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ABSTRACT: Chemical passivation of nonoxide semiconduc-
tors is a key prerequisite for electrochemical devices that operate
in water-based electrolytes. Silicon remains the technologically
most important material and organic monolayers based on the
hydrosilylation of 1-alkynes have been shown to be a very
effective approach to limit the thermodynamically favorable
oxidation of the electrode, while still retaining efficient electron
transfer across the solid/liquid interface. A large excess of a
supporting electrolyte is always added to the solution in order to
confine the applied potential gradient to the region close to the
surface of the electrode. However, little is known about how the degree of solvation of the electrolyte species is linked to the
degradation of the passivating chemistry. Here we test experimentally how electrolytes with different intrinsic hydration levels can
influence the protection of the silicon as a function of surface biasing. X-ray photoelectron spectroscopy and contact angle
experiments are used to determine under which conditions the chemical protection breaks down and oxidation of the silicon
begins. Our results suggest that (i) anions seem to have a bigger impact on the growth of oxide than cations and (ii) the surface
chemistry is more effective for protecting the semiconductor surface against oxidation in the presence of weakly hydrated ions.
The utilization of strongly hydrated ions as the electrolyte dramatically diminishes the potential range in which the organic

Silicon (100)

monolayer protects the silicon in aqueous environments.

B INTRODUCTION

The assembly of single-molecule-thick films on solid surfaces
has been central to recent academic research, with notable
examples including the preparation of sensors' > and
biomimetic interfaces®® as well as the development of model
laboratory systems to study subtle variables involved in
electrode kinetics.”” This methodology is of key importance
to the electrochemical community, due to the precise control
for incorporating chemical entities on the surface without
blocking electron transfer across the solid/liquid interface.
Examples in this field are reported on modifying noble and
coinage metals using alkanethiol chemistry”” and on
functionalizing indium tin oxide (ITO) substrates with
organophosphonic acid derivatives.'”'" However, in recent
years an area of considerable interest has been the modification
of silicon surfaces with organic monolayers,"”*™"" particularly
the industrially relevant Si(100)."~*°

The modification of Si(100), such that there is no
intervenin§ oxide layer, is both crucial and challenging to
achieve.”®”” A monolayer that prevents any oxygenated species
reaching the Si(100) is particularly important as if this happens
the Si(100) will oxidize. Such oxidation will alter the electronic
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properties of the device. The impact of ineffective monolayers
was previously demonstrated on Si(100) electrodes used in
aqueous solution where, upon scanning the electrode anodi-
cally, the silicon was observed to oxidize, and hence the
electrode became passivated.”® A promising surface chemistry
strategy for protecting Si(100) from oxidation even when posed
at positive potentials in aqueous media is to modify silicon with
1,8-nonadiyne, in which the strong terminal 7-binding between
the distal alkynes works to block penetration of H,O and O, to
the Si(100) surface. Although we have shown that 1000 anodic
redox cycles could be performed without oxidizing the
surface,”® one unanswered question is what are the limits of
the experimental conditions where an effective protection of
Si(100) against the oxidation is maintained?

The purpose of this study is to begin to answer this question.
The two main variables explored here are the electrolyte
composition and the potential applied to the electrode. The
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impact of these variables was measured using X-ray photo-
electron spectroscopy (XPS) and contact angle experiments to
determine under which conditions the protection of the alkyne-
terminated monolayer breaks down and oxidation of the
Si(100) surface begins. The ionic species are varied according
to the Hofmeister series because previous studies with
alkanethiol-protected gold electrodes suggest that ionic
permeability through the organic monolayers occurs at extreme
potentials, both anodic and cathodic, which induces structural
changes in the alkyl chains to accommodate the space-
demanding ions and water molecules between them.”””>
Although this effect was found to be reversible on alkanethiol-
protected gold surfaces, this scenario may be more drastic for
alkyne-terminated Si(100), as any water associated with a
penetrating ion would be expected to promote surface
oxidation, which would then deleteriously impact the electronic
properties of the Si(100) electrode.

Generally, low charge density ions exhibit weaker inter-
actions with water molecules than water itself. These ions have
a lower probability of affecting the hydrogen bonding of the
surrounding solvent, and they are named chaotropes.
Otherwise, high charge density ions present stronger
interactions with water molecules than water itself and
therefore present higher probability of affecting the water
structure. These ions are named kosmotropes. This denomi-
nation is linked to the observations performed by Hofmeister
that different salts have distinct efficiencies at promoting
salting-out of egg-white protein.32 Previously, the conventional
view was that competition between dissolved ions and dissolved
proteins for hydration water would be responsible for this
phenomenon. Nowadays, it is affirmed that more specific
interactions between ions and proteins and ions and water
molecules directly contacting the proteins may be a more
important and contributing factor.”> However, during the
evolution of these studies, a ranking that parallels the
Hofmeister series was developed for classifying the ions toward
their properties for associating with water, as depicted in Table
1.

It was demonstrated previously that voltage and electrolyte
pH can affect the kinetics of silicon oxidation.”*™*° However,
for the specific case of silicon surfaces that are protected with
organic monolayers the amount of water that the electrolyte ion
can drag across the monolayer may become another variable

Table 1. Ions Employed in the Present Study as Electrolytes
Are Depicted in the Table with the Respective A ;G Values,
and Their Relative Position According to the Definition as
Chaotropes (Present Weaker Interaction with Water
Molecules than Water Itself) or Kosmotropes (Present
Stronger Interaction with Water Molecules than Water
Itself) Are Depicted in the Inset Figure

Chaotropes

MNOQ <[ <H,PO, <Br <ClI <F <HPO} <SSO <PO/}

Kosmotropes

N(CH,)* < NH," < Cs' <Rb* <K' < Na' <H' < Ca” < Mg* <Al"

weakly hydrated ions |

strongly hydrated ions

cations employed in this work NH,* Na* Mg**
theoretical Ay 4G (kJ mol™")** —285 —-385 —1940
anions employed in this work Clo,” cl SO~
theoretical Ay 4G (kJ mol™)* —180 —270 —1145

linked to the anodic decomposition of the substrate. For this
reason, it is evaluated in this article how the presence of
chaotropic or kosmotropic ions in the electrolyte can affect the
protection of the organic monolayers on Si(100) against surface
oxidation as a function of surface bias. As the position of a given
electrolyte in the Hofmeister series relates to its association
with a water molecule, it is hypothesized that the breakdown of
the protection of the silicon may depend on the nature of the
electrolyte. The hypothesis is that, because at extremes of
potentials ions will penetrate the organic monolayer’”' and
will be able to reach the silicon surface, the more hydrated the
ions in the electrolyte, the lower the protection of the Si(100)
electrode by the organic monolayer. Understanding the rate of
the passivation of silicon is important for developing electro-
chemical devices required to operate at distinct voltages in
matrixes containing different electrolytes.

B EXPERIMENTAL METHODS

Chemicals. All chemicals were of analytical grade and used
as received. Dichloromethane (DCM) and ethanol were
distilled before use. Milli-Q water (~18 MQ cm) was used
for preparing solutions and for Si(100) cleaning procedures.
Hydrogen peroxide (30 wt % in water, semiconductor grade,
Sigma-Aldrich), hydrofluoric acid (Riedel-de Haén, 48 wt % in
water), and sulfuric acid (semiconductor grade, Sigma-Aldrich)
used for Si(100) cleaning and functionalization procedures
were of high purity. 1,8-Nonadiyne (98%, Sigma) was distilled
under reduced pressure from NaBH, (60 °C, 25—30 Torr) and
stored under an ultrahigh purity argon atmosphere (O, < §
ppb) prior to use. Prime-grade, p-type single-side polished Si
wafers, 100-oriented ((100) + 0.5 °), 500—550 um thick, 10—
20 € cm resistivity were obtained from Siltronix Silicon
Technologies (Archamps, France).

Assembly of Monolayers of 1,8-Nonadiyne on Si(100).
Si(100) wafers were rinsed with DCM, dried under a stream of
argon, and immersed in hot piranha solution (100 °C — 1 vol.
30 wt % H,0,/3 vol. H,SO,) for 1 h. Samples were then rinsed
with a copious amount of Milli-Q water before being
transferred to hydrofluoric acid (HF) aqueous solution (2.5
wt %) for 90 s. The HF treatment removed the native silica
layer (SiO,) and provided a hydrogen-terminated Si(100)
surface. Hydrogen-terminated samples were immediately
immersed into a degassed sample of 1,8-nonadiyne in order
to form the alkyne-terminated Si(100) surface, as depicted in
Scheme 1. The reaction flask was kept under argon atmosphere

Scheme 1. Covalent Attachment of 1,8-Nonadiyne on a
Hydride-Terminated Si(100) Surface through
Hydrosilylation Process”

Vi 4
Si(100)
lHF
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“The reaction was performed in the absence of H,O and O, at 165 °C
for 3 h. After this one-step procedure, an organic monolayer was built
up on Si(100) with the triple bonds exposed onto the distal end.
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and placed for 3 h in an oil bath set at 165 °C. After cooling to
room temperature, the alkyne-terminated Si(100) surface was
rinsed several times with DCM and rested in DCM at +4 °C
under argon for 2 h. The alkyne-terminated Si(100) was then
dried and kept under an argon atmosphere prior to use.

Experimental Measurements. Contact angle measure-
ments were made on duplicated samples using a Ramé-Hart
200-F1 goniometer employing 6 uL of 4 M NaClO,, 2 M
Mg(ClO,),, 4 M NH,Cl, 4 M NaCl, 2 M MgClL, 2 M
(NH,),SO,, 2 M Na,SO,, and 2 M MgSO, aqueous solutions.
A WEP DC power supply PS-305D was employed for applying
voltages using the alkyne-terminated Si(100) as the primary
electrode and the stainless steel needle as the auxiliary
electrode. The light intensity was fixed at 10.34 mW cm™.
Ohmic contact to the silicon electrode was achieved by rubbing
a Ga—In eutectic mixture onto the scratched backside of the
Si(100) electrodes and pressing it against a copper plate. The
contact angles were measured using the CorelDRAW XS
software at images recorded after S s of bias stimuli.

X-ray photoelectron spectroscopy (XPS) measurements were
performed using an ESCALAB 220iXL spectrometer with a
monochromatic Al Ka source (1486.6 eV). The pressure of the
operating chamber was below 10~ mbar, and spectra were
recorded in normal emission. The spot diameter was 500 pm.
The incidence angle was set to 58° to the analyzer lens. The
resolution of the spectrometer is ca. 0.6 eV as measured from
the Ag 3ds/, signal (full width half-maximum) with 20 eV pass
energy. Survey scans were carried out over 1300—0 eV range
with a 1.0 eV step size, a 100 ms dwell time, and analyzer pass
energy of 100 eV. High-resolution scans were run with 0.1 eV
step size, dwell time of 100 ms, and analyzer pass energy set to
20 eV. The spectra were fitted with a convolution of Lorentzian
and Gaussian profiles through Avantage software. The energies
are termed as binding energies in eV and referenced to the C 1s
signal (corrected to 284.8 eV).

B RESULTS

Figure 1 illustrates the dependency of contact angle values with
sample bias for 4 M NH,Cl and 2 M (NH,),SO,. The average
contact angle of a droplet of the ionic solutions was registered
in function of the potential applied between the alkyne-
terminated Si(100) and the stainless steel.

The static contact angle value was (88 + 1)° at open circuit,
which is in good agreement with previous literature.”®”” When
the alkyne-terminated Si(100) was scanned cathodically, the
contact angle diminished quickly up to —1 V, achieving the
values of (82 + 2)° for 4 M NH,Cl and (79 + 1)° for 2 M
NH,SO, (Figure 1b). At —30 V, the contact angle was (71 +
1)° for 4 M NH,CI, while it dropped significantly for the 2 M
NH,SO, system to (63 = 1)° (Figure la). When the alkyne-
terminated Si(100) was scanned anodically, the contact angle
registered at +3.5 V was (73 + 1)° for 4 M NH,Cl and (67 +
1)° for 2 M NH,SO,. When a voltage more positive than +3.5
V was applied at the alkyne-terminated Si(100), further
spreading of the droplet was observed for both 4 M NH,CI
and 2 M NH,SO, (Figure 1a). This is attributed to the onset of
oxidation of the silicon after this voltage, suggesting a
significant breakdown in the protection of the surface by the
organic film.

XPS profiles from Si 2p narrow scan were registered at the
alkyne-terminated Si(100) after applying —30, —20, —10, +1,
+2, and +3 V in the presence of 4 M NH,Cl and 2 M NH,SO,.
The results are illustrated in Figure 2.
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Figure 1. (a) Contact angle registered with a 6 L droplet of (blue) 4
M NH,CI and (red) 2 M (NH,)SO, by applying different voltages
between the p-type (10—20 Q cm) alkyne-terminated Si(100) surface
and a stainless steel needle. Potential was applied under illumination
using white light with energy above the bandgap value of Si (1.1 eV).
The contact angle images presented as an inset in (a) are referred to
the 4 M NH,Cl solution. (b) Lower bias region (from —1 to +1 V) of
the data shown in Figure la.

When the alkyne-terminated Si(100) was cathodically biased,
no significant amount of SiO,, was formed in the presence of 4
M NH,CI solution up to —30 V (Figures 2b, 2c, and 2d). At
these situations, the Si 2p narrow scan of the alkyne-terminated
Si(100) revealed basically the 2p;,, (99.2 eV) and 2p,,, peaks
(99.7 eV) characteristic of an oxide-free Si(100) surface. These
profiles are similar to that obtained with the surface before it
was biased at the different potentials (Figure 2a). This situation
is surprisingly different from that observed when the alkyne-
terminated Si(100) was probed in 2 M (NH,),SO,, where the
appearance of a SiO, peak at 102.1 eV was recognized at —20 V
(Figure 2f) and —30 V (Figure 2g). When the alkyne-
terminated Si(100) was anodically biased, formation of SiO,
occurred more easily in 2 M (NH,),SO, relative to 4 M
NH,CI. This is mainly noted by comparing the Si 2p narrow
scan when the surface was biased at +1 V. Under these
conditions, the Si 2p narrow scan obtained when the alkyne-
terminated Si(100) was probed in 4 M NH,Cl (Figure 2h) is
typical of an oxide-free silicon surface. However, when the
alkyne-terminated Si(100) was probed at +1 V in 2 M
(NH,),S0,, a SiO, peak was noted at 102.2 eV (Figure 2k).

The same series of experiments depicted in Figure 2 for 4 M
NH,Cl and 2 M (NH,),SO, were repeated for 4 M NaClO,, 2
M Mg(ClO,),, 4 M NaCl, 2 M MgCl,, 2 M Na,SO,, and 2 M
MgSO, (Figures S1—S6 of the Supporting Information). The
results were compared by plotting the oxide ratio [area of SiO,
peak/(area of SiO, peak + area of Si 2p;,, peak)]. This oxide
ratio gives information about the percentage of SiO, formed at
different voltages when the alkyne-terminated Si(100) surface
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Figure 2. XPS data for Si 2p narrow scan on p-type (10—20 Q cm) alkyne-terminated Si(100) (a) before and after applying (b) =10V, (c) =20V,
and (d) —30 V using a 6 uL droplet of 4 M NH,Cl as electrolyte; after applying (e) —10 V, (f) —20 V, and (g) —30 V using a 6 uL droplet of 2 M
(NH,),S0, as electrolyte; after applying (h) +1V, (i) +2 V, and (j) +3 V using a 6 L droplet of 4 M NH,Cl as electrolyte; after applying (k) +1V,
(1) +2V, and (m) +3 V using a 6 uL droplet of 4 M (NH,),SO, as electrolyte. Potential was applied under top-side illumination using white light
with energy above the bandgap value of Si (1.1 eV). The surfaces were biased for S s. Each entry is an independently prepared and analyzed surface.

was biased in the presence of the ionic solutions. The results
are depicted in Table 2.

In order to compare the results depicted in Table 2, an
arbitrary demarcation in the oxide ratios is made where below
0.020 surfaces are regarded as effectively protected by the
organic monolayer during the electrochemical experiments. For
example, the oxide ratio obtained after biasing the alkyne-
terminated Si(100) at +1 V in 4 M NH,CI was 0.013, and a
SiO, peak cannot be easily discerned in Figure 2h. However,
the oxide ratio obtained after biasing the alkyne-terminated
Si(100) at +1 V in 2 M (NH,),SO, was 0.052, and a SiO, peak
is easily visible in Figure 2k at 102.1 eV. This was also the case
for the surfaces biased at +1 V in 2 M Na,SO, (ratio = 0.043)
and 2 M MgSO, (ratio = 0.091). When the alkyne-terminated
Si(100) was cathodically biased using SO,*-based solutions as
electrolytes, an oxide ratio below 0.020 was achieved only at
—10 Vin 2 M (NH,),SO, (ratio = 0.009). Oxide ratios above
0.020 were obtained when the surface was biased at —20 or
—30 Vin 2 M (NH,),SO, or at any potential condition in 2 M
Na,SO, or 2 M MgSO,. A SiO, peak can be easily identified in
the related XPS spectra (Figures SS and S6 in Supporting
Information).

15944

Focusing our attention on the ClO, -based solutions, the
oxide ratio obtained after biasing the alkyne-terminated Si(100)
at +1 Vin 4 M NaClO, was 0.006, and no significant SiO, peak
was observed at this condition. At the anodic direction, the
protection of the organic monolayer against Si(100) oxidation
was ineffective in 4 M NaClO, above +1 V, as noted by the
oxide ratio 0.167 registered at +2 V. However, the oxide ratio
obtained after biasing the alkyne-terminated Si(100) using 2 M
Mg(ClO,), was already 0.050 at +1 V, indicating that the
change of Na* for Mg** facilitated the formation of SiO,. These
results also suggest that changing SO,*” for ClO, -based
solutions may affect the capability of the organic film to protect
Si(100) against oxidation. This can also be noted when the
alkyne-terminated Si(100) surface is cathodically biased. In that
occasion, the obtained oxide ratios were below 0.020 for both 4
M NaClO, and 2 M Mg(ClO,),. Indeed, the highest oxide ratio
obtained was 0.012 when the alkyne-terminated Si(100) was
biased at —20 V in 4 M NaClO,. This value is significantly
lower than the threshold of 0.020 postulated here, showing the
efficiency of the alkyne monolayer on avoiding Si(100)
oxidation at ClO, -based solutions. This was not the case for
SO,* -based solutions.

DOI: 10.1021/acs jpcc.5b12454
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Table 2. Relative Comparison of the Amount of SiO,
Formed on the p-Type (10—20 Q cm) Alkyne-Terminated
Si(100) Surfaces after Applying —30, —20, —10, +1, and +2
V for 5 s Using a 6 uL Droplet of the Ionic Solution as
Electrolyte”

[area of SiO, peak/(area of SiO, peak + area of Si 2p;, peak)]
30 V 220V -10 V +1V +2V

4 M NaClO, 0.001 0.012 0.009 0.006 0.167
2 M Mg(ClO,), 0.001 0.002 0.004 0.050 0.220
4 M NH,Cl 0.013 0.006 0.012 0.013 0.137

4 M NaCl 0.012 0.013 0.019 0.007 0.115

2 M MgCl, 0.014 0.012 0.012 0.040 0242

2 M (NH,),SO, 0.076 0.040 0.009 0.052 0.184
2 M Na,SO, 0.047 0.081 0.061 0.043 0211
2 M MgSO, 0.053 0.042 0.042 0.091 0.209

“The oxide ratios are referred to [area of SiO, peak/(area of SiO, peak
+ area of Si 2p;, peak)]. The areas were calculated by fitting the Si 2p
spectra with a convolution of Lorentzian and Gaussian profiles. During
application of the potential, the surfaces were under top-side
illumination using white light with energy above the bandgap value
of Si (1.1 eV). Each entry is an independently prepared and analyzed
surface.

Finally, the alkyne-terminated Si(100) was also biased in CI™-
based solutions. At +1 V, the obtained oxide ratios were 0.013
in 4 M NH,Cl, 0.007 in 4 M NaCl, and 0.040 in 2 M MgCl,.
This means that the organic monolayer was more effective in
avoiding Si(100) oxidation in 4 M NH,Cl or 4 M NaCl than 2
M MgCl,. When the alkyne-terminated Si(100) was biased at
+2 V, the oxide ratios registered for all tested Cl -based
electrolytes were above 0.020, indicating significant oxidation of
Si(100). When the alkyne-terminated surfaces were analyzed
after being cathodically biased in Cl -based solutions, the
calculated oxide ratios were below 0.020 for all tested potentials
and electrolytes. This means that the alkyne monolayer was
effective on protecting the surface of significant oxidation, and
no peaks could be observed on XPS without zooming the
spectrum ~102.5 eV. However, while the ClO, -based oxide
ratios are basically located below 0.010, the Cl™-based oxide
ratios are mainly situated between 0.010 and 0.020.

B DISCUSSION

Contact angle measurements are a useful tool to inform about
the macroscopic interaction of the aqueous solutions with the
alkyne-terminated Si(100) surface to which a voltage is applied.
When the surface was cathodically biased, the contact angle of a
droplet of 4 M NH,Cl diminished ~7° up to —1 V, as
illustrated in Figure 1b. The spreading can be understood in
terms of the electrowetting phenomenon, that is, the electrical
control of the wettability of liquids on a dielectric—(semi)-
conductor system.”' ™" One should note though that the
semiconductor employed in this work is a p-type Si(100) with
doping level concentrations ~10'* cm™. This means that under
the depletion regime in the dark the space charge region is thick
enough to make the semiconductor essentially behave as an
insulating material, which would prevent the spreading of the
droplet due to application of voltage. However, during the
measurements the alkyne-terminated Si(100) is continuously
illuminated using a light with energy above the bandgap value
(1.1 eV). The illumination of the surface under this condition
generates electron—hole pairs in the space-charge region,
making the droplet respond similarly to the electrical stimulus

as it does under the accumulation regime.*® This phenomenon
was demonstrated by Arscott using teflon—silicon systems, and
it was referred to as photoelectrowetting.”” A schematic
representation of the phenomenon under the accumulation
and depletion regimes is illustrated in Figure 3. The main

a

electrowetting

: monolayer
p-type Si (10-20 ohm.cm)

accumulation

Ev Er Ec
light

photoelectrowetting

monolayer

depleted surface
illuminated by light

with energy above the

bandgap value

E Er Ec

Figure 3. Illustrative cartoons demonstrating the droplet spreading at
(a) the accumulation regime (E > Egypuna), in which the system
behaves as a liquid—dielectric—conductor platform and at (b) the
depleted regime (E < Eg,nq) under illumination, in which electron—
hole pairs are generated at the semiconductor-depleted zone,
increasing the capacitance of the space-charge region and thus
reducing the contact angle of the droplet at an applied potential.

difference is that here an organic monolayer with thickness of
10.4 A*® is employed as the dielectric material, instead of the
Teflon-based polymers with thickness of 20 or 200 nm
employed by Arscott. The main advantage of this approach is
that a thin organic monolayer operating as the dielectric makes
the spreading of the droplet possible at significantly lower
voltages.”” The main disadvantage is that the thinner layer can
lead to a breakdown of the dielectric, making H,O and ions
penetrate through the organic monolayer and occasioning
electrolysis between the liquid and electrode. It is intended here
to explore this effect in the presence of different ions.

The profiles obtained during contact angle measurements as
a function of potential were affected by using ionic solutions as
electrolytes. The results obtained with 4 M NH,Cl and 2 M
(NH,),SO, depicted in Figure 1 were chosen to illustrate the
differences between electrolytes. When the alkyne-terminated
surface was anodically scanned, the contact angle measure-
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ments obtained up to +3.5 V with the 2 M (NH,),SO, solution
were slightly lower than the values registered with 4 M NH,CL
This effect was also noted when the alkyne-terminated Si(100)
was cathodically biased, especially at potentials more negative
than —1 V. This result is interesting because it initially suggests
that the more strongly hydrated SO,*-based systems respond
to the electrostatic pressure’’ that originates for the applied
potential causing the (photo)electrowetting effect, more
effectively than less hydrated CI”. One should note though
that contact angle measurements give information about the
macroscopic interaction between solution and the surface, and
understanding microscopically what is happening on the surface
requires complementary analysis to correlate the registered
spread with the formation or absence of SiO,. The XPS spectra
depicted in Figure 2 and the oxide ratios [area of SiO, peak/
(area of SiO, peak + area of Si 2p;, peak)] calculated in Table
2 allow us to advance with this purpose.

When the alkyne-terminated Si(100) was anodically biased,
oxide ratios above 0.020 were obtained at +2 V for the surface
exposed to 4 M NH,CI and at +1 and +2 V for the surface
exposed to 2 M (NH,),SO,. These values are less positive than
the threshold potential of +3.5 V depicted in Figure I,
indicating that the larger spreading of the droplet is achieved
only when the protection of the surface by the nonadiyne is
already in an advanced stage of breakdown. The fact that the
alkyne-terminated Si(100) is oxidized at potentials less positive
in the presence of SO,*” than CI~ was also an interesting
observation. Although the presence of an organic monolayer
reduces the interfacial capacitance from that associated with the
bare surface, SO,*~ and CI™ anions accumulate at the distal end
of the alkyne-terminated Si(100) when the surface is positively
biased. It is speculated here that, since SO,*” is a more
kosmotropic anion than CI7, the higher charge density could
make it penetrate at lower voltages and drag a higher amount of
water molecules through the organic monolayer. However, one
should also note from Figure 2 and Table 2 that oxide ratios
above 0.020 were obtained at —20 and —30 V for the surfaces
exposed to 2 M (NH,),SO,, and oxide ratios below 0.020 were
registered for the surfaces biased at —10, —20, and —30 V in the
presence of 4 M NH,Cl The situation is not quite so
straightforward, as the weakly hydrated NH," cations should
accumulate at the distal end of the organic monolayer when the
surface is negatively polarized. It is believed that ion pairing>*
might be responsible for this effect, which would cause
occasional penetration of both hydrated cations and anions in
the organic monolayer due to applied potential.

Similar conclusions were obtained by expanding the analysis
for all the ionic solutions tested here. From Table 2, oxide
ratios for SiO, formation above 0.020 were obtained with
SO,*"-based solutions at any tested potential, independently if
the associated cations had a more a chaotropic or kosmotropic
nature. The only exception was achieved when the alkyne-
terminated Si(100) was biased at —10 V in 2 M (NH,),SO,,
that is, in the presence of a weakly hydrated cation. The
scenario changed when the alkyne-terminated Si(100) surfaces
were biased in electrolytes containing the weakly hydrated
ClO,~ anions. In that case, oxide ratios above 0.020 were
obtained at +1 V only if the system contained a strongly
hydrated cation. When the surfaces were negatively biased,
oxide ratios below 0.020 were obtained independently of
whether the associated cations had a more chaotropic or
kosmotropic nature. However, a comparison between the C 1s
XPS narrow scan registered at the alkyne-terminated Si(100)

samples after biased at —30 V in 4 M NaClO, and 2 M
Mg(ClO,), is depicted in Figures 4b and 4c, respectively. Even
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3
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carboxylate
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Binding energy (eV)
Figure 4. XPS data for C 1s narrow scan on p-type (10—20 Q cm)
alkyne-terminated Si(100) (a) before and after applying —30 V using a
6 puL droplet of (b) 4 M NaClO, and (c) 2 M Mg(ClO,), as

electrolyte. Potential was applied under top-side illumination using
white light with energy above the bandgap value of Si (1.1 eV).

though oxide ratios below 0.020 for SiO, formations were
obtained in both situations, the accumulation of the strongly
hydrated Mg** cation in the Stern layer caused a greater change
in the organic monolayer protection than the accumulation of
Na*, as revealed by the appearance of the carbonyl (287.0 eV)
and carboxylic (289.0 eV) peaks.

H CONCLUSION

Thus, it can be concluded that the different hydration of ions,
for example as defined by the Hofmeister series, can govern the
conditions under which the alkyne monolayer is able to protect
a nonoxide semiconductor against anodic decomposition in
aqueous electrolytes. For example, Cl~ anions bind to water
molecules more strongly than ClO,” anions and more weakly
than SO,>”, and our experimental results show that the
monolayer-modified Si(100) surfaces exposed to Cl -based
electrolytes and biased at different voltages generally exhibit an
oxide ratio usually higher than that obtained with the alkyne-
terminated Si(100) surfaces biased in a ClO, -based electrolyte
and lower than the oxide ratios obtained with the surfaces
tested in SO,* -based electrolytes. One should note though
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that the presence of a strongly hydrated cation may affect this
relation. For example, the oxide ratio for SiO, formation for the
surfaces biased at +1 V in 2 M Mg(ClO,), are higher than the
values obtained with the alkyne-terminated surfaces biased at
+1 Vin 4 M NH,CI or 4 M NaCl

The data presented herein provide some guidelines for the
use of electrolytes if using monolayer-modified silicon surfaces
for the protection against oxidation. To identify these trends
first requires that the data for the alkyne-terminated surface
biased at +2 V be disregarded. The justification for this is the
extent of oxidation is such that the organic monolayer is
significantly compromised in all the tested cases. With this in
mind the trends that emerge from the data suggest that anions
seem to have a bigger impact on the growth of oxide than
cations. Second, contrary to expectations, ions with the same
charge as the potential applied to the surface have more of an
effect than the oppositely charged ions. Finally, as expected the
more kosmotropic, more hydrated ions lead to more oxidation
of the silicon than the weakly chaotropic ions. With these
trends in mind, given the choice, perchlorate would be the best
anion for protection of the silicon, while sulfate and highly
kosmotropic cations should be avoided. These results will
enable researchers to design more robust electrochemical
devices based on silicon through the careful choice of the
supporting electrolyte.
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