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Abstract— A model is proposed for the shearing and peeling 

stresses occurring at the interface of two bonded thin 

plates of dissimilar materials with the consideration of the 

effect of differential uniform temperatures in the layers 

and subsequently the differential uniform temperature 

model is further upgraded by accounting linear 

temperature gradients in the layers by incorporating two 

temperature drop ratios. The upgraded models are then 

compared with the existing uniform temperature model. 

The proposed model can be considered as a generalized 

form to predict interfacial stresses subjected to any 

temperature conditions that may occur in the layers. The 

results are presented for the case of die and die-attach as 

commonly seen in electronic packaging.  The analytical 

results and numerical simulation are in a good matching 

agreement.  

Keywords- shearing stress, peeling stress, temperature 

gradient, bond material, thermal expansion 

 

Introduction  

Thermo-mechanical stresses are the major contributor to 

the structural failure between two bonded layered structure 

(for instance, between a device and a substrate). These stresses 

can lead to mechanical (structural) as well as functional 

(electrical or optical) failure to the field of microelectronics 

and photonic components and devices [1]. Consequently an 

understanding of the nature of the interfacial stresses under 

different temperature conditions is necessary in order to 

minimize or eliminate the risk of structural failure.  

 
A thermally mismatched stressed model is widely 

analyzed using a bi-material thermostat. Timoshenko [2] 

initiated a fundamental solution to thermal stresses of bi-metal 

thermostats using the beam theory in 1925. Suhir and his co-

authors [3,4] proposed relatively simple and easy-to-use 

interfacial thermal stress model compared to the early model 

proposed by Timoshenko. Many more researchers have 

modified, upgraded, and/or corrected bi-material model to the 

present simplified form in the last few decades [for instance, 

2-9]. However, most research works on this direction focused 

on thermal mismatch stresses subjected to uniform 

temperature changes in the layers. But in reality, temperature 

levels in the two bonded layers should be different during 

manufacturing, curing, or even operating due to the 

dissimilarity of the materials. Moreover, with the existence of 

heat flow in the materials (for instance, die), there may also 

exist temperature gradient in the layers. Thus the effect of the 

existence of differential uniform temperatures with 

temperature gradients in the layers may influence the shearing 

and peeling stresses along the interface. Hardly, any analytical 

study has been carried out earlier in this direction. 

 

In the present analysis the authors have extended Suhir’s 

[3] uniform temperature shearing stress model by introducing 

a temperature ratio parameters m(= ∆ T2/ ∆ T1) to account for 

differential uniform temperatures in the layers. Subsequently a 

model is proposed for peeling stress at the interfaces of the 

two layers using the proposed differential uniform temperature 

shearing stress model. The differential uniform temperature 

shearing and peeling stress models are then further upgraded 

with the consideration of linear temperature gradients in the 

layers by incorporating two temperature drop ratios 

β1{=( ∆ T1- ∆ T3)/ ∆ T1} and β2{=( ∆ T2- ∆ T4)/ ∆ T2} for the 

upper and lower layers respectively. The proposed model can 

be applied for any given temperature conditions in the layers.  

 

ANALYTICAL FORMULATION 

 

The uniform temperature shearing stress model is 

presented here by solving a simple second order differential 

equation  instead of a relatively complicated integro-

differential equation of Suhir’s one [3]. The model is then 

upgraded with differential uniform temperatures in the two 

layers and subsequently thickness-wise linear temperature 

gradients are incorporated in the layers to complete the 

generalized form. 
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Figure1 represents the full length of the 2-D uniform 

temperature model where AA showing the line of symmetry. 

The 2-D model is considered to be of unit width in a direction 

perpendicular to the paper and all forces and moments are 

defined with respect to the unit width.  

 

 

 

 

 

                        1 : , , ,1 1 1T E α γ∆  

 

 

2 2 2
2 : , , ,T E α γ∆  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Geometrical and material parameters with  

free body diagram of the uniform temperature model 

 

The compatibility condition at the interface can be expressed 

as: 

 

                       0
(1) (2)

U U
x x

− = ,           (1) 

 

where Ui, i=1, 2 are the axial displacements for the layers. 

 

In the present approach, the above condition is expressed in its 

following simpler form: 

                   
(1) (2)x x

∈ =∈                           (2) 

 

where �
( )x i

∈ , i = 1, 2 are the axial strains given by 
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x i x

∂
∈ =

∂
 

 
The conditions (1) and (2) are mathematically equivalent. 

Suhir [3] used equation (1) as the compatibility condition 
which required solving a complicated integro-differential 
equation. 

 

 

A.  Differential uniform temperature shearing stress model 

With the introduction of differential uniform 

temperatures 1T∆ and 2T∆
 
in layer 1 and layer 2 respectively 

in Figure 1, the axial strains at the interface take the form as, 
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Where Ti iα ∆ , Fi iλ , 
2

hi

R
, and K

i
x

τ∂

∂
are the strain 

components due to temperature changes, thermal mismatch 

axial forces Fi,  bending, and shearing force respectively. 

 

The compatibility of axial strains at the interface in equation 

(2) demands the following condition(s), 
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Differentiating eq. (4), one gets a second order differential 

equation in τ as follows, 

2
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where 
2

K

λ
κ =  

The solution of this equation is assumed to be the form, 

 

1 2sinh coshC x C xτ κ κ= +             [10]                      (6) 

 

Applying boundary conditions and using eq. (6), the 

differential equation (5) has a solution for shearing stress τ(x) 

as follows, 
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B.  Formation of differential uniform temperature Peeling 

stress model 

 

The peeling stress P(x) (normal stress at the interface) is 

obtained from the consideration of moment equilibrium and 

τ(x) given by eq. (8). 

 

Now considering an infinitesimal element of layer 1 as 

shown in Figure 2, for equilibrium condition of forces in the 

vertical direction,
 

0Fy =∑
 

 

 

 

 

 

 

Figure 2.  Force distribution in an infinitesimal element of layer 1 

 

From where 1
dV

P
dx

= −                     (9) 

Taking moment about A, 
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Now putting 1
1

D
M

R
=  and using the value of 

1

R
 from  

eq. (4), eq. (10) becomes, 
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Differentiating eq. (11), can get  

 
1

V aτ=                                             (12) 

 

Using eq. (12), in eq. (9)  

1
dV d
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Finally using eq. (8), eq. (13) becomes  
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Thus, the shearing stress τ(x) and the peeling stress P(x) 

at the interface can be determined analytically using eq. (8) 

and (14), respectively, for various values of m. It can be 

observed that when the temperatures are same in both 

materials, the eq. (8) and (14) corresponds to Suhir’s models, 

which are as follows: 
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C. Upgrading differential uniform temperature model with 

 thickness-wise linear temperature gradients 

 

 

 

 

 

 

 
 

Figure 3. Bi-material assembly with linear temperature gradients in the layers 

 

Considering layer 1 of Figure 3, the temperature distribution 

throughout the thickness can be represented as shown in 

Figure 4. 

 
Figure 4. Temperature distribution in layer1 reflecting 

linear temperature gradient in the layer 

 

Let the total change of curvature of the assembly due to 

change of temperature be
1

( )
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T

; where (T) denotes 

temperature change. Referring to Figure 4, the changes of 

curvature due to linear variation of temperature for upper and 

lower layers can be represented as follows: 
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So 
1 1 11 2
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From the moment equilibrium of the element shown in Figure 

4, there follows, 

1 2 2

hF
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where the moments M1 and M2 are given by the moment-

curvature relations as 

1 2
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Using eq. (16) and (17), eq. (15) reduces to 
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                       (18) 

Now considering this modified value of 
1

R
 in eq. (18), the 

eq. (8) and (14) can be reconstructed as follows: 
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It can be observed that when gradient in materials is zero 

(∆T1=∆T3) and (∆T2=∆T4), eq. (19) and (20) reduces to (8) 

and (14), the differential uniform temperature model. 

 

RESULTS AND DISCUSSIONS 

 

The analytical and FEM results are presented in graphical 

form for various combinations of available results based on 

Suhir’s and present models. The numerical example is carried 

out for an actual electronic packaging case where Silicon and 

Diamond representing die and die attach respectively. In this 

analysis die and die attach will be referred as layer 1 and layer 

2 respectively. The following input data are used: E1 = 1.88 

x10
5
 MPa, ν1 = 0.3, α1 = 3x10

-6
 1/°C, h1 = 0.00035 m, E2 = 

4.966x10
4
 MPa, ν2 = 0.29, α2 = 25X10

-6
 1/°C, h2 = 0.00015 m, 

L = 0.0025 m. For FEM analysis both 2D and 3D models are 

considered to verify the analytical results. Since the system is 

symmetric, for 2D half of the model is analyzed. Due to the 

same symmetric condition, for 3D one quarter of the model is 

analyzed as shown in Figure 5. For convenience, the reference 

is made to Uniform Temperature Model as Mu 

(∆T1=∆T2=60°C), Differential Uniform Temperature as Md 

(m=0.5 or ∆T1=60°C and ∆T2=30°C) and Linear Temperature 

Gradient Model as Mdg {(β1=0.33 or ∆T1=60°C and 

∆T3=40°C) and (β2=0 or ∆T2=30°C and ∆T4=30°C)}.  

 
Figure 5. One quarter of the 3D model with shearing stress distribution 

 

Figure 6 shows that the analytical solution for shearing 

stress has better agreement with 3D FEM compared to 2D 

FEM almost entire length except near the free end indicating 

edge effect as expected.  

 

 
Figure 6. Shearing Stress along Die-Die Attach Interface for  

Differential Uniform Temperature model, Md 

 

Figure 7 represents comparison of shearing stress 

between uniform temperature model, Mu and differential 

uniform temperature model, Md. Analytical comparison 

indicates that at location x/L=0.8, for Md stress value 

differences (reduces) by 0.65 MPa compared to Mu, at x/L=0.9 

the difference increases to 4.66 MPa and at x/L=0.96, the 

difference further increases to 11 MPa or 57%. Almost 

similar trend can be observed from Figure 7 for the FEA stress 

comparison between the two models except with the exception 

near the free end due to edge effect.  
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Figure 7. Comparison of shearing stress between Uniform  

Temperature model, Mu and Differential Uniform Temperature  

model, Md along the interface 
 

Analytical comparison from Figure 8 for peeling stress 

between uniform temperature model, Mu and differential 

uniform temperature model, Md shows that at locations 

x/L=0.8, 0.86 and 0.92, for Md peeling stress reduce by 0.9, 

2.74 and 5.34 MPa respectively compared to Mu, thus 

indicating similar order of variation as observed in Figure 7 

for shearing stress.   

 

 
 
Figure 8. Comparison of peeling stress between uniform temperature model, 

Mu and differential uniform temperature model, Md along the interface 

 

 

 
Figure 9. Shearing stress along the interface with  

temperature drop ratio (ββββ1) as a parameter 
 

Figure 9 represents shearing stress for temperature drop 

ratio, ββββ1 in the die as a parameter with ββββ2=0. The results are 

presented in the vicinity of the free end only, x/L = 0.94 to 1 to 

visualize the effect of the thickness-wise temperature gradient 

in the die. It can be observed from Figure 9 that at location 

x/L=0.92, shearing stress for Mdg (for β1=0.33 or ∆T1 = 60°C, 

∆T3 = 40°C, and β2=0 or ∆T2 = 30°C) is almost 0.5 MPa lower 

compared to Md (i.e., ∆T1 = 60°C and ∆T2 =30°C). The 

difference gradually increases to 1.4 MPa or 7.4% at the free 

end indicating significant influence of linear temperature 

gradient in interfacial shearing stress development in a bi-

material assembly.  

Figure 10 represents peeling stress with temperature drop 

ratio, ββββ1 as a parameter. Similar nature of variation can be 

observed for peeling stress as was seen earlier in shearing 

stress example of Figure 9. 

Figure 10. Peeling stress along the interface with  

temperature drop ratio (β1) as a Parameter 

 

CONCLUSION 

Present work upgraded the existing uniform temperature 

bi-material model to account for differential uniform 

temperature as well as thickness-wise linear temperature 

gradient in the layers. A simpler method of solution is used to 

develop this model which does not involve solving integro-

differential equations as in the Suhir’s method. The following 

conclusions are summarized: 

 

1. 3-D simulation showed better agreement with analytical 

results compared to 2D model (Figure 6) especially near the 

vicinity of the free end for interfacial shearing stress 

comparison along the interface.  

 

2. Comparison of analytical results with FEM using the die-

die attach bi-material package indicated that the effect of 

differential uniform temperature in the layers reduced both the 

shearing and peeling stress substantially (for instance 57% in 

the case of shearing stress) compared to the uniform 

temperature model (Figure 7-8). Thus, it indicates that the 

differential uniform temperature in the layers may influence 

the interfacial shearing and peeling stresses quite significantly.  

 

3. Consideration of thickness-wise linear temperature gradient 

in layer 1 reduced both the shearing and peeling stress values 

up to 7.4% (Figure 9-10) compared to the differentially 
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uniform temperature model. Therefore, it is concluded that the 

effect of linear temperature gradient (even in one layer) may 

influence both the shearing and peeling stresses considerably 

and should be accounted for carefully while calculating 

shearing and peeling stresses at the interfaces.  
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Appendix 
Some symbols and their definition: 

 

E = Young’s modulus,  hi = Thickness, R = Radius of curvature, αi = 

Coefficient of thermal expansion, νi = poison’s ratio 

Shear modulus, 

2(1 )
=

+

Ei
Gi

iν
 

Flexural rigidity, Di = 

3

2
12(1 )−

E hi i

iν
, D = D1+ D2     

Axial compliance, 

2
(1 )−

= i
i

E hi i

ν
λ   

Coefficient of interfacial compliance, 

3
=

hi
Ki

Gi

 

 
 


