
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195653499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Semantic Web support for Open-source Software

Development

Tharam S. Dillon1, Gregory Simmons2
1Digital Ecosystems and Business Intelligence Institute, Curtin University of Technology, Australia

2School of Information Technology and Mathematical Sciences, University of Ballarat, Australia
t.dillon@cbs.curtin.edu.au, g.simmons@ballarat.edu.au

Abstract-Open-source software is unique in that the development
of the product is performed in public over the Internet by
developers who elect to contribute to the project and rarely if
ever meet face-to-face. Software development is a knowledge
intensive process and the information generated in open-source
software development projects is typically housed in a central
Internet repository.

Open-source repositories typically contains vast amounts of
information, much of it unstructured, meaning that even if a
question has previously been discussed and dealt with it is not a
trivial task to locate it, leading to rework, confusion amongst
developers and possibly deterring new developers from getting
involved.

This paper develops an ontology based software
development architecture for open-source software
development. Such an architecture would enable better
categorisation of information, communication, co-ordination
and the development of sophisticated search agents.

I. INTRODUCTION

Open-source software (OSS) development provides an
alternative model of development to commercial systems
developed by or for a single corporate entity. In this model of
development, a variety of developers carry out development
and distribute the source code associated with the product.
This allows for incremental improvement by others or
development of complementary products that can seamlessly
interoperate with the open-source products. Open-source
projects can be broadly characterized by their uncertain
requirements, distributed development and loose management
practices [1, 2]. Open-source developers are potentially
drawn from a global pool of talent using the Internet;
developers do not typically meet face to face. Rather the
development community for any one project is centered
around a public World-Wide-Web site and communication
conducted using mailing lists and discussion forums. There
are no time constraints in an open-source project and no
mechanism to insist that functionality is implemented.
Management is less concerned with utilizing resources
efficiently and more concerned with which contributions
should be committed to the product and which should be
discarded. Open-source projects are constantly evolving with
developers choosing to contribute what they think the product

needs rather than the solution to any problem they are
assigned, requirements are therefore elicited rather than
assigned.

Open-source projects generate massive amounts of
information; this information is usually housed in Internet
repositories which typically provide little support for
structuring it in a way that is meaningful to the heterogeneous
needs of the open-source community.

This paper is concerned with knowledge management in
open-source software development projects. Previous authors
[3, 4, 5] have noted how open-source projects are poorly
organised in relation to how they store their information, this
research proposes a method for storing open-source related
information more systematically without requiring developers
to change their current habits. With this goal in mind this
paper investigates the following question:

How can semantic web technology be leveraged to enable
open-source software development to be more efficient?

In order to answer this question it is necessary to develop
software which supports open-source software development
whilst utilising semantic web technology. Before this can be
realised however there must a common understanding of the
structure of information among people or software agents, to
enable reuse of domain knowledge and to make domain
assumptions explicit. As a first step towards achieving this
shared conceptualization this paper develops an ontology for
Open Source Software Development. Such an ontology
would enable better categorisation of information and the
development of sophisticated search agents, providing the
basis for a next generation open-source repository which
better caters for the needs of different users. The paper also
applies the ontology to a proof-of-concept semantic portal
designed for use in open-source development in order to
demonstrate its utility.

II. OPEN-SOURCE DEVELOPMENT METHODOLOGIES

One of the first authors to describe the open-source
development process was Eric Raymond in his paper “The
Cathedral and the Bazaar” [6]. Raymond’s contribution is
particularly important due to its widespread adoption by the
open-source community as the defacto manifesto for open-
source development. In the paper Raymond contrasts

2008 IEEE International Conference on Signal Image Technology and Internet Based Systems

978-0-7695-3493-0/08 $25.00 © 2008 IEEE

DOI

606

2008 IEEE International Conference on Signal Image Technology and Internet Based Systems

978-0-7695-3493-0/08 $25.00 © 2008 IEEE

DOI

606

2008 IEEE International Conference on Signal Image Technology and Internet Based Systems

978-0-7695-3493-0/08 $25.00 © 2008 IEEE

DOI 10.1109/SITIS.2008.114

606

2008 IEEE International Conference on Signal Image Technology and Internet Based Systems

978-0-7695-3493-0/08 $25.00 © 2008 IEEE

DOI 10.1109/SITIS.2008.114

606

conventional software engineering practices utilising tightly
co-ordinated, centralised teams, following rigorous
development processes (which he labels cathedral-style
development) to a bazaar-style development where no
particular development approach is mandated and developers
are free to develop what they wish in their own way. It is
argued that this chaotic style of development leads to a
greater exploration of the problem space in that it is
consistent with an evolutionary principle of mutation and
survival of the fittest, in so far as the best solution is likely to
be incorporated into the evolving software product [7].

It is important to note that despite the incredible popularity
of the Cathedral and Bazaar, a number of authors have been
critical arguing the Bazaar metaphor is too simplistic.The
black and white picture painted by Raymond (monolithic,
authoritarian Cathedral model vs. democratic, distributed
Bazaar model) is too simplistic. These metaphors for high
centralization (Cathedral) and no centralization (Bazaar) do
not account for the size of a given project; its complexity,
timeframe and time pressures; its access to resources and
tools; and, whether we are talking about core functionally
(like Linux kernel) or peripheral parts of the system [8]

The success of open-source software has led to companies

adopting it for use and developing open-source software
themselves, companies such as Sun Microsystems, Netscape
and IBM currently sponsor large open-source development
projects. Two such projects, the office productivity suite
OpenOffice.org and the Mozilla web browser, are notable in
their size and complexity, and the development process for
each differs significantly from the traditional “bazaar” style
development described by Raymond. As the economic
models for open-source are still relatively immature a number
of companies have attempted to “borrow” the best features of
open-source development whilst keeping proprietary control
over their product’s code, whilst not strictly open-source
these “closed” imitations point to the significance of the
open-source phenomenon. Amongst these hybrid
development models are Microsoft’s Shared Source [9]
program and the Corporate Source program as applied at
Hewlett-Packard [10]. The emerging phenomenon of
corporate sponsored open-source project requires a
development methodology which allows the sponsor to retain
much of the control whilst continuing to elicit contributions
and stimulate development from the open-source developer
community. Striking a balance between corporate and
community control is a difficult proposition and would be
made easier if articulated in an appropriate software
development methodology, however the literature is
conspicuously absent in this regard.

III. OPEN-SOURCE LIFECYCLE

Open source web portals such as Sourceforge1 and
Freshmeat2 classifies an open source project into different
stages of development as follows:

1. Planning - no code written, the project is just a
proposal. Once code is written the project enters the
next stage.

2. Pre-Alpha - Some source code available, the code is
not expected to compile or run. The code might be
confusing for outside observers and may lack
coherence.

3. Alpha - Code works for some configurations,
beginning to take shape. Development notes begin to
appear. New features are rapidly being added. As soon
as the volume of new features begins to decrease the
project enters its Beta stage.

4. Beta - The code is deemed feature complete but is not
error free. Once the number of faults is deemed low
enough, the project releases a stable version.

5. Production/Stable - The software can be depended
upon for daily use. Any changes are applied carefully,
and the intent of changes is to increase the products
stability not to add new functionality. If no significant
changes are required over a long period of time the
project enters the Mature stage.

6. Mature - There is little or no development occurring
but the project continues to be maintained.

7. Inactive - The software ceases to be maintained.
Whilst Sourceforge might be happy to accept projects in

the planning and pre-alpha stages it is clear that for an open
source project to succeed it needs to be carried through to the
alpha stage and produce a runnable prototype before the
development community will get involved with the project.
Eric Raymond observes “It’s fairly clear that one cannot code
from the ground up in bazaar style. One can test, debug, and
improve in bazaar style, but it would be very hard to originate
a project in bazaar mode Your nascent developer community
needs to have something runnable and testable to play with.”
[6].

Thus most open source projects begin their life when a
prototype is introduced to the community and made available
under an open source complaint license and the planning and
pre-alpha stages are replaced by the development of a
prototype essentially in a closed fashion. Furthermore the
Sourceforge classifications do nothing to describe the
evolutionary nature of open source development. Figure 1
describes the lifecycle of an open source project illustrating
how development and stable branches to the codebase are
used to facilitate evolutionary development. When the
development code is deemed stable it is packaged for release
and split off into the maintenance branch where it becomes
the current stable release, the newly released code is then
used as the development codebase for the next set of features
and therefore forms the initial “alpha” code for the next

1 http://www.sourceforge.net
2 http://www.freshmeat.net

607607607607

production release. Any bug fixes required for a stable release
are applied and merged back into the development branch as
needed.

IV. COORDINATION IN OPEN-SOURCE

Coordination in commercial software development is
usually achieved through the use of a variety of mechanisms
both explicit and implicit. Explicit mechanisms include such
things as interface specifications, processes, plans, staffing
profiles, and reviews. Implicit mechanisms include
knowledge of who has expertise in what area, as well as
customs and habits about how things are done. Ad-hoc or
informal communication can also be used to overcome
coordination problems, however as the complexity of the
coordination increases the utility of informal communication
decreases. When software development is performed using
geographically dispersed developers the problem of
coordination becomes more complicated. Mockus et. al.
consider the Apache HTTP server project as an example of
coordination in an open-source development project [11]. The
Apache approach to coordination can be summarized as
follows:

• A small core team responsible for creating the vast
majority of new functionality coordinate their work
using informal communication and implicit
mechanisms

• In order to join the core group, candidates must
demonstrate expertise in a needed specialist area and
commitment to the project

• A larger group of people contribute bug fixes which
are reviewed and acted upon by the core group

• A much larger group test the code through using it
and submit problem reports when encountered

• There is no formal requirements process, developers
are themselves the end users and feature selection is
based on what the developers themselves deem
appropriate

• Work is not delegated; individuals select what work
they will do.

A number of limitations can be identified with this

approach to coordination:
• This approach to coordination works well with a

small core team but the reliance on informal
communication becomes a liability as the size of the
team increases.

• The size of the project is obviously also constrained
by the size of the core team, as all changes must be
approved and committed by a member of the team.

• It is also essential for developers to be users because
of the absence of a requirements process.

Many open-source software projects are kept deliberately

small with related functionality developed as independent
open-source projects which interact through a well defined
interface. This ensures the project does not become of a size
that is unmanageable for the core team of developers. This

small team requirement runs counter to Raymond’s “bazaar”
style development metaphor and is not appropriate for open-
source projects which are sponsored by large organizations
and to commercial variations on the open-source
development model such as Hewlett Packard’s corporate
source model.

A. Roles in open-source development
Open source projects begin their lives when the project

founder releases the project under an open source compliant
license, at this time the project founder is entrusted with the
guardianship of the project until such time as they hand over
control to a new guardian.

Involvement in an open source project can be broadly
catergorised as passive or active. Passive participants are
consumers of the product and have no input into the
development process, active participants contribute to the
process in a variety of ways. Each participant in an open-
source software project may assume many roles. Roles can be
classified as external to the project (untrusted) or internal to
the project (trusted). External active participants can
contribute to the project by suggesting features, submitting
bug reports, contributing to discussion forums, creating
documentation or submitting patches. Internal active
participants may maintain the project repository, be

Project Birth

Project Death

Unstable/Dev elopment Branch

Stable/Maintenance BranchAlpha

Beta

Code Freeze
Mature Code

Current Production
Release

production releasecode deemed stable

code feature complete

new production release

cease maintenancecease development

merge code fixrelease code

Fig. 1. Open source lifecycle

608608608608

responsible for reviewing contributions, prepare bug fixes and
implement new features, manage new releases, build the
development tree periodically, and generally make decisions
about the direction of the project.

V. OPEN-SOURCE REPOSITORIES

The community around an open-source software project
usually interacts through asynchronous textual modes of
communication, such as email and threaded discussions,
which are logged in publicly browsable World Wide Web
repositories. The merits of proposed changes, requirements
for the product, any problems are all debated in the open and
archived along with the source code for the product. Open-
source repositories serve to advertise the product, document
its use, provide help to end users of the product, capture
feature requests and bugs from users and developers, support
developer collaboration and provide the entry point for new
developers to accustom themselves with the project.
Repositories are also the means by which users and
developers upload and download the product in source and
binary form. It is therefore not surprising that these
repositories typically contain vast amounts of information.

The information contained within an open-source
repository serves as a record of the community knowledge
accumulated throughout the development process and as such
represents an artefact of vital importance. It is therefore
unfortunate that the current open-source software repositories
in widespread use provide little support in terms of their
ability to structure information so that it is meaningful to
different types of user. Much of the information contained
within open-source repositories is unstructured, meaning that
even if a question has previously been discussed and dealt
with it is not a trivial task to locate it, leading to rework,
confusion amongst developers and possibly deterring new
developers from getting involved. Ankolekar, Herbsleb and
Sycara [3] sum up this problem succinctly “there is a need to
get the right information to the right person for the current
task, and to present it in an understandable, usable way”.

VI. TOWARDS AN ONTOLOGY BASED OPEN-SOURCE
DEVELOPMENT

In order to better organise the information generated in an
open-source project we need a conceptual framework that
promotes agreement on how information should be organised,
without losing any of the flexibility of allowing people to
express and view parts in their own familiar expression
language. Understanding the meaning of shared information
on the web can substantially be enhanced if the information is
mapped onto a domain ontology.

Gruber [12] defines an ontology as “explicit formal
specifications of the terms in the domain and relations among
them”. An ontology includes definitions of basic concepts in
a domain and relations among them, these definitions are

expressed in a machine-interpretable way allowing for the
development of artificially intelligent applications.

McGuiness and Noy [13] provide five reasons for the
development of an ontology, namely :to share common
understanding of the structure of information among people
or software agent; to enable reuse of domain knowledge; to
make domain assumptions explicit; to separate domain
knowledge from the operational knowledge; to analyse
domain knowledge

As previously stated open-source repositories store vast
amounts of information whilst providing little support for its
categorisation and retrieval. It would seem obvious that a
common understanding of the structure of information in
open-source repositories is something desirable.

An open-source software development ontology would
encompass diverse, complex, domain knowledge, technology
and skills will ensure a common ground for distributed
collaboration and interactions. It is envisaged that such an
ontology could be used as a basis for better organising the
community knowledge contained within open-source
repositories and provide the backbone for a next-generation
semantic open-source development portal/repository [14].
The semantic portal would be responsible for parsing newly
entered documents and generating associations/links by
comparing the parsed document against the ontology. This
dynamic link generation results in a more intelligent resultant
hypertext [15].

VII. OVERVIEW OF THE ONTOLOGY

The first activity to be performed in any engineering
activity is to decide upon the system’s purpose and its
intended uses, ontology engineering is no different in that we
begin with specifying a number of competency questions, and
scenarios of use [16].

By establishing a series of competency questions we can
determine the ontology’s scope, and its applicability,
competency questions also provide a means to evaluate an
ontology.

An open source ontology designed with the intention to
better organise community knowledge would need to be able
to answer questions like; who performs the different tasks?
how are the tasks performed? what tools are used? and so on.
The following key competency questions can be identified:
(1)What output is produced? (2)What activities are
performed? (3)Who is responsible for performing the
different activities? (4) What procedures need to be followed?
(5)What tools are used? These questions are by no means
exhaustive but they are used to initially scope the ontology
and may be revised if later found to be missing. Once the
scope of the ontology and its competency questions are
identified relevant concepts and relations should be identified.
This task can initially be performed using a top-down
approach, where the most general concepts are identified and
then broken down into specializations, or a bottom-up

609609609609

approach, which begins by defining specific concepts and
groups them into related classes.

Using the competency questions as input, a top-down
approach is used to discover the base classes (concepts).
Table 1 presents the resultant six base classes for the OSDO
along with their respective descriptions.

TABLE I. OSDO Base Classes

Class Description
Participant Any person who uses or contributes to the

project.
Role Represents in what capacity a participant was

acting when they performed an activity in the
project. There are some roles that may be
assumed by any participant whilst only certain
participants may assume other roles.

Activity Any action that results in a contribution to the
project or where the projects resources have
been used in some way.

Procedure Any established and well defined behaviour for
the accomplishment on some activity.

Artefact Any storable input to or output from an
activity.

Tool Any software resource used by a procedure in
order to accomplish some activity.

TABLE 2. OWL Definition

<owl:Class rdf:about="#Paticipant">
 <owl:disjointWith rdf:resource="#Tool"/>
 <owl:disjointWith rdf:resource="#Artefact"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Procedure"/>
 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Activity"/>
 <owl:disjointWith rdf:resource="#Role"/>
 <rdfs:subClassOf
rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Role"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="assumesRole"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

Once defined, these classes can be represented in a formal

ontology language (such as RDF, DAML+OIL or OWL). We
have chosen to implement our ontology using OWL-DL [17].
as it is a dedicated ontology language with large-scale
semantic web community support. The ontology was
constructed in OWL using the Protégé3 application.The full

3 http://protege.stanford.edu/

ontology specification in OWL is omitted from this paper for
sake of brevity but an example is provided as a means of
illustration providing the OWL definition for the
“Participant” class (Table 2). The base classes are further
defined through a series of restrictions. Restrictions are used
to restrict the individuals that may belong to a class and
enable us to reason with the ontology (Falbo, Menezes et al.
1998). For example the class Participant is restricted with the
existential restriction:

∃ assumes Role

This states that any individual of the Participant class

assumes at least one Role. Restrictions can be used to express
complicated logic. The following restrictions define an
Activity (a1) to be preactivity of Activity (a2) iff (a1)
produces an Artefact (s) which (a2) requires.

(∀ a, s) (produces(a, s) → activity(a,*) ∧ artefact(s))
(∀ a, s) (requires(a, s) → activity(a,*) ∧ artefact(s))
(∀ a1, a2) (preactivity(a1, a2) ↔ (∃ s) requires(a2,s) ∧
produces(a1,s))

Once appropriate restrictions are defined for each of the

base classes, defining sub-classes for each of Role, Activity,
Procedure, Artefact and Tool can further extend the ontology.
For example Role can be further broken down into either a
Consumer or a Contributor. Consumers typically use the
product but do not actively contribute to its development
(other than promoting the product through its very use) and
may often be anonymous; contributors however contribute
directly to the product through source code development,
project support, documentation, administration and so on. The
Contributor role can therefore be broken down into a number
of further specialized classes.

A. Exploring the base classes

This section further describes the open source ontology
showing the proposed subclasses for each of the base classes.
A number of figures have been produced displaying a
hierarchy of concepts using the OWLViz4 plugin for Protégé.
OWLViz presents its concepts as ellipses with relationships
marked as lines with hollow-headed arrows. The top-level
concept in all OWL ontologies is defined as owl:Thing and
all base classes presented in Section 3.2 are defined as
immediate subclasses of owl:Thing.

1) Role/Participant

The Participant and Role classes define respectively who
participates in an open source project and what parts they
play in the development. Figure 2 displays a partial view of
the Participant/Role hierarchy. Role can be further broken

4 http://www.co-ode.org/downloads/owlviz/

610610610610

down into either a Consumer or a Contributor. Consumers
typically use the product but do not actively contribute to its
development (other than promoting the product through its
very use), contributors however contribute directly to the
product through source code development, project support,
documentation, administration and so on. The Contributor
role can therefore be broken down into a number of further
specialised classes namely Administrator, Developer,
Manager, Documenter, and QualityAssurance roles.

Furthermore Developer can be broken down into those

developers whose capabilities are trusted and have designated
areas of development responsibility (InternalDeveloper) and
those whose capabilities are unknown to the project
(ExternalDeveloper). Some internal developers are granted
extra responsibilities and may become a ModuleOwner .

2) Activity

The Activity class defines the tasks performed during the
development of an open source project. Figure 3 displays a
partial view of the Activity hierarchy. Activities can be
broken down into different categories namely:
AdministrativeActivity, ManagementActivity,
ConsumeProduct, GenerateCode, GenerateDocumentation, or
QualityControlActivity.

3) Procedure

The Procedure class defines how activities are to be
performed. Figure 4 provides a partial view of the Procedure
hierarchy. Procedures can be broken into the following
categories: AccessControlProcess, BackupProcess,

DefectManagemenrProcess, CodeApprovalProcess,
DocumentationProcess, ReleaseManagementProcess,
RequirementsProcess, TestingProcess, or
VersionControlProcess.

4) Artefact

The Artefact class defines what the development process
produces. Figure 5 provides a partial view of the Artefact
hierarchy. Artefacts are organised into Code and Document
classes. The Code class is further broken down into Build,
Module or Patch. Build can then be broken down again into
Promotion or Release. Finally Release can be categorised into
DevelopmentRelease or StableRelease. The Document class
can be categorised into DefectReport, HelpDocument,
License, Vision, or ReleaseDocument. Help documents can
be further categorised as FAQ, Tutorial or HowTo. Whilst
ReleaseDocument can be broken down into API, DefectList,
ReleaseNotes, UserGuide, DevelopersGuide, or InstallGuide.

Fig. 2. Roles (concepts are ellipses, the “is-a” indicates indicates inheritance
with all concepts derived from the top level concept owl:Thing)

Fig. 3. OSDO Activities

Fig. 4. OSDO Procedures

Fig. 5. OSDO Artefacts

611611611611

5) Tool
The Tool class organises the different types of tool required

to support development of an open source project. Figure 6
provides a partial view of the Tool hierarchy. Tools can be
categorised as BackupSystem,
AsynchronousCommunicationTool,
SynchronousCommunicationTool, ,
ContentManagementSystem, DefectManagementSystem,
SoftwareConfigurationManagement, or TestFramework.

VIII. AN ONTOLOGY DRIVEN ARCHITECTURE

Whilst ontologies are useful things in themselves, their real
power can only be realised when applied to a broader
application framework. In the case of the OSDO our
motivation was to better organise open source project
repositories. It is proposed that the OSDO could provide the
basis for the development of a semantically aware project
repository (or portal).

A number of semantic portals have been described in the
literature including SEAL [18] and OntoViews [19]. In this
section we propose an architecture (depicted in Figure 7) for a
semantic portal based on the SEAL project.

The architecture consists of the following components:

• Semantic database – provides storage of semantic

content and inferencing capabilities.
• Semantic query – querying facilities which exploit

the inferencing capabilities of the semantic database
and provides facilities such as semantic ranking.

• RDF generation – a facility to enable remote
applications to interact at the RDF level.

• Template services –form generation for user input
based on the reference ontology.

• Navigation – provides semantic linking and a
dynamically generated portal structure.

• Annotation / Parsing – all new content is parsed
against the reference ontology and semantically
annotated before being stored in the database.

Each of the components of the architecture with the

exception of the Annotator/Parser is present and well
described in the SEAL project. To adopt a semantic portal for
use in an open source project the addition of some form of
automatic/semi-automatic annotation is a necessity because of
the high likelihood of developers rejecting the requirement to
manually annotate their contributions.

Take for example a bug report. Typically bugs are entered

using a web form that requires the user to enter a bug
description in free form text (perhaps a binary dump or screen
shot) and some metadata (which may or may not be optional).
The free form text can be parsed to identify terms known to
the ontology and annotated accordingly whilst the metadata
could be checked for consistency using the inferencing
capabilities of the semantic database and if consistent
annotated before being stored in the database for future
reference. The problem of identifying duplicate bug reports
and resolving incorrectly classified reports has been identified
previously in the literature [4], semantically annotated bug
reports could suggest possible duplicates via semantic query
and ranking mechanisms thus aiding in this (largely manual)
time consuming task. Semantic annotation could also allow
bug reports could also be automatically emailed (or stored in
a pigeon hole) to the responsible module maintainer or allow
developers to identify a relevant discussion from a mailing-
list archive, there are numerous possibilities for such a
system.

Ontology engineering is a highly collaborative process; it is
of no use to develop an ontology which is mathematically
precise but not accepted by domain experts. Due to the public
nature of open-source software development the knowledge
acquisition process can consist largely of the analysis and
retrieval of the existing information stored in open-source
repositories. Nevertheless it is vital that this ontology be
promoted to the open-source and semantic web communities
throughout stages of the development process in order to
elicit feedback and agreement about the methodology
employed for development of the ontology and the ontology
itself, this will be done through the publication of journal

Fig. 6. OSDO Tools

Fig. 7 Ontology Driven Architecture

612612612612

papers, conference presentations and the publishing of the
results as an open-source project in itself.

IX. CONCLUSION

This paper presents an ontology for open source software
development. The proposed ontology is intended to be work
in progress for discussion and adaptation. All ontology
engineering is iterative and collaborative and the authors
welcome any comment on what is presented herein.

The authors intend to further refine the ontology and to
validate it using data from live open source projects. The
architecture proposed needs to be implemented and validated
using real data. Indeed the use of semantic portals in
applications such as the one proposed and the continuing
evolution of web portal technology provide numerous
potential research opportunities. Importantly the ontology
will provide practitioners with a basis for developing
semantic web services in order to better organize community
knowledge in open source development projects. Such web
services have the potential to increase the efficiency of open
source development and to make open source projects more
accessible to those developers who would like to contribute to
a project but are discouraged by the high barriers to entry.

REFERENCES
[1] G. Simmons & T.S Dillon, “Critical Comparison of Agile Methods and

Open Source Development through a Case Study,” Proceedings of the
international conference on software and systems engineering and their
applications, Paris, France, 2003a.

[2] G. Simmons & T.S Dillon, “Open Source Development and Agile
Methods,” Proceedings of the 7th IASTED international conference on
software engineering and applications, Marina del Rey, CA, USA,
2003b.

[3] A. Ankolekar, J. Herbsleb & K. Sycara, “Addressing Challenges to
Open Source Collaboration With the Semantic Web Taking Stock
Bazaar”, Proceedings of the 3rd workshop on open source software
engineering, 25th ICSE, Portland , USA, 2003.

[4] L. Gasser, W. Scacchi, G. Ripoche & B. Penne, “Understanding
Continuous Design in F/OSS Projects,” Proceedings of the
international conference on software and systems engineering and their
applications, Paris, France, 2003.

[5] W. Scacchi, “Understanding Requirements for Developing Open
Source Software Systems,” IEEE Proceedings - Software, vol. 149, no.
1, pp. 24-39, 2002.

[6] E.S. Raymond, The Cathedral & the Bazaar (2 ed.), Sebastapol, CA:
O'Reilly, 2001.

[7] K. Kuwabara, “Linux: A Bazaar at the Edge of Chaos,” First Monday,
vol. 5, no. 3, 2000.

[8] N. Bezroukov, “A Second Look at the Cathedral and the Bazaar,” First
Monday, vol. 4, no. 12, 1999

[9] Microsoft, Shared Source Licensing Programs. Retrieved 1/2/2005,
2005

[10] J. Dinkelacker & P. Garg, “Corporate Source: Applying Open Source
Concepts to a Corporate Environment,” Proceedings of the 1st
workshop on open source software engineering, the 23rd international
conference on software engineering, Toronto, Canada, 2001.

[11] A. Mockus, R.T. Fielding & J. Herbsleb, “A Case Study of Open
Source Software Development: The Apache Server,” Proceedings of
the 22nd international conference on software engineering, Limerick,
Ireland, 2000.

[12] T.R. Gruber, “A Translation Approach to Portable Ontology
Specification,” Knowledge Acquisition, vol. 52, no.6, pp. 1111-1133,
1993.

[13] N. F. Noy & D. McGuinness, Ontology Development 101: A Guide to
Creating Your First Ontology (No. KSL-01-05), Stanford Knowledge
Systems Laboratory. 2001

[14] G. Simmons & T.S. Dillon, “Towards an Ontology for Open Source
Software Development,” Proceedings of the second international
conference on open source systems, Como, Italy, 2006.

[15] C. Goble, S. Bechhofer, L. Carr, D. Roure & W. Hall, “Conceptual
open hypermedia = the semantic web,” Proceedings of the WWW2001,
Semantic Web Workshop, Hongkong, 2001.

[16] M. Grunninger & M. S. Fox, “Methodology for the Design and
Evaluation of Ontologies,” Proceedings of the IJCAI-95 workshop on
basic ontological issues in knowledge sharing, Montreal, August 19-
20th 1995.

[17] D.L. McGuinness & F. V. Harmelen, “OWL Web Ontology Language
Overview,” W3C, 2005

[18] A. Maedche, S. Staab, N. Stojanovic, R. Struder & Y. Sure, “Semantic
portal - the SEAL approach,” Institute AIFB, University of Karlsruhe,
Germany, 2001.

[19] E. Mäkelä, E. Hyvöne, S. Saarela & K. Viljanen, “OntoViews - A Tool
for Creating Semantic Web Portals,” The Semantic Web - ISWC 2004,
Hiroshima, Japan, 2004.

613613613613

