scheme has a larger gain/delay margin 

than the standard cascade PID scheme, which implies that the CMSC is more robust than the 

standard cascade PID scheme. This confirms the simulation result shown in Fig. 5, i.e., the 

CMSC has better performance robustness than the standard cascade PID control scheme. Please 
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note that, the gain margins of both CMSC and standard cascade PID schemes are virtually 

similar at the nominal condition (see Fig. 6b). Interestingly, despite the similarity in gain margins 

at the nominal condition, the CMSC exhibits better performance (in term of IAE) than the 

cascade PID scheme (see Table 1). 

Example 2: In this example, we consider the double integrating primary process reported in 

Uma et al. [17]: 
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For the example, we compare the performances of 3 different control schemes: (1) the proposed 

CMSC, (2) standard cascade PID control, and (3) modified Smith predictor (SP) of Uma et al. 

[17]. 

CMSC scheme: First, we apply the 1/1 Padé formula to approximate the delay components in 

the primary and secondary process models (42) and (43). Then, the decompositions of the 

approximated models result in the following factors: 
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We choose the outermost sub-controller 0pK  as a PID controller while the other 3 sub-

controllers are selected as P-only controllers. Using the design procedure given in Sub-Section 
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3.3, the following sub-controllers are obtained: 1.11 =pK  and sssK p /)13.87.21(045.0 2
0 ++=  

for the primary process; 31 −=sK  and 8.10 −=sK  for the secondary process. These multi-scale 

sub-controllers can be reduced to an equivalent PID augmented with a second order filter, and a 

P controller with a lead-lag filter as displayed in Table 4. 

Standard Cascade PID: For a comparison purpose, we also design a standard cascade PID 

control scheme. We choose a PI controller for controlling the secondary process and a PID 

controller for the primary process. These PI and PID controller designs are performed just like in 

the previous Example 1. The controller tuning is based on the minimum IAE criterion. The PI 

and PID controllers obtained are given in Table 4. 

Note that, the same setpoint prefilter )14/(1 += sFr  is used for both CMSC and standard 

cascade PID control schemes. 

Modified SP: For another comparison, we also adopt the modified Smith predictor (SP) 

scheme proposed by Uma et al. [17]. Please note that, all the controllers for the modified SP 

scheme use in this example are exactly as reported in [17], i.e., no modification. For details 

regarding the controller design for the modified SP, refer to [17]. The 4 controllers used in the 

modified SP scheme are shown in Table 4. Notice that the modified SP scheme is a more 

complex design than the proposed CMSC scheme. It is interesting to note that unlike the 

proposed CMSC scheme, the modified SP scheme cannot be reduced to an equivalent standard 

cascade control scheme. 

The control performances are compared based on 1 unit step change in R  at t = 5 units, and 

consecutively followed by -0.5 units step change each in 1D  at t = 75 units and 2D  at t = 150 

units. To compare the closed-loop performances in the presence of modeling errors, 4 cases of 

perturbed conditions similar to those described in the previous Example 1 are considered. 
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Table 2 displays the IAE values of the different control schemes at the nominal and perturbed 

conditions. The table demonstrates that the proposed CMSC scheme outperforms the standard 

cascade and modified SP schemes in terms of the nominal performance and robust performance. 

On average, the CMSC scheme provides about 30% and 35% performance improvement over the 

standard cascade PID and modified SP schemes. Fig. 7 shows the closed-loop responses at a 

perturbed condition for the 3 different control schemes. The figure indicates that the CMSC 

scheme yields good setpoint tracking and regulatory control performances compared with the 

other 2 schemes. Fig. 8 illustrates the gain margins versus delay errors of the CMSC and 

standard cascade scheme; the modified SP is not shown as it is not equivalent to a standard 

cascade control strategy. It is interesting to highlight that, although the primary-loop delay 

margins (delay error at which the control scheme becomes unstable) for both CMSC and 

standard cascade control are similar, the CMSC exhibits higher gain margin than the standard 

cascade control. This accounts for a greater performance robustness of the CMSC than the 

standard cascade control. 

Example 3: This example is adopted from Uma et al. [17] where the primary process is an 

open-loop unstable. The cascade processes are given as follows: 
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Note that, Uma et al. [17] reported that their cascade control strategy based on a modified SP 

can provide improved performance over the control schemes proposed by [20-21]. It is 

interesting to find out whether the proposed CMSC scheme can provide further performance 

improvement over the modified SP scheme proposed in [17]. 
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CMSC scheme: After the rational approximation of the delays in (50) and (51), the plant 

decomposition of the approximated models leads to: 
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Based on the procedure given in Sub-Section 3.3, 4 sub-controllers are produced as: 2.41 =pK  

and sssK p /)13039(034.0 2
0 ++=  for the primary process; 401 −=sK  and 95.0−  for the 

secondary process. The equivalent P (slave) and PID (master) controllers are shown in Table 4. 

Standard Cascade PID: A PI and PID controllers are chosen for controlling the secondary and 

primary processes, respectively. We use the same controller design procedure as in the previous 

2 examples. The result of the controller design is given in Table 4. 

Here, the same setpoint prefilter )128/(1 += sFr  is used for both CMSC and standard cascade 

PID control schemes. 

Modified SP: Since this example is directly taken from Uma et al. [17], the modified SP used 

in this study is exactly the same as in the original paper. For comparison with the other 2 

schemes, the controllers used in the modified SP are as displayed in Table 4. Bear in mind that, 

the modified SP structure is not reducible to an equivalent standard cascade control as the 

proposed CMSC scheme. In term of design and structure, the modified SP are more complex 

than the proposed CMSC scheme. 

The performances of the 3 different control schemes are compared based on 1 unit step change 

in R at t = 5 units, and consecutively followed by 2 units step change each in 1D  and 2D  at t = 
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150 units and t = 300 units, respectively. The performance robustness is evaluated at a set of 

perturbed conditions similar to those used in the Examples 1 and 2. 

Table 3 reveals the IAE values corresponding to the 3 different control schemes. As can be 

seen from the table, just like in the previous examples the CMSC outperforms the other 2 control 

schemes at all perturbed conditions as well as at the nominal condition. For the cascade PID 

control, we can further improve the control performance at the nominal condition but this will 

lead to a less robust cascade control. Even with the existing tuning, the cascade PID control is 

unstable under the perturbed condition B; thus, an increase in controller aggressiveness will lead 

to smaller a smaller stability margin for the standard cascade PID control. The modified SP is 

stable under all of the perturbed conditions, but at the expense of larger IAE value than that of 

the CMSC. On average, the CMSC provides about 65% performance improvement over the 

modified SP scheme. 

The closed-loop responses of the 3 different cascade control strategies at a perturbed condition 

are shown in Fig. 9. Notice that, under the perturbed condition the standard cascade PID control 

is unstable. Under the same perturbed condition, the CMSC scheme is not only stable but also 

shows smooth and fast responses to setpoint and disturbance changes compared with the 

modified SP scheme. Fig. 10 displays the plot of gain margin versus delay error for the CMSC 

and cascade PID control schemes. The gain margin for the CMSC is higher than that of the 

cascade PID control. This shows that the CMSC is more robust against modeling error than the 

standard cascade PID scheme. 

5. Conclusions 

In this paper, we have presented a generalized cascade multi-scale control (CMSC) scheme, 

which is an extension of the basic SISO MSC scheme recently reported in [22-23]. The proposed 
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CMSC scheme can be applied to both self-regulating and non-self-regulating (integrating or 

unstable) processes with long time-delays. Furthermore, the CMSC structure can be reduced to 

an equivalent standard cascade PID control structure. The overall (master or slave) MSC 

controller can be easily put into the form of a PID or P controller augmented with a filter. Thus, 

the CMSC structure provides an attractive way to design an augmented filter together with a PID 

controller. Our numerical studies have shown that the use of this PID controller augmented with 

a first- or second-order filter in the primary-loop provides improved nominal performance and 

performance robustness over the PID controller without filter (including PID with a simple lag 

filter). Also it should be noted that, the proposed CMSC scheme is simpler to design and 

implement than some modified Smith predictor-based cascade control strategies, which are not 

often reducible to a standard cascade PID control structure. In future works, we will address: (1) 

the extension of the current CMSC scheme to parallel cascade processes, (2) autotuning 

procedure of the CMSC scheme for nonlinear processes, and (3) rigorous robustness and stability 

properties of the CMSC scheme. 
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Table 1 

The IAE values for CMSC and cascade PID schemes at the nominal and perturbed conditions for Example 1 

Condition Proposed CMSC Cascade PID 

Nominal 37.6 46.1 
Case A 53.7 62.4 
Case B 46.6 64.7 
Case C 39.3 54.1 
Case D 41.7 49.2 

 
Table 2 

The IAE values for CMSC, cascade PID and modified Smith predictor (SP) schemes at the nominal and perturbed 
conditions for Example 2 

Condition Proposed CMSC Cascade PID Modified SP [17] 

Nominal 11.1 13.2 14.7 
Case A 11.3 11.8 13.8 
Case B 14.9 18.6 19.6 
Case C 11.2 16.4 15.9 
Case D 13.7 20.4 19.4 

 
Table 3 

The IAE values for CMSC, cascade PID and modified Smith predictor (SP) schemes at the nominal and perturbed 
conditions for Example 3 

Condition Proposed CMSC Cascade PID Modified SP [16] 

Nominal 28.2 30.0 37.5 
Case A 28.7 40.1 68.8 
Case B 36.8 unstable 68.1 
Case C 37.4 40.8 46.3 
Case D 45.3 47.5 70.5 
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Table 4 

PID controller settings based on CMSC, standard cascade and modified SP schemes for examples 1, 2 and 3 
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$The controller notations for the modified SP are as in Uma et al. [17]. 
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Figure Caption 

Fig. 1. Conventional two-level cascade control strategy 

Fig. 2. Block diagram of a 2-layer multi-scale control (MSC) scheme for a SISO process 

Fig. 3. Block diagram of 2-level/2-layer cascade MSC (CMSC) scheme for cascade process 

Fig. 4. Generalized 2-level CMSC scheme: (a) secondary, and (b) primary MSC systems 

Fig. 5.  Response under a perturbed condition (∆1 = 0.2, ∆2 = -0.4, δ1 = 0.5, δ2 = 0.4) for 

 Example 1 

Fig. 6. Gain margin versus delay error for Example 1: (a) secondary- and (b)  primary-loops 

 under ∆1 = ∆2 = 0; (c) secondary- and (d) primary-loops under ∆1 = ∆2 = 0.2 

Fig. 7.  Response under a perturbed condition (∆1 = -0.4, ∆2 = 0.3, δ1 = 0.3, δ2 = 0.4) for 

 Example 2 

Fig. 8. Gain margin versus delay error for Example 2: (a) secondary- and (b)  primary-loops 

 under ∆1 = ∆2 = 0; (c) secondary- and (d) primary-loops under ∆1 = ∆2 = 0.2 

Fig. 9. Response under a perturbed condition (∆1 = 0.25, ∆2 = -0.2, δ1 = 0.1, δ2 = 0.1) for 

 Example 3 

Fig. 10. Gain margin versus delay error for Example 3: (a) secondary- and (b) primary-loops 

 under ∆1 = ∆2 = 0; (c) secondary- and (d) primary-loops under ∆1 = ∆2 = 0.2 
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Figure 5 
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Figure 6 
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Figure 7 

  

0 20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time

Y

 

 

CMSC

Cascade PID

Uma modified SP



 

37 
 

 

Figure 8 
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Figure 9 
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Figure 10 
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