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Abstract

Electronic medical record (EMR) offers promises for novel analytics. However,

manual feature engineering from EMR is labor intensive because EMR is com-

plex - it contains temporal, mixed-type and multimodal data packed in irregular

episodes. We present a computational framework to harness EMR with mini-

mal human supervision via restricted Boltzmann machine (RBM). The frame-

work derives a new representation of medical objects by embedding them in a

low-dimensional vector space. This new representation facilitates algebraic and

statistical manipulations such as projection onto 2D plane (thereby offering in-

tuitive visualization), object grouping (hence enabling automated phenotyping),

and risk stratification. To enhance model interpretability, we introduced two

constraints into model parameters: (a) nonnegative coefficients, and (b) struc-

tural smoothness. These result in a novel model called eNRBM (EMR-driven

nonnegative RBM). We demonstrate the capability of the eNRBM on a co-

hort of 7,578 mental health patients under suicide risk assessment. The derived

representation not only shows clinically meaningful feature grouping but also

facilitates short-term risk stratification. The F -scores, 0.21 for moderate-risk

and 0.36 for high-risk, are significantly higher than those obtained by clinicians
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and competitive with the results obtained by support vector machines.

Keywords: Electronic medical records, vector representation, medical objects

embedding, feature grouping, suicide risk stratification.

1. Introduction

Modern electronic medical records (EMRs) have changed the landscape of

clinical data collecting and sharing, facilitating efficient care delivery [1]. The

data in EMR offers insights into key questions: What are the comorbidity pat-

terns? [2] What are the relationships between diseases and interventions under5

multimorbidity? What is the risk of adverse events for this patient? [3] How-

ever, it remains an open problem in formulating efficient mining techniques to

discover these answers [4]. This is partly due to the complexity of the EMR data.

The EMR contains a mixture of static, temporal, type-specific data packed in

irregular episodes. Huge effort is required for extracting meaningful features [4]10

and developing prognostic models from EMR [5].

We hypothesize that the answers lie in unsupervised learning of EMR repre-

sentations [4, 6]. Unsupervised learning lets clinical patterns emerge through the

learning process. We approach the problem by utilizing a recent advancement

in deep learning [7, 8]. In particular, we adopt restricted Boltzmann machines15

(RBM) [9] as a generative model of EMR. RBM has a bipartite structure, in

which an input layer is connected to a representation layer. The input layer con-

sists of observed clinical variables over multiple periods of time. The representa-

tion layer is composed of unobserved binary factors, which act as the underlying

aspects of illness and healthcare processes. These aspects jointly generate clin-20

ical observables. The RBM transforms raw, high-dimensional and mixed-type

EMR data into a homogeneous representation. Clinical objects such as disease,

procedure and health trajectory are embedded in the same vector space. The
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Figure 1: eNRBM for EMR modeling, visualization and prognosis. The data layer represents
raw information extracted from EMR; the representation layer exhibits higher-level semantics;
and the task layer makes use of the derived representation for tasks of interest. The connections
between the data and representation layers are undirected, letting patterns emerge through
information passing in both directions. Filled nodes represent observed variables, empty
nodes the hidden. Boxes represent groups of variables that share the same property (e.g.,
time interval). Event structures and progression (represented as thin dashed lines and curves)
are implicitly captured through regularization in the learning process (Sec. 3.2)

embedding facilitates visualization, manipulation and risk prognosis. See Fig. 1

for a graphical illustration of the RBM-based framework.25

The standard RBM, however, suffers from two key limitations that hinder

its usability in the clinical context. First, the embedding coefficients can be

either positive or negative, making interpretation of group membership difficult.

Second, the RBM assumes unstructured inputs but ignores explicit structures

inherent in the EMR, leading to incoherent grouping.30

We modify the RBM to overcome these limitations. First, the embedding

coefficients are constrained to be nonnegative. This leads to model sparsity
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where only a few embedding coefficients are non-zeros. Each latent factor corre-

sponds to a small group of features which potentially play the role of a derived

phenotype. Second, model learning is guided by clinical structures derived from35

the disease taxonomy, the procedure hierarchy and the temporal progression of

illness and care. These two modifications result in a novel model called EMR-

driven nonnegative RBM (eNRBM).

We validate the proposed eNRBM on a large cohort of 7,578 mental health

patients in several tasks, including disease/procedure embedding and visual-40

ization, comorbidity grouping, and short-term suicidal risk stratification. We

demonstrate that eNRBM-based embedding leads to meaningful grouping of

diseases and interventions. The merit of the proposed method is highlighted

by comparing the predictive performance on risk stratification against support

vector machines.45

The rest of the paper is organized as follows. Sec. 2 introduces restricted

Boltzmann machines. Sec. 3 presents the main contributions of the paper: (a)

an introduction of the RBM as a generative model of the EMR; (b) introduc-

ing medical object embedding; (c) introducing nonnegative coefficients into the

RBM leading to coherent feature grouping and more compact representations;50

and (d) adding structural constraints into the RBM by exploiting inherent struc-

tures in the EMR. This is followed by an experimental section which demon-

strates the capacity of the proposed methods on a large cohort of mental health

patients. Finally, Sec. 5 discusses findings, limitations and future work.

2. Preliminaries55

Restricted Boltzmann machine (RBM) is a type of neural networks. As il-

lustrated in Fig. 2, a RBM is a bipartite graph consisting of: (i) an input layer

of visible units that encode the observables (e.g., disease occurrences), (ii) a la-
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tent layer of hidden units, and (iii) weighted connections between every visible

unit to hidden units [8, 9]. The RBM differs from standard neural networks in60

important ways. First, it is stochastic rather than deterministic: Variables are

randomly distributed according to a joint distribution specified by the model.

Second, the network is undirected allowing information to propagate in both

directions (feedforward and feedback modes). And finally, learning is unsuper-

vised without labels.65

Figure 2: Graphical illustration of a RBM representing connections between input observations
given through the N visible units (shaded) with K hidden units (clear). The connections are
undirected and the weights represent the strength of connections.

Let v denote the set of visible variables: v = (v1, v2, ..., vN ) ∈ {0, 1}N and

h the set of hidden factors: h = (h1, h2, ..., hK) ∈ {0, 1}K . Let W ∈ RN×K

be the weight matrix connecting the hidden and visible units. The connection

weight Wnk measures the association strength between the visible unit i and

the hidden unit k, that is the tendency of these two units being co-active. The70

interaction between variables defines an energy function:

E (v,h) = −
(
a>v + b>h+ v>Wh

)
(1)

where a, b are the bias coefficients of hidden and visible units, respectively. The

model admits the Boltzmann distribution:

P (v,h) ∝ e−E(v,h) (2)
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The RBM is a generative model of data whose density is P (v) =
∑

h P (v,h).

The parameters are often estimated by maximizing the data likelihood P (v).75

For example, an update rule for mapping weights is

Wik ←Wik + η (〈viρk〉P̃ − 〈vihk〉P ) (3)

where ρk represents P (hk = 1 | v), P̃ denotes empirical distribution of the

visible data, 〈·〉P denotes expectation with respect to distribution P , and η is

learning rate. The data expectation 〈viρk〉P̃ is easy to evaluate. The model

expectation 〈vihk〉P is computationally difficult but can be efficiently approxi-80

mated by short Markov chains starting from the observations v in a procedure

known as “contrastive divergence” [10].

3. eNRBM: A framework for EMR modeling

3.1. High-level representation of abstracted trajectories

The EMR data broadly consist of two types: static information (such as gen-85

der, ethnic background) and healthcare trajectory. The trajectory is recorded

as a series of time-stamped events (such as admission, diagnosis or interven-

tion)1. We are mainly interested in discrete events and assume that continuous

and real-valued data such as EEG signals and blood sugar readings have been

discretized through existing methods such as temporal abstraction [11]. Static90

elements naturally form a vector. The entire trajectory is divided into disjoint

intervals of predefined lengths. Events occurring within each interval are aggre-

gated and arranged as a sparse vector. All intervals form a temporal matrix, as

illustrated in the data layer of Fig. 1.

1Demographic factors such as age, location and income do change over time, but they
might be considered as static at the present time if their interaction with clinical variables are
not obvious.
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3.1.1. RBM-based modeling95

In RBM-based modeling of EMRs, as illustrated in Fig. 1, all data elements

share the same hidden representation layer. The hidden layer is utilized in the

tasks of interest (e.g., visualization of patients, diagnosis of a present disease, or

prognosis of future risk). Thus, the hidden layer is a mediator between history

(recorded illness), present (diagnosis) and future (prognosis). It “explains” the100

data through:

P (v1i | h) = σ

(
ai +

∑
k

Wikhk

)
(4)

where v1i represents vi = 1, and σ(x) = [1 + e−x]
−1

. As all hidden units jointly

represent the data, the representation is said to be fully distributed. This makes

the representation highly compact: The model can be considered as a giant

mixture of 2K components with only KN +K +N parameters.105

This mixture view is attractive because healthcare is a complex process, and

the recorded events are the result of interaction between multiple processes (e.g.,

the underlying illness, comorbidity, diagnostic decision and intervention), each

of which can be captured by one or more hidden units.

3.1.2. Object embedding110

The RBM embeds medical objects (e.g., diagnosis codes) and health trajec-

tories into a vector space. Each object i is represented by a row vector W i•

in RK . The vector embedding facilitates algebraic manipulations such as simi-

larity calculation and retrieval, translation and rotation, and 2D projection for

visualization. See Fig. 4 for an example of diseases embedded in 2D. An entire115

health trajectory can also be represented in the same space through probabilistic

projection:

ρk = P (hk = 1 | v) = σ

(
bk +

∑
i

Wikvi

)
(5)
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where σ (x) is the sigmoid function defined in Eq. (4). The posterior vector

ρ = (ρ1, ρ2, ..., ρK) represents the entire patient trajectory. This can then be

used for classification and prognosis (see Sec. 4.5 for a demonstration).120

For a typical EMR, a practical issue arises since the input features are not

binary but counts. We employ a simple solution: features are normalized into

the range [0, 1] and treated as empirical probability. A more theoretical draw-

back is that the RBM is not effective in organizing features, and does not takes

the inherent structures of the EMR into account. In what follows, we show how125

to modify RBM to tackle these problems.

3.2. Structure discovery

This subsection presents modifications to RBMs for promoting the grouping

of features and enhancing interpretability. We introduce two constraints into

the parameter structure: nonnegative weights and EMR-driven smoothness, re-130

sulting in a novel model called EMR-driven nonnegative RBM (eNRBM).

3.2.1. Enforcing nonnegativity

The first modification is to constrain the connection weights {Wik} to be

nonnegative. To enforce nonnegativity, we augmented the data log-likelihood

logP (v) with a barrier function B (Wik) = W 2
ik if Wik < 0 and 0 otherwise.135

Minimizing the augmented log-likelihood would drive negative weights toward

zeros.

This leads to several interesting properties. First, the mapping matrix W

is sparse, that is, only few elements are non-zeros. Second, hidden factors

must “compete” to generate data, and thus creating an “explaining away” effect140

(where only a few latent factors are plausible explanation of the data). The

result is a parts-based representation where each hidden unit is responsible to

explain a part of the EMR [12].
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The “explaining away” effect also leaves some hidden units unused (with

near-zero mapping weight vectorsW •k). Thus it offers a natural way to estimate145

the intrinsic dimensionality of the data. A hidden unit k is declared “dead” if

‖W •k‖11N−1 ≤ τ for small τ . This capacity is not seen in standard RBMs.

3.2.2. Promoting structural smoothness

The other modification is based on the inherent structures in the EMR. Due

to the progressive nature of health, events often repeat over time. Thus, a150

disease occurring in consecutive time-intervals results in related features. Other

structures are in the hierarchical organization of diseases and interventions,

including the disease taxonomy ICD-102 and the procedure cube ACHI3. For

example, two diseases that share the same parent in the taxonomy, by definition,

possess similar characteristics.155

Here we introduce a novel regularization scheme to realize these structures.

Assume that the structures can be encoded into a feature graph G whose edges

indicate the relatedness between features. Let γij > 0 be the relation strength

between feature i and j, the relatedness can be realized by minimizing the

following smoothness objective:160

Ω(W ) =
∑
ij

γij
∑
k

(Wik −Wjk)
2

(6)

In model estimation, this objective is added to the data log-likelihood, in addi-

tion to the nonnegativity constraint mentioned above. The details are presented

in Appendix A.

In our implementation, we construct the feature graph as follows. An edge

is created if any of the following requirements are met:165

2http://apps.who.int/classifications/icd10
3https://www.aihw.gov.au/procedures-data-cubes/

9



• Two codes share the same two-character prefix. In particular, we use

the first two numbers or letters (using ICD-10 for diseases, and ACHI

for procedures). For example, F10 (mental disorder due to alcohol) and

F17 (mental disorder due to tobacco) are linked since they are children

of F1 (Mental disorders due to psychoactive substance use). However,170

F10 and F20 (schizophrenia) do not share a direct relation. We feel that

this balances well between the relatedness and specificity of the disease

classification.

• A code is recorded in consecutive intervals. For example, if F10 is recorded

in [0-3] months and [3-6] months prior to a specified date, this constitutes175

an edge. This is because two close events of the same type would behave

similarly.

4. Case study: Suicide risk stratification

4.1. Experiment setup

4.1.1. Data180

Our focus is on mental health patients who were under assessment for suicidal

risk. Mental health is a global burden that accounts for 14% of the world health

expenditure [13]. Among mental health problems, suicidal risk is devastating:

suicidal thoughts occur in 10% of the population in their lifetime [14], and

suicide attempts happen in 0.3% of the population each year [15]. The risk of185

suicide has led to mandatory assessments. However, suicide risk assessments

are often inaccurate leading to concern over practicality [16, 17].

We used a mental health cohort previously extracted from Barwon Health, a

large regional hospital in Australia [18, 19]. Data was collected between January

2009 and March 2012. The dataset contains 7, 578 patients (49.3% male, 48.7%190

under 35) who underwent collectively 17, 566 assessments. Any patient who

10



had at least one encounter with the hospital services and one risk assessment

was included. Most patients had one assessment (62%), but 3% of patients had

more than 10 assessments. Diagnoses are coded using ICD-10. More details are

described in [19].195

4.1.2. Risk stratification task

Each assessment was considered as a data point from which a prediction

would be made. The future outcomes within 3 months following an assessment

were categorized into three ordinal levels of risk according to [18]: no-risk,

moderate-risk (non-fatal consequence), and high-risk (fatal consequence). The200

risk classes were decided using a look-up table from the ICD-10 codes. If there

were more than one outcome classes, the highest risk class would be chosen.

There were 15, 272 (86,9%) no-risk outcomes, 1, 436 (8.2%) moderate-risk and

858 (4.9%) high-risk.

4.1.3. Implementation details205

Following [18, 19], we split the 48-month history prior to each risk assessment

into non-overlapping intervals: (0−3), (3−6), (6−12), (12−24) and (24−48).

The increasing interval widths toward the far past are based on the assumption

that events in the far past have less influence on current outcomes. Each inter-

val has the same set of time-stamped variables: 201 diagnoses, 657 procedures,210

31 Elixhauser comorbidities, diagnosis related groups (DRG), emergency atten-

dances and admissions. Infrequent diagnoses and procedures were grouped into

rare categories. Together with demographic variables (ages in 10-year intervals

and gender), there were totally 5, 267 input variables.

The posterior vector ρ (Eq. 5) was used as input for logistic regression clas-215

sifiers (LR) for predicting outcomes. For robustness, the LR was equipped with

elastic net regularization [20]. Besides the standard RBM, we employed support
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vector machines (SVM) which ran on normalized features and PCA-derived fea-

tures. We used the implementation of SVM in LIBSVM package [21]. As the

LR and the SVM are binary classifiers, the one-versus-all strategy was used for220

this 3-class problem.

For risk stratification, we used 10-fold validation. For each fold, parameters

were learnt on the training set and hyperparameters were turned for the best

performance on the validation set. Results were reported as an average across

folds. For the SVM, we used the linear kernel. For both the RBM and the225

eNRBM, the numbers of hidden units were set to K = 200. The learning

rate was scheduled as 0.1/
√
t at epoch t. This weight decay helped stabilize the

parameter updates towards the end of the learning process. The weights were

initialized randomly from N (0; 0.1), and the biases were from zeros. Parameters

were then updated after every “mini-batch” of 100 data points. Learning was230

terminated after 100 epochs. Hyperparameters of the eNRBM were empirically

tuned to obtain accurate data reconstruction and high group coherence, while

keeping the F-measure competitive.

4.2. Intrinsic dimensionality and group coherence

To estimate the number of hidden units, we examined the intrinsic di-235

mensionality of data, as described in Sec. 3.2.1. Fig. 3 plots the number

of used hidden units against the total number for an eNRBM estimated on

1, 005 diagnosis codes. The curves were averaged over a set of thresholds

(τ ∈ {0.01; 0.02; ...; 0.06}). The dimensionality stays around 250. To obtain

a compact representation, we used K = 200 hidden units in subsequent experi-240

ments.

To quantify the coherence of feature group, we borrowed the concept from

topic modeling [22]. For each group, we kept T member features with largest

mapping weights. Let D
(
v
(k)
i

)
and D

(
v
(k)
i , v

(k)
j

)
be occurrences of feature i
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Figure 3: Intrinsic dimensionality of the disease space (1, 005 variables).

and feature pair (i, j) under factor k, respectively. The group coherence was245

defined as:

C(k) =

T−1∑
i=1

T∑
j=i+1

log
1 +D

(
v
(k)
i , v

(k)
j

)
1 +D

(
v
(k)
i

) (7)

Intuitively, the coherence of a group is large if its members co-occur frequently,

relative to the popularity of each member. With T = 10, the eNRBM had a

coherence of −130.88, higher than that of the standard RBM (−173.3).

4.3. Disease and procedure embedding and clustering250

Here we validate the effectiveness of object embedding (Sec. 3.1.2). Two

eNRBMs were created, one using only diagnoses (called model DIAG), the

other using both diagnoses and procedures (called model DIAG+PROC ). A

RBM was learned using diagnosis codes for comparison.

For each model, the mapping weight matrix W was examined. Elements255

of row vector W i• are coordinates of the object i in the embedding space of

K dimensions. Objects were projected onto 2D using t-SNE [23]. As shown
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in Fig. 4, diseases naturally form coherent groups (colored by k-means). Note

that t-SNE is a visualization method and it was not involved in computing the

embedding of codes.260

Similarly, Fig. 5 presents the embedding/clustering of both diseases and

procedures. Since diseases and procedures are jointly embedded in the same

space, their relations can be directly assessed. For several groups, we plotted

the top 5 procedures and 5 diagnoses, where the font size was proportional to

inverse distances to the group centers. The grouping is meaningful, for example:265

• Group 1 : Diagnosis C34 (Malignant neoplasm of bronchus and lung) is

associated with procedures 543 (Examination procedures on bronchus)

and 536 (Tracheostomy).

• Group 2 : Diagnosis C78 (Secondary malignant neoplasm of respiratory

and digestive organs) and C77 (Secondary and unspecified malignant neo-270

plasm of lymph nodes) are associated with procedures 392 (Excision pro-

cedures on tongue) and 524 (Laryngectomy).

• Group 3 : Diagnosis K35 (Acute appendicitis) is associated with procedure

926 (Appendicectomy).

In contrast, the groups produced by RBM in Fig. 6 are less coherent and their275

diagnosis codes do not clearly explain suicide risks.

We compared the discovered groups with the risk factors found in previous

work [18]. The relevance of a group is the number of matches in the top 10 risk

factors under the group. On average, 4.4 out of 10 risk factors per group found

by the eNRBM matched those in [18]. This is higher than the matching rate by280

the RBM, which was 1.6.
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Figure 4: Disease embedding (model DIAG). Diseases were first embedded into 200 dims
using eNRBM, then projected onto 2D using t-SNE [23]. Note that t-SNE did not contribute
to original embedding or clustering. Color shows disease clusters discovered by k-means with
10 clusters.
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Figure 5: Disease and procedure embedding (model DIAG+PROC ). Codes were first em-
bedded into 200 dims using eNRBM, then projected onto 2D using t-SNE [23]. Color shows
disease clusters discovered by k-means with 10 clusters. Font size indicates nearness to re-
spective cluster centers.
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Figure 6: Disease embedding (model DIAG). Diseases were first embedded into 200 dims
using RBM, then projected onto 2D using t-SNE [23]. Color shows disease clusters discovered
by k-means with 10 clusters.
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Rank: Moderate-risk Rank: High-risk
1: Z22 (3–6; 24–48)

Z29 (0–3; 3–6; 6–12)
2: R94 (all intervals)
3: S61 (0–3; 3–6; 6–12)

S62 (0–3; 6–12)
4: F03 (0-3; 3–6; 6–12)

F05 (3–6; 24–48)
5: E66 (all intervals)

1: X61 (3–6); X62 (0–3)
X64 (0–3; 3–6)
X65 (3–6)

2: T50 (6–12; 12–24; 24–48)
T51 (0–3; 3–6)

3: T39 (all intervals)
4: Z29 (0–3; 3–6; 6–12)

Z22 (3–6; 24–48)
5: S52 (0–3; 3–6; 6–12; 12–24)

S51 (0–3)

Table 1: Top five feature groups corresponding to moderate-risk and high-risk suicide events,
one per row, ranked by the weight in the corresponding logistic classifiers. Each group has
top 5 discovered comorbidities coded in ICD-10 scheme, ranked by their mapping weight Wik.
Time periods for each comorbidity is described in the bracket, e.g., 3-6 means the comorbidity
is recorded 3-6 months prior to the assessment point. See Tab. 2 for description of codes.

4.4. Risk groups

To identify which feature group was predictive of future risk, we used the

posterior embedding of patients (see Eq. (5)) as inputs for two logistic regression

classifiers, one for the moderate-risk class, the other for the high-risk class.285

Groups were ranked by their regression coefficients.

Table 1 presents top five feature groups corresponding to moderate-risk and

high-risk classes (model DIAG). Moderate-risk groups consist of abnormality in

function findings (ICD-10: R94 ), non-fatal hand injuries (ICD-10: S6x ), mental

disorders such as dementia (ICD-10: F03 ) and (ICD-10: F05 ), obesity (ICD-10:290

F66 ), and potential hazards related to communicable diseases (ICD-10: Z2s).

High-risk groups involve self-harms (ICD-10: X6s) as the top risk, followed

by poisoning (ICD-10: T39, T5s), hazards related to communicable diseases

(ICD-10: Z2s), and finally hand injuries (ICD-10: S5s).

4.5. Risk stratification295

We now report results on suicide risk stratification for a 3-month horizon.

Fig. 7 shows the relative performance of the eNRBM (for representation learn-

ing) coupled with logistic regression classifiers (for classification), in comparison
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E66 : Obesity
F03 : Unspecified dementia
F05 : Delirium
R94 : Abnormal functions
S51 : Open wound of forearm
S52 : Fracture of forearm
S61 : Open wound of wrist and hand
S62 : Fracture at wrist and hand level
T39 : Poisoning by nonopioid analgesics
T50 : Poisoning by diuretics
T51 : Toxic effect of alcohol
X61 : Intentional self-poisoning by psychotropic drugs
X62 : Intentional self-poisoning by psychodysleptics
X64 : Intentional self-poisoning by unspecified drugs
X65 : Intentional self-poisoning by alcohol
Z22 : Carrier of infectious disease
Z29 : Need for other prophylactic measures

Table 2: Top ICD-10 codes contributing to suicide risk, as identified in Tab. 1.

with support vector machines (SVM) that ran on raw EMR data and on PCA-

derived features. Using the full EMR-derived data leads to better results than300

those using the diagnoses alone, suggesting the capability in data fusion by the

eNRBM.

Table 3 presents more detailed results. The F -scores achieved by eNRBM

are 0.212 and 0.359 for moderate-risk and high-risk, respectively. The high-risk

F-score is already three times better than the performance achieved by clinicians305

who admitted the risk assessment [18, 19]. The F -scores are also competitive

with the results obtained by rival methods: SVM on raw features obtained F-

score of 0.156 and 0.340; and SVM on PCA-derived features yielded 0.135 and

0.325 for moderate and high-risk, respectively. We ran a bootstrap simulation

and found that (i) for moderate-risk, eNRBM is significantly better than SVM310

or RBM at p = 0.05; (ii) for high-risk, there is no statistical difference, largely

due to the smaller number of high-risk cases.
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Figure 7: F-scores (F1) for moderate and high-risk within 3 months. Arrows indicate the flow.
Diags means using only diagnoses as input. Full EMR contains demographics, diagnoses,
procedures, diagnosis related groups (DRG) and Elixhauser comorbidities [2].

5. Discussion

5.1. eNRBM as a model of EMR

The eNRBM belongs to, but differs radically from the rest of the latent315

variable family used in biomedical fields [24]. The family includes traditional

methods such as factor analysis [25] and modern models such as latent Dirich-

let allocation [26] and Indian buffet processes [27]. All of these existing mod-

els can be represented as directed graphical models whose inference is usually

expensive. Importantly, while these methods are effective in analyzing latent320

factors or thematic structures, they are not typically designed for data repre-

sentation on which further manipulations can be performed. The eNRBM, on

the other hand, is undirected and permits fast inference and learning on mas-

sive high-dimensional data. The eNRBM offers multiple benefits: nonlinear;

compact distributed representation; embedding medical objects into Euclidean325

space; and feature grouping. Importantly, the eNRBM can compute predictive

20



Recall Precision F-measure

Full EMR→SVM
Moderate-risk 0.251 0.114 0.156
High-risk 0.455 0.271 0.340

Full EMR→PCA→ SVM
Moderate-risk 0.208 0.103 0.135
High-risk 0.433 0.268 0.325

Diags→RBM→LR
Moderate-risk 0.234 0.127 0.165
High-risk 0.342 0.239 0.281

Full EMR→RBM→ LR
Moderate-risk 0.226 0.125 0.161
High-risk 0.424 0.294 0.347

Diags→eNRBM→LR
Moderate-risk 0.260 0.143 0.184
High-risk 0.384 0.271 0.317

Full EMR→eNRBM→ LR
Moderate-risk 0.310 0.161 0.212
High-risk 0.445 0.301 0.359

Table 3: Performance of various classifiers with several input preprocessing techniques (PCA
and eNRBM). Diags means we used only diagnoses as input. Full EMR contains demograph-
ics, diagnoses, procedures, diagnosis related groups (DRG) and Elixhauser comorbidities [2].
Bold numbers are highest in their category.

representations.

The feature grouping capability facilitates better understanding of feature

interactions. This is critical in modern medicine where multimorbidity is the

rule, not exception, especially among the elderly [28]. The illness trajectories330

and healthcare processes become increasingly interwoven [29], and it is crucial

to automatically disentangle these dependencies.

The direct modeling of dependencies between clinical variables has been

studied in Bayesian networks [30, 31]. The main difficulties are: designing

acyclic structures, and slow inference in large networks. The eNRBM, on the335

other hand, requires no structure design, and is fast with only a single matrix

operation.

Finally, we wish to emphasize that the RBM is a fully generative model of
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EMRs with distribution P (v). The RBM can simulate EMRs whose distribution

follows P (v). This offers a new solution for data sharing without compromising340

privacy. Details of the simulation are beyond the scope of this paper, but in

general they are based on Monte Carlo simulation (see for example, [? ]). For

this paper, code and simulated data are available for download4. The data was

sampled from a RBM which was learnt from the real data. Thus the simulated

data reflects the true statistical properties of the real source.345

5.1.1. Embedding medical objects

Medical objects and events are discrete in nature. This creates significant

computational challenges for symbolic representation. First, the number of

unique objects (e.g., diagnosis codes) is often very large, and the number of

events grows in time. Second, rare objects (e.g., rare diseases) are not robust to350

quantify statistically. And third, relations such as nearness with continuously

varying degrees are hard to specified to fine details.

This calls for an embedding of objects into low-dimensional spaces (e.g., see

also [32] for similar arguments in linguistics). In other words, the representation

of an object is distributed. Embedding promotes algebraic manipulations such355

as similarity computation and retrieval. It is also easy to assess the relatedness

between objects of different kinds (e.g., a disease and a procedure), as we have

seen in Fig. 5. Once objects have been embedded, an event can be considered

as a set of objects observed in a period of time. The discussion can be extended

to relations, for example, the parent-child relationship in the disease taxonomy:360

A parent is close to its children in the embedding space. This offers a novel way

of exploiting existing medical knowledge bases.

4http://prada-research.net/∼truyen/code/eNRBM-jbi.zip
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5.1.2. Risk group discovery

The eNRBM applied to mental health, as shown in Table 1, discovered risk

factors that resemble those well-documented in the literature [19, 33]. For in-365

stance, psychiatric problems and prior attempts are well-recognized risk factors

[34, 35]. Our method differs in that it is hypothesis-free and time-specific.

Comorbidities that appear remotely related to psychiatric issues were also

discovered, for example infectious diseases [36, 37] and obesity [38, 39, 40].

While these findings are interesting to warrant a deeper analysis, a full clinical370

investigation is beyond the scope of this paper. Finally, the automatic grouping

suggests a potential in automated phenotyping [4, 6].

5.2. Limitations

We recognize several limitations. First, a relation was defined if two ICD-10

codes shared the first character and the first digit, and the relation strength375

was always 1. This could be extended to be more flexible. For example, F20

and F31 share the parent F (Mental and behavioural disorders), so the relation

strength can be thought as a half of that between F20 and F21. Determining the

precise strength is a difficult problem itself. First, the eNRBM primarily ran on

binary (or probability-like) observations. However, model can be easily extended380

to other data types such as counts (e.g., number of previous admissions) and

continuous variables (e.g., lab test measurements) or a mixture of these [41,

42]. This suggests an interesting integration of multiple modalities, such as

administrative data (this work), text (e.g., carer notes), and medical images

[43]. Extension to unstructured clinical notes is not difficult: time-stamped385

notes can be aggregated into intervals just like other composite events (such as

admissions), and known relations between concepts (e.g., using the UMLS or

SNOMED-CT) can be naturally encoded into the eNRBM.

Second, some discovered groups may not be clinically relevant but a data
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artifact. However, the structural relations can be modified without difficulty to390

encode known phenotypes and to prevent meaningless grouping.

Finally, the empirical study has been limited to EMRs from a single insti-

tution. The EMR is known for its quality issues [44]. However, EMRs are

comprehensive and readily available, making them an attractive alternative to

standard clinical data collection. In fact, the quality of the Charlson comor-395

bidity index computed from EMR is comparable to that computed from the

standard chart [45, 46]. The eNRBM is cohort-independent, and thus it is pos-

sible to run on multiple databases. Alternatively, eNRBM could be evaluated

intensively using simulated data with controlled variations so that its behaviors

and performance can be assessed. However, faithfully generating EMR data is400

a challenging research topic by itself (see, for example, a recent work by [? ]).

5.3. Conclusion

We have proposed a novel model called EMR-driven nonnegative restricted

Boltzmann machine (eNRBM) for EMR modeling. The eNRBM supports a

variety of healthcare analytics tasks with minimal manual feature engineering.405

The model learns EMR representation by embedding features and trajectories

into a low-dimensional space. Through nonnegativity and domain-specific struc-

tural constraints, intrinsic dimensionality can be estimated, meaningful group-

ing of medical objects can be discovered. The homogeneous representation leads

to simple algebraic manipulations and easy use with existing classifiers. Ex-410

perimental results on suicide risk stratification demonstrate that the proposed

method is competitive in predictive performance. The model paves a pathway

toward EMR-driven phenotyping.
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Appendix A. Details on eNRBM

Appendix A.1. Model properties415

To see how the nonnegativity constraints in the eNRBM let the grouping

emerge, consider the activation probability of the hidden unit in Eq. (5):

ρk = P (hk = 1 | v) = σ

(
bk +

∑
i

Wikvi

)
(A.1)

Suppose for the moment that |bk| is bounded from above. Then, the visible

units must “compete” against each other to turn on the k-th hidden unit by

making {bk +
∑

iWikvi} ≥ 0, since {vi} are nonnegative. The result is that420

some elements of the k-th column vector W•k are driven to zeros. The remaining

elements will self-organized into the k-th group.

Since the bipartite structure of the eNRBM has no within-layer connections,

the conditional distributions over visible and hidden units can be factorized as:

p (v | h) =

N∏
i=1

p (vi | h) (A.2a)

p (h | v) =

K∏
k=1

p (hk | v) (A.2b)

Thus inference can be efficiently performed by layer-wise sampling. Model425

density can be estimated as

P (v) =
1

S

S∑
s=1

P
(
v | h(s)

)
(A.3)

using S random samples
{
h(s)

}
for s = 1, 2, ..., S.
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Appendix A.2. Model estimation

Learning in the eNRBM was carried out by maximizing the data log-likelihood

logP (v) subject to several constraints:430

• Nonnegativity : Wik ≥ 0 for all i, k. For simplicity, we used the barrier

function B (Wik) = W 2
ik if Wik < 0 and 0 otherwise.

• Bounding : |ai| , |bk| ≤ c. This could be realized by adding a penalty term

to the data likelihood
∑

i a
2
i +

∑
k b

2
k

• Structural smoothness: similar features should share similar weights, as435

encoded in the regularizer Ω(W ) in Eq. (6).

Finally, the augmented log-likelihood is

L(W ) = logP (v)− α

2
B (Wik)− β

2

(∑
i

a2i +
∑
k

b2k

)
− λ

2
Ω(W ) (A.4)

where α, β, γ > 0 are tunable hyperparameters.

The structural smoothness can be rewritten as

Ω(W ) =
∑
k

W>
•kLW •k

where Lii =
∑

j 6=i γij ; Lij = −γij . The matrix L is known as the Laplacian of440

the graph whose edge weight is γij .

Finally, the parameter update rule becomes:

ai ← ai + η (vi − 〈vi〉P − βai)

bk ← bk + η (ρk − 〈hk〉P − βbk)

Wik ← Wik + η
(
viρk − 〈vihk〉P − α dWike− − λLWik

)
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where dWnke− denotes the negative part of the weight. The “contrastive diver-

gence” procedure [10] was used to approximate expectations with respect to the

model distribution P (v,h). The Markov chain started from the observation v,445

runs for one step, then the pair (v,h) was collected to approximate P .
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