

Solid/CO₂ and solid/water interfacial tensions as a function of pressure, temperature, 1 salinity and mineral type: Implications for CO₂-wettability and CO₂ geo-storage 2 3 Muhammad Arif^{1,*}, Ahmed Barifcani¹, Stefan Iglauer¹ 4 5 6 ¹Curtin University, Department of Petroleum Engineering, 26 Dick Perry Avenue, 6151 7 Kensington, Western Australia; phone: +61 8 9266 7703 8 9 *Corresponding author Phone: +61 8 9266 7703 10 11 Fax: +61 8 9266 7063 Email: muhammad.arif@curtin.edu.au 12 13 14 Abstract: 15 16 Wettability of CO₂/brine/mineral systems plays a significant role in the underground geological 17 storage of CO₂ as it governs the fluid flow and distribution mechanism within the porous 18 medium. Technically, wettability is influenced by CO_2 pressure, the temperature of the storage 19 formation, formation water salinity and the type of mineral under investigation. Although a 20 21 growing number of studies report wettability data for CO₂/water/mineral systems, yet the factors responsible for wettability variation with pressure and temperature remain unclear. In 22 this work, we used the concept of surface energy to explain dependency of wettability on 23 24 pressure, temperature and salinity. Neumann's equation of state approach was used to compute solid/CO₂ and solid/water interfacial energies using reliable contact angle and CO₂/brine 25 26 interfacial tension data from the literature at a wide range of operating conditions for quartz, water-wet mica, oil-wet mica and high, medium and low-rank coals. Moreover, the all-27 28 important question that why different minerals offer different wettability to CO_2 /water systems 29 at the same pressure and temperature of investigation is addressed by comparing the interfacial energies of the minerals. We found that for all minerals solid/CO₂ interfacial energy decreased 30 with pressure and increased with temperature, and solid/water interfacial energy decreased with 31 temperature except for quartz for which solid/water interfacial energy increased with 32 temperature. Furthermore, the solid/CO₂ interfacial energy was lowest for the oil-wet mica 33

surface and highest for quartz which is due to higher hydrophobicity of oil-wet mica surface. The results of the study lead to a better understanding of the wetting phenomenon at the CO_2 /brine/mineral interface and thus contribute towards the better evaluation of geological CO_2 -storage processes.

38

39 **1. Introduction**

Carbon capture and storage in depleted hydrocarbon reservoirs or deep saline aquifers 40 contributes significantly towards the reduction of anthropogenic greenhouse gas emissions 41 (Intergovernmental Panel on Climate Change, 2005). CO₂ is also injected into subsurface 42 reservoirs for enhanced oil and gas recovery (e.g. Blunt et al., 1993; Iglauer et al., 2013, 2016; 43 44 Lackner, 2003). In this context the wettability of CO₂-brine-mineral systems plays a crucial role in deciding the fate of the injected CO₂ within the geological formation (Iglauer et al., 45 46 2015a). The existing literature has reported experimental CO_2 -wettability data as a function of pressure, temperature and salinity for rock forming minerals such as quartz (Al-Yaseri et al., 47 48 2016a; Saraji et al., 2014; Sarmadivaleh et al., 2015), mica (Arif et al., 2016a, b; Broseta et al., 49 2012; Chiquet et al., 2007) and coals (Arif et al., 2016c; Shojai Kaveh et al., 2012; Siemons et 50 al., 2006). Further, molecular dynamics simulations also computed contact angles for CO₂brine-quartz systems (Chen et al., 2015; Iglauer et al., 2012; Javanbakht et al., 2015; Liu et al., 51 2010; McCaughan et al., 2013). However, no significant attention has been given to evaluate 52 the factors which are responsible for wettability variation with pressure, temperature and 53 54 salinity despite the variations in trends observed in studies on CO₂ wettability of minerals (e.g. θ increased in temperature for quartz/CO₂/brine, Al-Yaseri et al., 2016a and decreased with 55 temperature for mica/CO₂/brine and coal/CO₂/brine systems, Arif et al., 2016a,c). 56

57

58 Recently, a few studies attempted to explain the factors responsible for wettability variation. 59 For instance, Al-Yaseri et al. (2016b) reported that wettability of quartz/gas/brine systems is a strong function of gas density and a mathematical correlation was developed to determine 60 61 contact angles from gas densities. However, the methodology was applicable to a limited set of operating conditions only. Roshan et al. (2016) developed a physical model based the 62 63 concept of the diffuse double layer to provide a theoretical framework for changes observed in wettability as a function of pressure, temperature and salinity and found that wettability is 64 strongly related to CO₂/water interfacial tensions and density changes. Ameri et al. (2013) 65 computed sandstone/CO₂ interfacial tension as a function of pressure using Neumann's 66 67 equation of state (Neumann et al., 1974) and found that the solid/CO₂ interfacial tension 68 decreased with pressure and they formulated that such change in solid surface energy is 69 responsible for wettability changes. Nevertheless, the factors responsible for wettability 70 variation with pressure, temperature and salinity remain unclear and require further attention.

Theoretically, it is well-established that the contact angle is a function of the interplay of the three interfacial tensions (solid/CO₂, solid/brine and brine/CO₂) as related by Young-Laplace equation below:

$$\cos\theta = \frac{\gamma_{sc} - \gamma_{sw}}{\gamma_{cw}} \tag{1}$$

In equation (1), γ_{sc} , γ_{sw} and γ_{cw} denote solid/CO₂, solid/water and CO₂/water interfacial tensions 75 respectively. To assess the wettability dependence on these interfacial interactions, the 76 quantification of the three interfacial tensions (γ_{sc} , γ_{sw} and γ_{cw}) is essential. In this context, 77 CO_2 /water interfacial tensions (γ_{cw}) can be determined experimentally (many studies reported 78 79 this data e.g. Arif et al., 2016a; Li et al., 2012; Lun et al., 2012), however, an independent 80 experimental measurement of solid/fluid interfacial tension is not possible because a solid interface is very different from a fluid-fluid interface due to absence of mobility (Li and 81 82 Neumann, 1992). Consequently, the use of numerical/empirical techniques such as Neumann's equation of state becomes essential (Neumann et al., 1974). They applied this method to 83 84 compute surface energies of low energy polymers (Neumann et al., 1974, Kwok and Neumann, 1999). We, thus, extend the use of Neumann's equation of state to compute mineral/ CO_2 and 85 86 mineral/water interfacial tensions as a function of pressure, temperature, salinity and mineral type. Essentially, three important issues are addressed in this work: 1) Computation of surface 87 88 energy of solid/ CO_2 and solid/brine as a function of pressure, temperature and salinity, 2) How these computed interfacial tensions explain the dependence of wettability on pressure, 89 90 temperature and salinity and 3) To answer a very important question, i.e. why different minerals 91 exhibit different wettability at the same operating conditions.

92 In this context, we used advancing and receding contact angle (θ_a and θ_r respectively) data for CO₂/brine systems for quartz (from Al-Yaseri et al., 2016a), water-wet mica (from Arif et al., 93 2016a; and the mica chosen is muscovite mica), oil-wet mica (from Arif et al., 2016b) and coal 94 (from Arif et al., 2016c) at a wide range of operating conditions and computed mineral/CO₂ 95 and mineral/water interfacial tensions and analysed the associated trends. Our results depict 96 that mineral/CO₂ interfacial tension decreased with pressure and increased with temperature 97 for all minerals. However, mineral/water interfacial tension decreased with temperature for 98 99 mica and coals but increased with temperature for quartz. The computed data in this paper can also be used to estimate contact angle from Young's equation at any pressure, temperature and 100

salinity using known values of surface energies. Finally, we conclude that the quantification of surface energies is not only helpful in understanding the CO₂/solid interactions but also adequately explain the factors influencing wettability and thus considerably improve the understanding of geological storage processes and provide independent estimates for surface energies for various other engineering applications.

106 107

108 2. Methodology

109

110 We used the equation of state approach by Neumann (Neumann et al., 1974) to compute 111 mineral/ CO_2 and mineral/water surface energies for a wide range of operating conditions for 112 quartz, water-wet mica, oil-wet mica, and coals of high, medium and low ranks. Following 113 sections describe the methodology in detail.

114

115 **2.1. Contact angle data**

We selected the water advancing and receding contact angle (θ_a and θ_r) data from our previous publications (quartz: from Al-Yaseri et al., 2016a, water-wet mica from Arif et al., 2016a, and oil-wet mica from Arif et al., 2016b; high, medium and low rank coals: from Arif et al., 2016c; Table 1). Surface energy calculations require equilibrium contact angles (see detail in section 2.2 below); these have been computed from Tadmor's empirical method (Tadmor, 2004, Table 2). Tadmor's correlation allows the calculation of equilibrium contact angles using the corresponding values of advancing and receding contact angles. The equations are as follows:

124
$$\theta_e = \arccos\left(\frac{\Gamma_A \cos\theta_A + \Gamma_R \cos\theta_R}{\Gamma_A + \Gamma_R}\right)$$
(2)

125 In equation (2), θ_e is the equilibrium contact angle while θ_A and θ_R are the advancing and 126 receding contact angles respectively, whereas, Γ_R and Γ_A are defined as follows:

127
$$\Gamma_{\rm R} = \left(\frac{\sin^3 \theta_R}{2 - 3\cos \theta_R + \cos^3 \theta_R}\right)^{1/3} \tag{3}$$

128
$$\Gamma_{\rm A} = \left(\frac{\sin^3 \theta_A}{2 - 3\cos \theta_A + \cos^3 \theta_A}\right)^{1/3} \tag{4}$$

129

Neumann et al.'s equation of state approach also requires CO_2 /water interfacial tension data which was taken from Sarmadivaleh et al. (2015) and CO_2 /brine interfacial tension was taken from Arif et al. (2016a), Table 3.

Table 1: Contact angle data for CO₂-deionized (DI) water systems for minerals investigated in
this study.

		Qu	artz	Wate	er-wet	Oil-	wet	High	rank	Med	lium	Low	rank
Temperature	Pressure			mi	ca	mi	ca	co	al	rank	coal	co	al
(K)	(MPa)	θ_a	θ_r										
		(°)	(°)	(°)	(°)	(°)	(°)	(°)	(°)	(°)	(°)	(°)	(°)
	0.1	0	0	10	5	90	65	37	30	32	25	43	32
	5	15	11	33	25	125	107	94	80	77	63	75	60
308*	10	23	17	55	50	148	128	140	126	127	115	103	87
	15	30	20	71	63	170	159	146	134	128	118	112	96
	20	37	23	80	72	172	160	151	139	137	121	122	110
	0.1	0	0	4	0	74	64	51	45	28	22	38	27
	5	19	13	30	24	118	102	89	79	69	49	50	42
323	10	30	25	48	40	143	125	129	114	108	98	94	78
	15	38	28	59	54	170	157	136	123	114	102	102	91
	20	42	35	70	62	170	158	141	129	122	112	116	107
	0.1	0	0	0	0	73	65	58	53	18	12	27	18
343	5	22	19	27	22	99	82	86	74	48	33	45	36
	10	42	30	43	36	108	91	109	97	95	85	92	77
	15	45	38	52	48	128	110	119	111	102	89	102	87
	20	50	42	62	53	156	134	125	114	113	95	110	97

*contact angles are interpolated at 308 K for quartz

Table 2: Equilibrium contact angles for all minerals calculated using Tadmor's correlation.

Temperature	Pressure (MPa)	Equilibrium contact angle θ_e (°)						
(K)		Quartz	Water-wet	Oil-wet	High rank	Medium	Low rank	
		Quanz	mica	mica	coal	rank coal	coal	
308	0.1	0	6	74.1	33.3	28.2	36.9	
	5	12.9	28.7	112.8	85.8	69	66.4	
	10	19.8	52.4	131.8	130	119	93.2	

	15	24.2	66.7	159.9	137	122	102
	20	29	75.7	160.5	142	126	115
	0.1	0	2	68.49	47.8	24.8	31.9
	5	15.7	26.8	107.7	83.4	57.1	45.7
323	10	27.4	43.7	129.3	119	102	84.4
	15	32.5	56.4	157.8	127	107	95.6
	20	38.3	65.7	158.8	133	116	111
	0.1	0	0.5	68.67	55.4	14.7	22
343	5	20.4	24.3	88.62	79.2	39.4	40.1
	10	35.3	39.3	97.35	102	89.3	83.1
	15	41.3	49.9	115.6	114	94.3	92.9
	20	45.7	57.1	136.6	118	101	102

Table 3: CO₂/DI-water and CO₂/brine interfacial tension data used.

Temperature	Pressure	CO ₂ /DI-water IFT ^a	CO ₂ /brine* IFT ^b
(K)	(MPa)	(mN/m)	(mN/m)
	0.1	75.8	72.9
	5	40.2	50.1
308	10	28.4	38.2
	15	22.7	33.9
	20	21.0	32.3
	0.1	73.1	72.0
	5	49	55.3
323	10	35.5	42.6
	15	29	38.7
	20	26	36.0
	0.1	65	69.2
	5	52.18	57.7
343	10	43	44.8
	15	34.5	39.7
	20	27	37.7

^a experimental data from Sarmadivaleh et al. (2015), values interpolated at 308 K and 323 K

148 ^b experimental data from Arif et al. (2016a)

149 *20wt% NaCl in DI water

150

- 151
- 152
- 153

154 **2.2. Surface free energy computation**

The surface free energy of solids has been investigated by a growing number of studies (e.g. 155 Ameri et al., 2013; Dickson et al., 2006; Kwok and Neumann, 2000; Zenkiewicz, 2007) as it 156 is of great practical significance for many engineering applications including catalysis, 157 coatings, flotation, printing and polymer sciences (Zenkiewicz, 2007). The most common 158 159 approaches include the Zisman method (Fox and Zisman, 1952), the Fowkes method (Fowkes, 1964), the geometric-mean approach (Owens and Wendt, 1969), the harmonic-mean approach 160 161 (Wu, 1971), the equation of state approach or Neumann's method (Neumann et al., 1974) and the acid-base approach or van Oss-Good method (van Oss et al., 1986). We chose Neumann's 162 163 equation of state method because of convenience in its application as it requires the knowledge of experimental contact angle, θ , and CO₂/water interfacial tension (γ_{cw}) data for which reliable 164 165 data is available.

166

167 Thermodynamically, solid/CO₂, solid/water and CO₂/water interfacial tensions (γ_{sc} , γ_{sw} 168 and γ_{cw}) are interrelated by an equation of state (Neumann et al., 1974), such that:

- 169
- 170

$$\gamma_{SW} = f(\gamma_{SC}, \gamma_{CW}) \tag{5}$$

171

Neumann et al. (1974) used the hypothesis that the free energy of adhesion per unit area of a solid-liquid pair is equal to the work required to separate a unit area of solid-liquid interface and that free adhesion energy was proposed to be equal to the geometric mean of the solid cohesion work and the liquid cohesion work. These geometric means were combined so that equation (6) resulted (for a complete derivation the reader is referred to Ameri et al., 2013).

- 177
- 178

$$\gamma_{sw} = \gamma_{sc} + \gamma_{cw} - 2\sqrt{\gamma_{cw}\gamma_{sc}} [1 - \beta(\gamma_{cw} - \gamma_{sc})^2]$$
(6)

179

180 The equation (7) below was then derived by Ameri et al., (2013) to find an expression for γ_{sc} 181 instead of γ_{sw} as shown:

183
$$\gamma_{sc} = \gamma_{sw} + \gamma_{cw} - 2\sqrt{\gamma_{cw}\gamma_{sw}} [1 - \beta(\gamma_{cw} - \gamma_{sw})^2]$$
(7)

184

185 ' β ' is a constant which is related to the fit of the original experimental data (Neumann et al., 186 1974) to the model and in the present case it can be determined by non-linear regression of 187 contact angle (θ) and CO₂/water interfacial tension data (γ_{cw}) as further explained below.

188

189 Combining Eq. (1) and (7), one obtains:

190
$$\cos\theta_e = 1 - 2\sqrt{\frac{\gamma_{sw}}{\gamma_{cw}}} \left[1 - \beta(\gamma_{cw} - \gamma_{sw})^2\right]$$
(8)

Ameri et al., (2013) applied equation (7) and (8) to determine solid/ CO_2 interfacial tension of oil-wet Bentheimer sandstone as a function of pressure and they reported the corresponding values of solid/liquid interfacial tension derived by non-linear regression. To account for a systematic evaluation of wettability dependence on pressure, temperature and salinity, we express equations (7) and (8) to clearly demonstrate that these are functions of pressure, temperature and salinity:

197

198
$$\gamma_{sc(P,T,S)} = \gamma_{sw(T,S)} + \gamma_{cw(P,T,S)}$$

199 $-2\sqrt{\gamma_{cw(P,T,S)}\gamma_{sw(T,S)}} \left[1 - \beta(\gamma_{cw(P,T,S)} - \gamma_{sw(T,S)})^2\right]$ (9)

200

201
$$\cos \theta_{e(P,T,S)} = 1 - 2 \sqrt{\frac{\gamma_{sw(T,S)}}{\gamma_{cw(P,T,S)}}} \left[1 - \beta (\gamma_{cw(P,T,S)} - \gamma_{sw(T,S)})^2 \right]$$
 (10)

202

The scripts P, T and S refer to pressure, temperature and salinity, respectively, and are added to the interfacial energy terms to elucidate their dependence on them. It is notable that γ_{sw} is dependent on temperature and salinity but not on pressure (Ameri et al., 2013; Neumann et al., 1974). This is the basic assumption of the Neumann's equation of state.

Our computations begin with input data acquisition which includes a) advancing and receding 207 208 contact angle data for quartz (Al-Yaseri et al., 2016a), water-wet mica (Arif et al., 2016a), oilwet mica (Arif et al., 2016b) and coals of high medium and low ranks (Arif et al., 2016c) listed 209 in Table 1, and b) CO₂/water interfacial data (Sarmadivaleh et al., 2015), listed in Table 3. 210 Then, $\cos\theta_e$ (cosine of the equilibrium contact angle) is calculated using advancing and 211 receding contact angle data for all cases analysed (results in Table 2). In the next step, $\gamma_{sw(T)}$ 212 and the constant ' β ' are determined by least squares fitting of the $\cos\theta_e$ and γ_{cw} data. To 213 accomplish this, $\cos\theta_e$ is first calculated by using equation (10) for any trial values of $\gamma_{sw(T)}$ 214 215 and ' β ' and is plotted against γ_{cw} (this data is referred as model data). Moreover, the experimental $\cos\theta_e$ (Table 2) is also plotted against γ_{cw} (such a plot is shown in Figure 1 for all 216 217 minerals analysed at 343 K), the regression analysis of these data-sets yield final values of 218 $\gamma_{sw(T)}$ and ' β ' corresponding to the best-fit (note: such plots are created at all three analysis temperatures and for all minerals, and directly provide values of $\gamma_{sw(T)}$ as a function of 219 temperature). Finally, using these calculated values, solid/CO2 interfacial tension is computed 220 using equation (9) as a function of pressure, temperature, salinity and type of the mineral. 221

222

223 2.3. Regression fit of data

As a first step, $\cos\theta_e$ (experimental) is plotted against γ_{cw} and on the same plot $\cos\theta_e$ (calculated 224 225 using equation 10 for arbitrary values of γ_{sw} and ' β ') is also plotted against γ_{cw} . Such plots are constructed corresponding for each temperature and for all five cases analysed. An example is 226 shown in Figure 1, where, for simplicity, only a temperature of 343 K is shown, but for all five 227 minerals investigated. The model and experimental data are in a good agreement, however the 228 model predictions are sensitive to CO₂/water interfacial tension values and thus reliable 229 CO₂/interfacial tension input is required for reliable modelling of solid/fluid interfacial 230 231 tensions.

Figure 1: Regression fit of experimental and model data for all minerals investigated at 343K.

236

The R²-values, fitting parameters ' β ' and γ_{sw} were computed for each case from the regression fits and the results are tabulated in Table 4. The standard deviations in experimental contact angle and interfacial tension data used were $\pm 3^{\circ}$ and ± 3 mN/m respectively.

240

241	Table 4: Results obtained	from regression fit of the	e experimental and model data.
		8	

Case	Temperature (K)	R ²	β	γ _{sw} (mN/m)
Quartz	308	0.898	0.000205	0.058
	323	0.943	0.000219	0.284
	343	0.988	0.0002524	0.952
Water-wet mica	308	0.899	0.00022	2.178
	323	0.935	0.00023	2.048
	343	0.992	0.00027	1.98
Oil-wet mica	308	0.9857	0.000166	20.19
	323	0.988	0.00022	25.47
	343	0.92	0.000145	16.53
High rank coal	308	0.9778	0.00033	20.25
	323	0.952	0.00028	19.23

	343	0.944	0.00021	15.37
Medium rank coal	308	0.994	0.00031	16.17
	323	0.974	0.0003	13.87
	343	0.93	0.00034	10.81
Low rank coal	308	0.989	0.00022	11.22
	323	0.954	0.0003	10.38
	343	0.946	0.00032	10.12

- 242
- 243
- 244
- 245

246 **3. Results and discussion**

247

We computed solid/ CO_2 interfacial tension as a function of pressure, temperature and salinity 248 249 and solid/water interfacial tension as a function of temperature and salinity via Neumann's equation of state (Neumann et al., 1974) for quartz, mica and coals using experimental contact 250 251 angle data and CO₂/brine interfacial tension data. The results broaden the understanding of rock/fluid interaction properties. Specifically, the results of this study allow the understanding 252 253 of the influence of surface energy on rock wettability as a function of pressure, temperature, salinity, and type of mineral. Thus, the results contribute to a better understanding of storage 254 mechanisms which ensure containment security (Iglauer et al., 2015b; Krevor et al., 2012; 255 Krevor et al., 2015). 256

257

258

259 **3.1. Effect of pressure on solid/CO₂ interfacial tension**

260

261 *3.1.1 Case 1: quartz*

 γ_{sc} (solid/CO₂ interfacial tension) decreased with pressure at all temperatures and for all cases analysed (Figure 2-4). As the pressure increased from 0.1 MPa to 10 MPa, quartz/CO₂ interfacial tension decreased sharply from 75 mN/m to 31 mN/m at 323 K (Figure 2). However, the decrease flattened for an additional pressure increment (from 15 MPa to 20 MPa it changed from 24.6 mN/m to 21.6 mN/m, a reduction of only 3 mN/m). A similar trend was found at elevated temperature, 343 K. Physically, as the pressure increases, the cohesive energy density of CO₂ increases and approaches to the cohesive energy of the substrate (Dickson et al., 2006). Eventually, the interactions between solid and CO_2 become more favourable and as a result quartz/CO₂ interfacial energy decreases with pressure. Note that at pressure = 0.1 MPa, a switch in temperature occurs due to a switch in CO_2 /water interfacial tensions; Table 3 (Arif et al., 2016a).

274

273

Figure 2: Quartz/CO₂ interfacial tension as a function of pressure and temperature.

276

A few studies report surface free energies of quartz at ambient conditions. Janczuk and Zdziennicka, (1994) calculated the surface energy of quartz at ambient conditions against air using the van Oss-Good method (van Oss et al., 1986) and the values ranged from 57 mN/m to 126 mN/m, consistent with our value (~74 mN/m) estimated for a similar condition (0.1 MPa and 308 K).

282

Dickson et al. (2006) is the only major study which computed surface energies as a function of 283 pressure for silica (glass)/CO₂ systems and found that for a partially methylated glass surface 284 (63% of the surface was covered by methyl groups, the remaining 37% by SiOH groups) 285 surface solid/CO₂ interfacial tension decreased with pressure. The values reported were 38 286 mN/m at a CO₂ activity of 0 (equivalent to a pressure of 0.1 MPa) and reduced to ~10 mN/m 287 at a CO₂ activity of 1.4 (equivalent to 20 MPa) at 296 K. The decrease in quartz/CO₂ interfacial 288 289 tension with pressure is thus consistent with Dickson et al. (2006), however, the difference in values is due to the fact that the surface they used had only 37% silanol group coverage (while 290 291 in our case it is 100%, i.e. pure quartz). Furthermore, Dickson et al. (2006) reported solid/CO₂ interfacial tension for a 12% SiOH surface (now 88% of the surface was methylated), for which 292 293 lower γ_{sc} values were reported (20 mN/m at 0.1 MPa and ~0 mN/m at 20 MPa) which is due to

- the higher hydrophobicity of the 12% SiOH surface (when compared with the 37% SiOH surface). Due to the limited number of silanol groups available, only a minimal amount of CO_2 is expected to cap these hydrophilic sites, thus γ_{sc} values were lower for lower silanol coverage
- 297 (e.g. for our case γ_{sc} = 20 mN/m at 20 MPa, and for Dickson et al. γ_{sc} = 10 mN/m for 37% SiOH
- surface, and ~0 mN/m for 12% SiOH surface).

The higher values of quartz/ CO_2 interfacial tensions as compared to mica (see below) at a given pressure and temperature imply that quartz is more hydrophobic in nature.

301

302 *3.1.2 Case 2: Mica*

303 Two mica surfaces were analysed: a) naturally water-wet mica (Arif et al., 2016a) and b) oil-304 wet mica (treated with silane to achieve oil-wet conditions, ambient air/water contact angle = 120°, Arif et al., 2016b). The results indicate that, likewise quartz, mica/CO₂ interfacial tension 305 decreased with pressure for both water-wet and oil-wet mica surfaces (Figure 3). When 306 pressure increased from 0.1 MPa to 5 MPa, mica/CO₂ interfacial tension decreased sharply 307 308 from 78 mN/m to 41 mN/m, for water-mica. Gradually, the decrease flattened out with further 309 increase in pressure (24 mN/m at 10 MPa and 16 mN/m at 20 MPa). Similar trends were found 310 for oil-wet mica surface. However, at any given pressure, the mica/CO₂ interfacial tension was considerably higher for water-wet mica. For example, at 10 MPa and 343 K, mica/CO₂ 311 interfacial tension was 40 mN/m for water-wet mica and only 4.6 mN/m for oil-wet mica 312 surface. This result is quite remarkable – as it demonstrates that the hydrophobic surfaces (e.g. 313 oil-wet mica - higher water contact angles) have considerably lower solid/CO₂ interfacial 314 energies in comparison to the hydrophilic surfaces (e.g. water-wet mica, lower water contact 315 316 angles, and quartz, even lower contact angles than water-wet mica). The permanent oil coating 317 on the mica (to be precise: the C12 alkyl rests chemically bonded to the surface) is responsible for the low surface energy of the oil-wet mica surface. Moreover, it can also be established that 318 the higher the solid/vapour surface energy, the higher is the tendency of the surface to wet with 319 water (i.e. lower contact angles, e.g. Table 1). The results are consistent with Ameri et al. 320 (2013) who used a similar methodology and computed interfacial interaction of CO₂ and oil-321 wet Bentheimer. Their results show that at any pressure, solid/CO₂ interfacial tension was 322 323 lower for the more oil-wet cores. For instance, at 10 MPa and 318 K, solid/CO₂ interfacial tensions were 20 mN/m for relatively more water-wet Bentheimer (SB-1) and 1 mN/m for oil-324 325 wet Bentheimer (SB-6, Ameri et al. 2013).

These results are significant for understanding the fluid flow dynamics in oil-wet and waterwet reservoir and caprocks (Iglauer et al. 2015a), and also for material design and development 328 where the physicochemical surface characteristics (e.g. surface energy) play a key role for a 329 wide range of operating conditions (Zenkiewicz, 2007).

330

331

Figure 3: Mica/CO₂ interfacial tension as function of pressure and temperature.

- 333
- 334

335 *3.1.3 Case 3: Coals*

336

Three coal samples [high rank (semi anthracite; from Hazelton, Pennsylvania, USA), medium 337 rank (medium volatile bituminous; from Morgantown, West Virginia, USA), and low rank 338 339 (lignite: from North Dakota, USA) were analysed for surface energy calculations. Advancing and receding contact angle data for the three coals is taken from our previous work (Arif et al., 340 341 2016c, Table 1). The detailed description of the properties of these coal sample can be found elsewhere (Arif et al., 2016c), however the mineral identified by XRD in the three samples 342 revealed that the major minerals present were illite, quartz and kaolinite. We note that the 343 measured contact angles may slightly vary with the minerology of coal; thus the results 344 reported here must be accompanied with the minerology of the specific sample under 345 investigation. Results showed that coal/CO₂ interfacial tension also decreased with pressure 346 irrespective of the coal rank (Figure 4). For all coals, the coal/CO₂ interfacial tension decreased 347 sharply for the pressure interval 0.1 MPa-5 MPa, e.g. for high rank coal, at 308 K, coal/CO₂ 348 interfacial tension decreased from 84 mN/m to \sim 12 mN/m when pressure increased from 0.1 349 MPa to 5 MPa. However, γ_{sc} turned almost constant for the pressure interval 10 MPa – 20 MPa 350 (Figure 4). Moreover, at a given pressure, the low rank coals exhibited the highest coal/CO₂ 351

interfacial tension values, while the high rank coal had the lowest coal/CO₂ interfacial tension, e.g. at 10 MPa and 323 K, coal/CO₂ interfacial tensions were 4.7 mN/m, 7.4 mN/m, and 10.2 mN/m for high, medium and low rank coals, respectively. At ambient conditions, Staszczuk (1989) determined surface free energy of coal, and found that the dispersion component was 45 mN/m and polar component measured 13 mN/m, thus a total surface energy of 58 mN/m comparable to our results ~ 70 mN/m for low rank coal at 308 K and 0.1 MPa.

358

In order to explain the variation of coal/CO₂ interfacial tension with coal rank, we conducted 359 360 FTIR (Fourier Transformed infrared) spectroscopy measurements on the coal samples (Figure 5). Low rank coal demonstrated the largest peak beginning at about 2800 cm⁻¹ and ending at 361 362 3800 cm⁻¹ which is attributed to the O-H and N-H stretch vibrations (Socrates, 2004) while high rank coal exhibited negligible O-H and N-H stretch vibrations at 3800 cm⁻¹. The 363 364 abundance of these hydrophilic sites in low rank coal and absence of these sites in high rank coal is responsible for higher $coal/CO_2$ interfacial tensions for low rank coal and low $coal/CO_2$ 365 366 interfacial tension for high rank coal. The band at ~ 2900 cm⁻¹ observed for low and medium rank coal is due to the presence of aliphatic C-H stretching vibrations (Wu et al., 2014); 367 368 however, its absence in high rank coal is unusual and is perhaps due to C-H stretching where the carbon is in a C=C bond. The rough part of the spectra for 2000-2400 cm⁻¹ should be 369 ignored as this is where the ATR crystal is absorbing itself (diamond) and the bands don't 370 371 always perfectly cancel out.

Moreover, the sharp band observed at 1500-1800 cm⁻¹ for low and medium rank coal is 372 attributed to aromatic ring vibrations, which are enhanced by oxygen groups (Sarwar et al., 373 2012). The corresponding shoulder peaks at 1600 cm⁻¹ for low and medium rank coals is 374 attributed to C=O stretching vibrations and these represent all C=O functionalities, e.g. 375 carboxylic acids or phenolic esters (Manoj et al., 2009). Furthermore, low and medium rank 376 coal (medium volatile bituminous) exhibited significantly stronger bands (in comparison to 377 378 high rank coal) at wave numbers from 600-800 cm⁻¹ and 1000-1100 cm⁻¹ indicating presence of more C-S stretching vibrations and C-H out of plane bending. 379

Thus, low rank coal has more polar functional groups on the surface than medium rank coal, and thus fewer attractive forces between the more polar surface and the non-polar (here in the sense of no external dipole moment) CO_2 generated, which lead to the higher coal/ CO_2 interfacial tension for low rank coal at any pressure as compared to medium and high rank coals (Figure 4).

Figure 4: Coal/CO₂ interfacial tension as a function of pressure, temperature and coal rank.

394

Note that high surface energy corresponds to strong cohesive forces and higher boiling points
(Tripp and Combes, 1998). Moreover, high energy surfaces tend to reduce energy by
adsorption of contaminants from the environment (Tripp and Combes, 1998).

399 *3.2. Effect of temperature on solid/CO₂ interfacial tension*

400

401 For all cases analysed, the solid/CO₂ interfacial tension increased with temperature (Figures 2-

402 4). For simplicity, a plot of solid/CO₂ interfacial tensions for the temperature range 308-343 K
403 at 15 MPa is presented in Figure 6.

404 405

406 Figure 6: Solid/CO₂ interfacial tension as a function of temperature at 15 MPa for various
407 substrates.

408

409 Quartz/CO₂ interfacial tension increased from 21 mN/m to 27 mN/m when temperature 410 increased from 308 K to 343 K (Figure 6). Moreover, solid/CO₂ interfacial tension was highest 411 for quartz, and lowest for oil-wet mica at any pressure and temperature.

412 Mica/CO₂ interfacial tension also followed a similar trend. For water-wet mica, mica/CO₂ 413 interfacial tension increased from 11.5 mN/m to 24 mN/m when temperature increased from 414 308 K to 343 K, while for the same temperature interval, for oil-wet mica, mica/CO₂ interfacial 415 tension increased from ~ 0 mN/m to 5 mN/m. Moreover, oil-wet mica demonstrated the lowest 416 values of mica/CO₂ interfacial tension out of all cases at any pressure and temperature which 417 is again attributed to reduced number of polar sites on oil-wet mica surface.

418 Coal/CO₂ interfacial tension also decreased with temperature, (Figure 6). For instance, for low 419 rank coal, coal/CO₂ interfacial tension increased from 6 mN/m to \sim 9.5 mN/m when 420 temperature increased from 308 K to 343 K. Moreover, high rank coal had the lowest coal/CO₂ 421 interfacial tension at any temperature which is due to the lower concentration of polar surface groups on the high rank coal (see above and Figure 5). Moreover, we point out that higher coal/CO₂ interfacial tensions reduces CO₂-adsorption in coals (because CO₂-adsorption in coals also decreases with temperature, Bustin and Clarkson, 1998).

For all cases analysed, the increase in γ_{sc} with temperature is attributed to a decrease in cohesive 425 energy density of CO₂ with temperature (Barton, 1991) while the cohesive energy density of 426 the solid is expected to stay approximately constant with temperature (Kittel, 2005), which 427 leads to an increase in the difference of solid/CO₂ cohesive energies with temperature. 428 Consequently, the interactions between solid and CO_2 become less favourable, thus γ_{sc} 429 430 increases with temperature which promotes water-wetting of the surface. Moreover, reduction in CO₂ density with temperature leads to fewer van der Waals interactions which leads to an 431 432 increase in γ_{sc} with temperature.

- 433
- 434

435 3.3. Effect of temperature on solid/water interfacial tension

436

Solid/water interfacial tension is directly computed from the regression fit of the experimental 437 438 and model data and the results are shown in Table 4. For all cases, the solid/water interfacial tension decreased with increasing temperature except for quartz, for which it increased with 439 temperature. However, the absolute quartz γ_{sw} was very low and so were the changes in γ_{sw} . 440 When temperature increased from 308 K-343 K the quartz/water interfacial tension increased 441 from 0.058 mN/m to 0.952 mN/m. Recently, Shojai Kaveh et al. (2016) calculated interfacial 442 energy of shale/water systems and found that the values of shale/water interfacial tension was 443 also quite low (0.58 mN/m at 318 K), consistent with our results. The increase in quartz/water 444 interfacial tension with temperature is due to desorption of water molecules from the surface 445 (Janczuk and Zdziennicka, 1994). 446

For mica, at any temperature, the solid/water interfacial tensions were notably higher for oil-447 wet mica and lower for water-wet mica (e.g. $\gamma_{sw} = \sim 25$ mN/m for oil-wet mica (21% carbon 448 449 coverage, Arif et al., 2016b), and ~2 mN/m for water-wet mica (0% carbon coverage, unaltered surface, Arif et al., 2016b) at the same temperature, 323 K and pressure, 10 MPa). The larger 450 solid/liquid interfacial tension values for the more hydrophobic surface is consistent with 451 Dickson et al. (2006) who reported that the glass surface with higher silanol coverage had lower 452 solid/liquid interfacial tensions (note: a higher concentration of surface silanol groups creates 453 a more hydrophilic surface (Chen et al., 2015; McCaughan et al., 2013). Specifically, the 454 calculated γ_{sw} values for the 37% SiOH and 12% SiOH surfaces were 13.2 and 29.2 mN/m 455

456 respectively (Dickson et al., 2006), quite comparable to our results for the oil-wet mica 457 surfaces. The results are also consistent with Ameri et al. (2013) who reported that γ_{sw} was 458 significantly lower for water-wet sandstones ($\gamma_{sw} = 2.88 \text{ mN/m}$) as compared to oil-wet 459 sandstones ($\gamma_{sw} = 27.22 \text{ mN/m}$).

Coal surfaces also exhibited similar trends, i.e. γ_{sw} decreased with increasing temperature, and 460 the values of coal/water interfacial tension were higher for high rank coal and lower for low 461 rank coal (e.g. at 323 K, γ_{sw} was 19.23 mN/m for high rank coal, 13.87 mN/m for medium 462 rank coal and 10.38 mN/m for low rank coals, Table 4). This effect is attributed to an abundance 463 464 of hydrophilic sites (OH functional groups, typically silanol) in low rank coal and absence of hydrophilic sites in high rank coal. Essentially, presence of silanol sites leads to favourable 465 interactions between coal surface and water, thereby resulting in a reduction of γ_{sw} for low 466 467 rank coal.

Further, we point out that the proposed methodology assumes that γ_{sw} is constant versus pressure. In reality, however, the solid/water interactions are expected to change due to increase in solubility of CO₂ in water with pressure (El-Maghraby et al. 2012), and associated lower pH values (Schaeff and McGrail, 2004), which leads to increased protonation of the silanol surface groups (Brown et al., 2012).

473

474 *3.4. Effect of salinity on solid/CO₂ interfacial tension*

475

We compared solid/CO₂ interfacial tension (as function of pressure and temperature) for 20 476 477 wt% NaCl brine in mica/CO₂ systems and compared it with that of mica/water systems. The results showed that the mica/CO₂ interfacial tension for DI-water at a particular pressure and 478 479 temperature is quite similar to the mica/CO₂ interfacial tension for 20 wt % NaCl brine case (Figure 7). For instance, at 323 K, and 10 MPa, the mica/CO₂ interfacial tensions were 22.4 480 mN/m for liquid comprising of 20 wt% NaCl brine, and 24.8 mN/m for DI-water, thus a 481 482 difference of only 2.4 mN/m (Figure 7). Moreover, at the same temperature but at 15 MPa, mica/CO₂ interfacial tension for two different liquids (DI water and 20 wt % NaCl brine) is the 483 484 same (~18.5 mN/m, Figure 7). In summary, the R^2 -values for the correlation between mica/CO₂ interfacial tensions for the two liquids were 0.997, 0.998 and 0.985 at 308 K, 323 K and 343 485 K, respectively, indicating a strong correlation. This implies that solid/CO₂ interfacial tension 486 is not much changed by altering the type of the liquid in the same system. We point out that 487

this result verifies this methodology and our predictions (of mineral/CO₂ and mineral/water
interfacial tensions) to some extent.

491

492 Figure 7: Mica/CO₂ interfacial tension as a function of pressure and temperature for two
493 different liquids (DI-water and 20 wt% NaCl brine)

- 494
- 495

496 *3.5. Effect of salinity on solid/water interfacial tension*

497 To analyse the effect of salinity on the solid-water interfacial energies, we compared γ_{sw} results for DI water (see above) with that of 20 wt% NaCl brine. The β values from the non-linear 498 499 regression fit of cosine of the equilibrium contact angle data were 0.000267, 0.000284, and 0.00034 at 308 K, 323 K and 343 K, respectively. The Pearson coefficients were 0.846, 0.921 500 501 and 0.941, indicating good fits. The mica/brine (20wt% NaCl) interfacial tensions were 10.5 502 mN/m, 6.27 mN/m and 4.4 mN/m at 308 K, 323 K and 343 K, respectively implying that 503 mica/brine interfacial tension decreased with temperature, consistent with the solid/DI-water system (discussed above). However, at any given temperature, mica/brine interfacial tension 504 was larger than the mica/water interfacial tension. For instance, at 308 K, mica/brine (20 wt % 505 NaCl brine) interfacial tension was 10.5 mN/m in comparison to 2.1 mN/m for mica/DI water 506 507 at the same temperature (308 K). This result is consistent with Ameri et al. (2013) who found that when salinity increased from 0wt% NaCl to 3.5 wt% NaCl, γ_{sw} increased slightly. 508 However, Shoaji Kaveh et al. (2016) found a slight reduction in γ_{sw} with salinity. The increase 509

in solid/brine interfacial tension with salinity is related to the intermolecular forces and the zeta 510 potential which arises due to charged species on the surface. As salinity increases, more counter 511 ions are available to reduce the net charge and thus reduces the polarity of the surface, which 512 again leads to a reduction in water-surface van der Waals forces. Lower van der Waals 513 514 interactions result in higher interfacial tensions. Moreover, Roshan et al. (2016), recently introduced a model to describe the physical processes for wettability variation as a function of 515 salinity in which they related electric potential at the mineral surface to the contact angle. Their 516 results showed that as salinity increased the surface became more hydrophobic due to a 517 518 decrease in the dielectric constant of liquid with salinity.

- 519
- 520

521 3.6. Wettability dependence on surface energies

522 In order to evaluate the net effect of these interfacial tensions on contact angle, the right hand side (RHS) of Young's equation (the value of $\cos\theta$) was calculated for all cases analysed using 523 the computed values of γ_{sc} , γ_{sw} and experimental values of γ_{cw} . For quartz, $\cos\theta$ decreases 524 with pressure and temperature because quartz/CO₂ interfacial tension decreases with pressure 525 526 and increases with temperature, and the quartz/water interfacial tension increases with temperature. Thus the net effect of the three interfacial tension results in decrease in a $\cos\theta$ 527 with pressure and temperature and consequently θ increases with pressure and temperature for 528 quartz (consistent with experimental data, Table 1). For all other cases (mica and coals), $\cos\theta$ 529 decreases with pressure and increases with temperature because solid/CO₂ interfacial tension 530 decreases with pressure and increases with temperature and the solid/water interfacial tension 531 also decreases with temperature (for mica and coals), thus θ increases with pressure and 532 533 decreases with temperature (consistent with experimental data, Table 1).

Moreover, for water-wet mica, $\cos\theta$ stays positive for all tested pressures and temperatures, 534 because the mica surface remains either strongly water-wet or weakly water-wet (contact angle 535 $< 90^{\circ}$, cp. Iglauer et al., 2015a, Table 1); however for the oil-wet mica surface, $\cos\theta$ reaches 536 537 negative values for a wide range of tested pressures and temperatures which indicates CO₂-wet conditions exhibited by this surface (contact angle > 90° , Iglauer et al., 2015a, Table 1). 538 Moreover, θ increased more rapidly for oil-wet mica (as compared to water-wet mica), because 539 of the low CO₂-solid interfacial energy, which promotes de-wetting of the surface by water 540 (Dickson et al., 2006). Because high energy fluids (e.g. water), do not tend to spread on low-541 energy surfaces, the presence of a low energy CO_2 layer will cause the solid/water contact angle 542 to increase above 90° to increase the interfacial area between water and CO₂. Furthermore, for 543

544 mica and coals, θ decreases with temperature because the net effect of solid/fluid and fluid/fluid 545 interfacial tensions gives rise to an increase in the cos θ with temperature.

In summary, the increase in contact angle with pressure is due to a reduction in the difference of solid and CO₂ cohesive energies with pressure which leads to more favourable interactions between solid and CO₂. Consequently, γ_{sc} decreases with pressure and thus promotes dewetting of the surface (i.e. higher water contact angle).

- 550
- 551

552 **4. Implications**

553

554 We predicted solid/CO₂ and solid/water interfacial tensions for various rock forming minerals including quartz, mica and coals for a wide range of pressure and temperature conditions. The 555 556 results imply that the surfaces which are more non-wetting to water exhibit lower values of solid/CO₂ interfacial tension than the surfaces which are more water-wet (e.g. 18 mN/m for 557 558 water-wet mica in comparison to ~3mN/m for oil-wet mica at 15 MPa and 323 K). Moreover, the less water-wet surfaces have higher solid/water interfacial tensions than the water-wet 559 surfaces (24.8 mN/m for oil-wet mica and ~2 mN/m for water-wet mica, Figure 5). 560 Computations of these surface energies in conjunction with Young Laplace's equation enables 561 us to predict contact angles. As an example, θ values are predicted using Young's equation 562 (Equation 1) using the calculated values of the interfacial tensions and the results are shown at 563 343 K for all samples analysed (Figure 8). The results show a good match between 564 experimental contact angle and the predicted contact angles. This implies that the methodology 565 considered in this work to compute surface energies is correct and that the predicted solid-fluid 566 interfacial tensions correctly reproduced experimental contact angle data. 567

570 Figure 8: Experimental and predicted water contact angles as a function of pressure at 343 K571 for all substrates.

572

In terms of a broader interpretation, the solid/fluid interfacial tensions reported in this study 573 574 are useful for relating CO₂ storage potential to rock/fluid interfacial tension. For instance, water-wet rocks are better for CO₂ storage (Iglauer et al., 2011) because of higher solid/CO₂ 575 576 (solid = rock in this case) interfacial tension and oil-wet rocks exhibit poor CO_2 -storage potential in terms of structural and residual trapping (Iglauer et al., 2016) due to lower 577 578 solid/ CO_2 interfacial tension (e.g. pure quartz have higher solid/ CO_2 interfacial tension than 37% SiOH quartz, section 3.1). Physically, due to higher solid/CO₂ interfacial tension for water-579 580 wet rocks, CO₂ tends to stick to the rock (rock offers more resistance to the flow/leakage of buoyant CO_2) and CO_2 is thus rendered immobile within the pores (leading to higher 581 capillary/residual trapping in water-wet rocks; Iglauer et al., 2011). However, the detailed 582 investigation of trapping potential must also account for solubility of CO₂ in the oil phase, 583 sealing tendency of the caprock, and the pore geometry etc. to device suitable field scale storage 584 585 plans.

- 586
- 587
- 588 5. Conclusions

We used Neumann's equation of state (Neumann et al., 1974) to compute the interfacial 589 590 tensions of mineral/ CO_2 and mineral/water systems for important rock forming minerals (quartz, water-wet mica and oil-wet mica) and for coals of high to low rank as a function of 591 pressure, temperature and salinity. It was found that mineral/CO₂ interfacial tension decreased 592 with pressure (consistent with Ameri et al. 2013 and Dickson et al. 2006), which is due to 593 increased CO₂-mineral intermolecular interactions (e.g. Iglauer et al., 2012, Al-Yaseri et al. 594 595 2016b). It was also found that mineral/CO₂ interfacial tensions increased with temperature which is due to an increase in the difference of solid/CO₂ cohesive energies with temperature 596 which thus leads to less favourable interactions between solid and CO₂ (thus higher γ_{sc}). 597 Moreover, the more non-wetting to water the surface was, the lower were the mineral/CO₂ 598 599 interfacial tensions and the higher were the mineral/water interfacial tensions, e.g. oil-wet mica showed a lower mica/CO₂ interfacial tension than water-wet mica at the same pressure and 600 601 temperature. Similarly, high rank coal had a lower coal/CO₂ interfacial tension than the low rank coal, because of greater hydrophobicity of high rank coal. This behaviour is attributed to 602 603 fewer hydrophilic sites in high rank coal as opposed to abundance of hydrophilic sites in low rank coal (confirmed by IR spectroscopy). For all systems, solid/water interfacial tension 604 605 decreased with temperature, except for quartz, where the quartz/water interfacial tension increased with temperature. The effect of salinity was also analysed and it was found that 606 solid/water interfacial tension increased with salinity. Moreover, contact angles were predicted 607 by Young's equation using the computed values of interfacial energies, and the predicted θ 608 values were in good agreement with the experimental θ values. 609

We conclude that the Neumann equation of state is adequate to quantify the solid surface energy and that the results demonstrated significant influence of surface energy in controlling the wettability dependence on pressure, temperature and salinity.

- 613
- 614

615 **References**

616

Al-Yaseri, A. Z., Lebedev, M., Barifcani, A., & Iglauer, S. (2016a). Receding and
advancing (CO₂+ brine+ quartz) contact angles as a function of pressure, temperature,
surface roughness, salt type and salinity. The Journal of Chemical Thermodynamics, 93,
416-423.

- Al-Yaseri, A. Z., Roshan, H., Lebedev, M., Barifcani, A., & Iglauer, S. (2016b).
 Dependence of quartz wettability on fluid density. Geophysical Research Letters, 43(8),
 3771-3776.
- Ameri, A., Kaveh, N. S., Rudolph, E. S. J., Wolf, K. H., Farajzadeh, R., & Bruining, J.
- 625 (2013). Investigation on Interfacial Interactions among Crude Oil–Brine–Sandstone Rock–
- 626 CO_2 by Contact Angle Measurements. Energy & Fuels, 27(2), 1015-1025.
- Arif, M., Al-Yaseri, A. Z., Barifcani, A., Lebedev, M., & Iglauer, S. (2016a). Impact of
 pressure and temperature on CO₂-brine-mica contact angles and CO₂-brine interfacial
 tension: Implications for carbon geo-sequestration. Journal of Colloid and Interface
 Science, 462, 208-215.
- Arif, M., Barifcani, A., Lebedev, M., & Iglauer, S. (2016b). Structural trapping capacity of
 oil-wet caprock as a function of pressure, temperature and salinity. International Journal of
 Greenhouse Gas Control, 50, 112-120.
- Arif, M., Barifcani, A., Lebedev, M., & Iglauer, S. (2016c). CO₂-wettability of low to high
 rank coal seams: Implications for carbon sequestration and enhanced methane recovery.
 Fuel, 181, 680-689.
- Barton, A. F. (1991). CRC handbook of solubility parameters and other cohesionparameters. CRC press.
- Blunt, M., Fayers, F. J., & Orr, F. M. (1993). Carbon dioxide in enhanced oil recovery.
 Energy Conversion and Management, 34(9), 1197-1204.
- Broseta, D., Tonnet, N., & Shah, V. (2012). Are rocks still water-wet in the presence of
 dense CO2 or H2S? Geofluids, 12(4), 280-294.
- Brown, M. A., Huthwelker, T., Beloqui Redondo, A., Janousch, M., Faubel, M., Arrell, C.
 A., ... & van Bokhoven, J. A. (2012). Changes in the silanol protonation state measured in
 situ at the silica–aqueous interface. The Journal of Physical Chemistry Letters, 3(2), 231235.
- Bustin, R. M., & Clarkson, C. R. (1998). Geological controls on coalbed methane reservoir
 capacity and gas content. International Journal of Coal Geology, 38(1), 3-26.
- Chen, C., Wan, J., Li, W., & Song, Y. (2015). Water contact angles on quartz surfaces
 under supercritical CO 2 sequestration conditions: Experimental and molecular dynamics
 simulation studies. International Journal of Greenhouse Gas Control, 42, 655-665.

- Chiquet, P., Broseta, D., & Thibeau, S. (2007). Wettability alteration of caprock minerals
 by carbon dioxide. Geofluids, 7(2), 112-122.
- Dickson, J. L., Gupta, G., Horozov, T. S., Binks, B. P., & Johnston, K. P. (2006). Wetting
- phenomena at the CO_2 /water/glass interface. Langmuir, 22(5), 2161-2170.
- El-Maghraby, R. M., Pentland, C. H., Iglauer, S., & Blunt, M. J. (2012). A fast method to
 equilibrate carbon dioxide with brine at high pressure and elevated temperature including
 solubility measurements. The Journal of Supercritical Fluids, 62, 55-59.
- Fowkes, F. M. (1964). Attractive forces at interfaces. Industrial & Engineering Chemistry,
 56(12), 40-52.
- Fox, H. W., & Zisman, W. A. (1952). The spreading of liquids on low-energy surfaces. III.
 Hydrocarbon surfaces. Journal of colloid science, 7(4), 428-442.
- Iglauer, S., Paluszny, A., Pentland, C. H., & Blunt, M. J. (2011). Residual CO2 imaged
 with X-ray micro-tomography. Geophysical Research Letters, 38(21).
- Iglauer, S., Mathew, M. S., & Bresme, F. (2012). Molecular dynamics computations of brine– CO_2 interfacial tensions and brine– CO_2 –quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration. Journal of colloid and interface science, 386(1), 405-414.
- Iglauer, S., Paluszny, A., & Blunt, M. J. (2013). Simultaneous oil recovery and residual gas
 storage: A pore-level analysis using in situ X-ray micro tomography. Fuel, 103, 905-914.
- 671 Iglauer, S., Pentland, C. H., & Busch, A. (2015a). CO₂ wettability of seal and reservoir
- rocks and the implications for carbon geo-sequestration. Water Resources Research, 51(1),
 729-774.
- Iglauer, S., Al-Yaseri, A. Z., Rezaee, R., & Lebedev, M. (2015b). CO2 wettability of
 caprocks: Implications for structural storage capacity and containment security.
 Geophysical Research Letters, 42(21), 9279-9284.
- Iglauer, S., Rahman, T., Sarmadivaleh, M., Al-Hinai, A., Fernø, M. A., & Lebedev, M.
 (2016). Influence of Wettability on Residual Gas Trapping and Enhanced Oil Recovery in
 Three-Phase Flow: A Pore-Scale Analysis by Use of Microcomputed Tomography. SPE
- IPCC, Working Group III of the Intergovernmental Panel on Climate Change, vol. 1, 2005,p. 443.

Journal.

- Janczuk, B., & Zdziennicka, A. (1994). A study on the components of surface free energy
 of quartz from contact angle measurements. Journal of materials science, 29(13), 35593564.
- Javanbakht, G., Sedghi, M., Welch, W., & Goual, L. (2015). Molecular Dynamics

687 Simulations of CO2/Water/Quartz Interfacial Properties: Impact of CO2 Dissolution in

688 Water. Langmuir, 31(21), 5812-5819.

- 689 Kittel, C. (2005). Introduction to solid state physics. Wiley.
- Krevor, S., Pini, R., Zuo, L., & Benson, S. M. (2012). Relative permeability and trapping
 of CO2 and water in sandstone rocks at reservoir conditions. Water Resources Research,
 48(2).
- 693 Krevor, S., Blunt, M. J., Benson, S. M., Pentland, C. H., Reynolds, C., Al-Menhali, A., &
- Niu, B. (2015). Capillary trapping for geologic carbon dioxide storage–From pore scale
 physics to field scale implications. International Journal of Greenhouse Gas Control, 40,
 221-237.
- Kwok, D. Y., & Neumann, A. W. (1999). Contact angle measurement and contact angle
 interpretation. Advances in colloid and interface science, 81(3), 167-249.
- Kwok, D. Y., & Neumann, A. W. (2000). Contact angle interpretation in terms of solid
 surface tension. Colloids and Surfaces A: Physicochemical and Engineering Aspects,
 161(1), 31-48.
- 702 Lackner, K. S. (2003). A guide to CO2 sequestration. Science, 300(5626), 1677.
- Li, D., & Neumann, A. W. (1992). Equation of state for interfacial tensions of solid-liquid
 systems. Advances in Colloid and Interface Science, 39, 299-345.
- Li, X., Boek, E., Maitland, G. C., & Trusler, J. M. (2012a). Interfacial Tension of (Brines+
- CO₂) :(0.864 NaCl+ 0.136 KCl) at Temperatures between (298 and 448) K, Pressures
 between (2 and 50) MPa, and Total Molalities of (1 to 5) mol· kg-1. Journal of Chemical
- 708 & Engineering Data, 57(4), 1078-1088.
- Liu, S., Yang, X., & Qin, Y. (2010). Molecular dynamics simulation of wetting behavior
 at CO2/water/solid interfaces. Chinese Science Bulletin, 55(21), 2252-2257.
- Lun, Z., Fan, H., Wang, H., Luo, M., Pan, W., & Wang, R. (2012). Interfacial Tensions
 between Reservoir Brine and CO₂ at High Pressures for Different Salinity. Energy & Fuels,
 26(6), 3958-3962.
- Manoj, B., Kunjomana, A. G., & Chandrasekharan, K. A. (2009). Chemical leaching of
 low rank coal and its characterization using SEM/EDAX and FTIR. Journal of Minerals
- and Materials Characterization and Engineering, 8(10), 821.

- McCaughan, J., Iglauer, S., & Bresme, F. (2013). Molecular dynamics simulation of
 water/CO 2-quartz interfacial properties: application to subsurface gas injection. Energy
 Procedia, 37, 5387-5402.
- Neumann, A. W., Good, R. J., Hope, C. J., & Sejpal, M. (1974). An equation-of-state
 approach to determine surface tensions of low-energy solids from contact angles. Journal
 of Colloid and Interface Science, 49(2), 291-304.
- Owens, D. K., & Wendt, R. C. (1969). Estimation of the surface free energy of polymers.
 Journal of applied polymer science, 13(8), 1741-1747.
- Roshan, H., Al-Yaseri, A. Z., Sarmadivaleh, M., & Iglauer, S. (2016). On wettability of
 shale rocks. Journal of colloid and interface science, 475, 104-111.
- 727 Saraji, S., Piri, M., & Goual, L. (2014). The effects of SO2 contamination, brine salinity,
- 728 pressure, and temperature on dynamic contact angles and interfacial tension of supercritical
- 729 CO2/brine/quartz systems. International Journal of Greenhouse Gas Control, 28, 147-155.
- Sarmadivaleh, M., Al-Yaseri, A. Z., & Iglauer, S. (2015). Influence of temperature and
 pressure on quartz–water–CO₂ contact angle and CO₂–water interfacial tension. Journal of
 colloid and interface science, 441, 59-64.
- Sarwar, A., Khan, M. N., & Azhar, K. F. (2012). Coal chemistry and morphology of thar
 reserves, Pakistan. Journal of Minerals and Materials Characterization and Engineering,
 11(08), 817.
- Schaeff, H. T., & McGrail, B. P. (2004). Direct measurements of pH in H2O-CO2 brine
 mixtures to supercritical conditions. In Proceedings of the 7th International Conference on
 Greenhouse Gas Control Technologies (GHGT-7).
- Shojai Kaveh, N. S., Wolf, K. H., Ashrafizadeh, S. N., & Rudolph, E. S. J. (2012). Effect
 of coal petrology and pressure on wetting properties of wet coal for CO2 and flue gas
 storage. International Journal of Greenhouse Gas Control, 11, S91-S101.
- Shojai Kaveh, N., Barnhoorn, A., & Wolf, K. H. (2016). Wettability evaluation of silty
 shale caprocks for CO₂ storage. International Journal of Greenhouse Gas Control, 49, 425435.
- Socrates, G. (2004). Infrared and Raman characteristic group frequencies: tables and charts.
 John Wiley & Sons.
- Staszczuk, P. (1989). On the determination of surface free energy of coal by means of the
 derivatograph. Fuel science & technology international, 7(1), 89-101.

- Siemons, N., Bruining, H., Castelijns, H., & Wolf, K. H. (2006). Pressure dependence of
 the contact angle in a CO2–H2O–coal system. Journal of Colloid and Interface Science,
 297(2), 755-761.
- Tadmor, R. (2004). Line energy and the relation between advancing, receding, and young
 contact angles. Langmuir, 20(18), 7659-7664.
- Tripp, C. P., & Combes, J. R. (1998). Chemical modification of metal oxide surfaces in
 supercritical CO2: The interaction of supercritical CO2 with the adsorbed water layer and
 the surface hydroxyl groups of a silica surface. Langmuir, 14(26), 7348-7352.
- Van Oss, C. J., Good, R. J., & Chaudhury, M. K. (1986). The role of van der Waals forces
 and hydrogen bonds in "hydrophobic interactions" between biopolymers and low energy
 surfaces. Journal of colloid and Interface Science, 111(2), 378-390.
- Wu, S. (1971, January). Calculation of interfacial tension in polymer systems. In Journal
 of Polymer Science Part C: Polymer Symposia (Vol. 34, No. 1, pp. 19-30). Wiley
 Subscription Services, Inc., A Wiley Company.
- Wu, D., Liu, G., & Sun, R. (2014). Investigation on structural and thermodynamic
 characteristics of perhydrous bituminous coal by fourier transform infrared spectroscopy
 and thermogravimetry/mass spectrometry. Energy & Fuels, 28(5), 3024-3035.
- Zenkiewicz, M. (2007). Methods for the calculation of surface free energy of solids. Journal
- of Achievements in Materials and Manufacturing Engineering, 24(1), 137-145.