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Antenna Rotation Error Tolerance for a
Low-Frequency Aperture Array Polarimeter

Adrian T. Sutinjo and Peter J. Hall

Abstract—We present antenna rotation error tolerance analysis
for a polarimeter consisting of dual-linearly polarized dipole-like
elements. Treating the elements as a phased array and expressing
the measurement basis as circularly polarized (CP) results in
a concise expression for the Jones matrix for the array. For
the type of elements being considered, the matrix shows that
the intrinsic cross-polarization ratio (IXR) of the array at the
intended beam scanning direction is unaffected by small rotation
errors. For random rotation error and very large number of
elements, we further find that the relative Jones matrix estimation
error converges to that of the error-free case at the intendedbeam
scanning direction; however, the effect of element rotation error
on array directivity and radiation pattern remains. Recasting
the analysis with the array observing an unpolarized source, a
relation between rotation error and cross-polarization “leakage”
is obtained, wherein similar trends with very large number of
elements hold true. Practical examples involving “large” number
of elements such as the low frequency Square Kilometre Array
are discussed.

Index Terms- Antenna theory, Radio astronomy, Po-
larimetry

I. I NTRODUCTION

Precise alignment of dipole-like antennas for low-frequency
aperture arrays (LFAAs) is generally thought to be of great
importance especially for polarimetry, where rotation mis-
alignment translates to raw cross-polarization error. In recent
low-frequency telescopes, this has been accomplished via ele-
mental alignment to pre-surveyed metallic grids. One example
of this is the Murchison Widefield Array (MWA) “tile” [1], [2]
(a regularly spaced array of 16 “bowties” combined through
an analog beamformer, as seen in Fig. 1) where the elements
are clipped to the mesh wires that have been pre-surveyed to
align with N-S and E-W. A similar grid assisted method was
also employed in LOFAR [3], [4]1.

Although this method was satisfactory in the MWA and
might scale to the Square Kilometre Array (SKA) LFAA,
we are motivated here to revisit rotational error tolerance
for the LFAA for a few of reasons. Firstly, as a result
of bandwidth requirement for the SKA LFAA (tentatively,
70-450 MHz [6] or 50-300 MHz [7]), recently developed
candidate elements have been designed to be wideband and
directional in absence of a metallic ground plane. A couple of
cases in point are the zenith-directed, and nearly azimuthally
pattern-symmetric, conical spiral antenna [8] and the log-
periodic antenna (SKALA) [9], [10]. Hence, the possibilityof
having to align the antennas in the absence of a grid and the
tolerance involved should be considered as well as the longer
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1Another alignment method using a spotting scope to a distant geographical
marker was employed in the long wavelength array (LWA) [5]. Dueto the lack
of similarly distant landmark at the Murchison Radio-Astronomy Observatory,
this method is not being considered.

term consideration of deploying very high number of elements
and/or “stations” (e.g., the SKA1 LFAA Baseline Design calls
for 289 elements per station and 911 stations [7]. A “station”
is a beamformed array similar to an MWA “tile” but consisting
of more elements.). Secondly, in deploying a prototype array
at the Murchison Radio-Astronomy Observatory (MRO) [10],
[11] using a compass for alignment, we found a standard
deviation of approximately5o; a review is needed to determine
if this is acceptable. Finally, a figure-of-merit for radio po-
larimeters, the intrinsic cross-polarization ratio (IXR), which
is more fundamental than raw cross-polarization ratios has
recently been introduced [12]2. A review of rotation error
tolerance in terms of IXR may reveal a more fundamental view
of error tolerance than suggested by raw cross-polarization.

Figure 1. A close-up photo of an MWA tile placed on a 5 m X 5 m wire
mesh. The elements are connected to an analog beamformer seen on the right.

The aim of the analysis here is to estimate the degree
of alignment required in the deployment of large number
of elements. This is intended to provide input to next gen-
eration MWA and other low frequency arrays such as the
SKA LFAA [7]. The division in hierarchy between phased
array beamforming and correlation for LFAA remains a topic
of discussion [14]. However, in our scope, we make the
assumption that a (large) number elements are beamformed as
a simple phased array to form a “station” beam. A summary
of this work highlighting key results is presented in [15]; here,
more detailed steps on the derivations and discussions on large
and very large number of elements are given.

The rest of the paper is organized as follows. Sec. II details
the Jones matrix derivation for the phased array of dipole-
like elements including rotation error. In sections III andIV,
the impact of the error is quantified in terms of fundamental

2Jones IXR is a fundamental figure-of-merit in that it is relatedto the
condition number of the Jones matrix and is independent of coordinate
systems. It provides an upper bound estimate for total relative error of the
sky Jones vector [12], [13]

||∆e||
||e|| /

(

1 +
2√
IXR

+ . . .

)(

||∆J||
||J|| +

||∆f ||
||f ||

)

(1)

where||∆J||/||J|| and||∆f ||/||f || are the relative errors for the Jones matrix
estimation and the measured vector, respectively.
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figure-of-merit and Jones polarimetry input errors. Additional
calculations involving a polarimeter illuminated with a single
unpolarized source are presented in Sec. V. Finally, the
implications of the findings are summarized in Sec. VI.

II. JONESMATRIX DERIVATION

Using linear polarization (LP) bases, the polarimeter re-
sponse for a dual-polarized orthogonal Hertzian-dipole pair
with rotation error (superscripti refers to pairi as shown in
Fig. 2 for an array of N elements) may be written as:

f
i = E

i
JLe (2)

where f
i = (f i

x, f
i
y)

T indicates the measured vector,e =
(eθ, eφ)

T denotes the sky Jones vector, and

JL =

(

Jxθ Jxφ
Jyθ Jyφ

)

(3)

is the Jones matrix for the pair (assumed identical for all
pairs in the array). We point out thatf i, JL, and e in (2)
are functions ofφ and θ (spherical coordinate). The rotation
error matrix in (2) for pairi is given by

E
i =

(

cos δi sin δi
− sin δi cos δi

)

(4)

For orthogonal Hertzian dipoles, (2, 4) are exact forany δi
and (φ, θ) as the IXR pattern is invariant with respect toφ.
However for practical (such as half-wavelength) dipoles, some
azimuthal IXR undulations exist. In these cases, (2, 4) are not
exact but they provide very good approximation for a wide
range ofθ if δi is restricted tosmall angles (see Appendix A
for a quantitative example) such that the equality sign in (2)
can be replaced by an approximate sign (≈). Note that (2,
4) are not applicable to antennas with large azimuthal IXR
variations such as a dual-polarized Vivaldi elements [16]3.

Figure 2. Rotational misalignment in an array of identical cross-dipole
elements (top view).δi is the rotation error of pairi.

3This restriction is not a concern within our scope as many low-frequency
aperture arrays such as the MWA and LOFAR do use dipole-like ele-
ments (where only small undulations are expected; case in point: MWA
bowties [17]). Furthermore, the practice of using dipole-like elements is likely
to continue in the future as reflected in the SKA LFAA BaselineDesign [7].
Regarding the presence of ground plane below the dipoles (such as in MWA or
LOFAR), it should be pointed out that the treatment here is fully applicable.
It may be accounted for in the Jones matrix (3) by ascalar array factor
multiplier which does not affect the results.

Assuming that the antenna pairs are identical4, the polarime-
ter response for a planar array is given by

f =
1

N

(

N
∑

i=1

ej(kxxi+kyyi+ϕi)E
i
)

JLe (5)

wherekx = (2π/λ) sin θ cosφ, ky = (2π/λ) sin θ sinφ, xi, yi
are the element positions, andϕi is the phase shift for pairi.
Converting the array measurement basis from LP to CP5

fC =
1

N
R

(

N
∑

i=1

ej(kxxi+kyyi+ϕi)E
i
)

JLe (6)

where fC = (fl, fr)
T (subscriptsl,r refer to left hand (LH)

and right hand (RH) CP, respectively) and the transformation
matrix is

R =
1√
2

(

−j 1
1 −j

)

(7)

Note thatR may be taken into the summation in (6). Recog-
nizing

RE
i =

(

e−jδi 0
0 ejδi

)

R (8)

we note that rotation error manifests as oppositely signed
phase shifts for the LH and RH components, respectively [18].

The array factors due to the positive and negative phase
errors are given by

F± =
1

N
s
T
d
± (9)

where s = [ej(kxx1+kyy1+ϕ1) . . . ej(kxxN+kyyN+ϕN )]T and
d
+ = (d−)∗ = [ejδ1 · · · ejδN ]T . As a result, we may now

write (6) more concisely

fC =

(

F− 0
0 F+

)

RJLe

= FRJLe (10)

The rotation error for the array is now expressed as diagonal
matrix that pre-multiplies the error-free Jones matrix. For ease
of interpretation, (10) is expressed using CP sky basis

fC = FJCeC (11)

where JC = RJLR
H is the CP Jones matrix andeC =

(el, er)
T is the CP sky vector.

4We should point out that (5) applies when mutual coupling is negligible,
such as for an irregularly spaced sparse array. However, in the presence of
mutual coupling, if the embedded element Jones matrices may be assumed
identical and rotation error is small, (5) may be used

5This transformation is performed for convenience as it leads to an intuitive
interpretation of the results. Note that multiplication by unitary matrixR only
amounts to a change of coordinate system and does not alter theIXR [12],
[17].
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III. E FFECTS OFROTATION ERROR ONIXR

In this section, we examine if rotation error fundamentally
alters the polarimeter’s figure-of-merit. The Jones intrinsic
cross-polarization ratio is given by [12]

IXR =

(

σmax/σmin + 1

σmax/σmin − 1

)2

(12)

whereσmax and σmin refer to the maximum and minimum
singular values of the Jones matrix in question which in
this case isJerr

C = FJC . Numerical computation of IXR is
straightforward for a given array with element rotation error.
However, it is useful to understand rotation effect on IXR
analytically; hence, we discuss the following special case.

At the intended beam scanning direction(θt, φt),
kx(θt, φt)xi + ky(θt, φt)yi + ϕi = 0. In this case,

F±

t =
1

N

N
∑

i=1

e±jδi (13)

where the subscriptt has been introduced as a shorthand for
(θt, φt). Note that

F+
t = (F−

t )∗ (14)

such that

fCt = F−

t

(

1 0
0 1∠(−2F−

t )

)

JCeC

= F−

t M
err

JCeC (15)

Note that Merr in (15) is a unitary matrix. As IXR
is unitarily invariant [12], [17] and is unaffected by scalar
multiplication, we find

IXR(Jerr
C (θt, φt)) = IXR(JC(θt, φt)) (16)

In other words, if the rotation error model described by (2, 4)
is exact (e.g., for dual-polarized Hertzian dipoles) the funda-
mental figure-of-merit for a polarimeter at the intended beam
scanning direction (for a discussion regarding IXR at(θ, φ),
see Appendix B). suffers no degradation in comparison to the
error-free case. Again, in practical cases where the rotation
error model is an approximation for small errors, the equality
sign in (16) is to be replaced with an approximate (≈) sign.
Note that our treatment so far has been deterministic such that
(16) applies to random and non-random error distributions for
anyN . In the case of random errors, our finding is consistent
with recent numerical simulation result from a 16-element
SKALA array with±15o random error where negligible effect
on IXR was reported [10].

In view of (16) and (1), if the total relative input error to
the polarimeter is held constant, the relative output errorupper
bound remains unchanged. Naturally, this leads to the question
of how much the total relative input error degrades in the
presence of rotation error. This is discussed in next.

IV. JONESPOLARIMETRY INPUT ERRORS FORLARGE N

The previous section deal with the first factor in (1). This
section addresses the effect of rotation error on the second
factor in (1) for large and very largeN .

A. Input Errors for N → ∞
In remainder of this document, we assumeδi to be a

Gaussian random variable with zero mean6and varianceσ2

(independent and identically distributed fori = 1 . . . N ) and
restrict the treatment to(φt, θt). The mean ofFt is

E[Ft] = e−σ2/2 (17)

From array tolerance theory [20]–[23], directivity relative to
the error-free case is given by

D

D0
=

1

1 + σ2
≈ E[Ft]

2 (18)

which is plotted in Fig. 3.
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Figure 3. D/D0 vs. rotation error.σ = 5.7o, 10o, 13o result in directivity
degradations of 1%, 3%, 5%, respectively

Variances for the real and imaginary parts ofFt for large
N are given by [24]

σ2
r =

1 + e−2σ2

2N
− e−σ2

N

σ2
i =

1− e−2σ2

2N
(19)

These standard deviations are plotted in Fig. 4. Note thatσi

is dominant. Also, forσi << 1, σ2
i ≈ σ2/N .

1) ||∆J||/||J|| Estimate: In this asymptotic case, variances
for the real and imaginary parts ofFt (∝ 1/N ) vanish, and
we obtain

J
err
C ≈ E[Ft]JC (20)

AsE[Ft] is a scalar factor, it is reasonable to expect that it may
be removed by appropriate normalization such thatJ

err
C ≈ JC .

This implies that, for largeN , ||∆J||/||J|| may be assumed
to be the same as the rotation error-free case.

6Note that “zero” mean introduces no additional constraint tothe analysis.
Non-zero mean error can be “zeroed” by re-adjusting the reference for
rotation error in Fig. 2 to that non-zero mean. We further point out that
the lack of a priori knowledge regarding this non-zero mean presents no
complication. If this array is a constituent of a multiple baseline interfer-
ometer [19], in the CP basis and given our foregoing assumptions, non-zero
mean errors can be represented as anon-direction dependent diagonal matrix
([exp (−jδ), 0; 0, exp (jδ)], whereδ is that non-zero mean error) which
multiplies F in (10). Theδ terms are subsumed as complex gain phase and
are solved during the “complex gain” calibration step.
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Figure 4. Standard deviations×
√
N of the real and imaginary components

of Ft vs. rotation error.

2) ||∆f ||/||f || Estimate: Rigorous analysis of measurement
error requires a noise model, which is beyond our scope.
However, it suffices here to assume that the array sensitivity
at a given frequency is proportional to the array directivity

Ae

Tsys

∝ D (21)

(i.e., the system temperature,Tsys, is assumed constant with
small changes in directivity). Therefore, we assume directivity
degradation as a function of rotation error to be proportional
to the (square of) relative error in the measurement. Fig. 3
demonstrates that directivity degrades with increasing rotation
error, which for largeN is the dominant source of degradation.
It is reasonable here to set rotation error budget commensurate
to a level of acceptable directivity degradation. For instance,
directivity degradation of 5% or less requiresσ ≤ 13o. Note
that rotation error also degrades radiation pattern properties
such as sidelobe levels which may be accounted for as
required [20]–[23].

B. Input Errors for Large N

Similar arguments as found in Sec. IV-A may be made for
large but finiteN . The question is what is a largeN? N may
be considered sufficiently large ifσi << E[Ft] ≈ 1. Referring
to N0.5σi curve in Fig. 4 and takingσ = 10o as an example,
N ≈ 172 = 289 results inσi ≈ 0.01. Similarly, for σ = 5o,
N ≈ 92 = 81 is sufficiently large.

V. UNPOLARIZED SOURCE

The previous sections made no assumption about the polar-
ization property of the source. However, as radio astronomy
sources are generally unpolarized or are weakly polarized [25],
we now refine our calculations to account for this.

Carrying on the analysis from the previous section and
assuming that there exists a single point source at the intended
beam direction(θt, φt), the autocorrelation matrix may be
written as

V = JBJ
H (22)

whereB =
〈

ee
H
〉

is the brightness matrix andJ is the Jones
matrix for the entire array at the intended beam direction. Let
(22) represent the rotation error-free case. Introducing rotation
error to allN elements in the array while keeping the same
source at(θt, φt), we obtain

Ṽ = J̃BJ̃
H (23)

where .̃ indicates the presence of error. To extract the bright-
ness matrix from (23) without accounting for rotation errors
(assuming no error-correction scheme is involved), we write

B̃ = J
−1

Ṽ(JH)−1

= J
−1

J̃BJ̃
H(JH)−1 (24)

For an unpolarized source,B = I/2 [26]. For this special
case, (24) simplifies to

B̃ =
1

2
J
−1

J̃J̃
H(JH)−1 (25)

Assuming CP bases7 and small rotation errors as before

B̃ ≈ 1

2
J
−1

FJJ
H
F

H(JH)−1 (27)

whereF = F−

t M
err as per (15). Note that the interjection of

the diagonal matrixF and introduces off-diagonal “leakage”
(i.e., non-zero cross-polarization correlation:〈ele∗r〉, 〈ele∗r〉)
terms inB̃. Multiplying the matrices, it can be shown that

B̃1,2 = B̃∗

2,1 =

(JllJrl)
∗(F−

t − F+
t )(F−

t JllJrr − F+
t JlrJrl) +

JlrJrr(F
−

t − F+
t )(−F−

t JlrJrl + F+
t JrrJll)

∗ (28)

where the scalar multiplier1/(2|det J|2) has been suppressed.
Estimates may be obtained by assumingJll ≈ Jrr ≈ 1, F±

t ≈
1, andJlr ≈ Jrl << 1, such that the leakage levels may be
approximated as

B̃1,2 ≈ 4jJ∆Im(F−

t ) (29)

whereJ∆ has been introduced to refer toJrl or Jlr.
As in Sec. IV, letδ1..N be independent Gaussian random

variables with zero mean and varianceσ2. Referring to (19),
the variance of the leakage levels for smallσ is

VAR[4J∆Im(F−

t )] ≈ (4J∆σ)
2

N
(30)

We note again that the variance vanishes with very large
number of elements. For finite number of elements and leakage
with a certain desired standard deviation, one may calculate
the minimum number of elements required for a givenσ and
J∆. This is illustrated in Tab. I for 0.5% leakage.

Further calculations based on an SKA LFAA station are
reported in Tab. II. Here the number of elements and leakage
standard deviation are fixed atN = 289 [7] and 0.5%,
respectively. Note that a moderateJ∆ of 0.2 requires rotation
standard deviation of≈ 6.1o whereas a “good”J∆ of 0.1 can
tolerate rotation error of≈ 12o.

7such that the Jones matrix is given by

J =
1

2

(

Jll Jlr
Jrl Jrr

)

(26)

where the subscriptsl andr refer to left and right hand circular polarizations,
respectively.
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Table I
NUMBER OF ELEMENTS REQUIRED TO ACHIEVE LEAKAGE WITH

STANDARD DEVIATION OF 0.5%.1− (E[Ft])2 IS THE DIRECTIVITY

DEGRADATION IN PERCENT. J∆ AND σi ARE VOLTAGE QUANTITIES.

J∆ σ (o) N 1− (E[Ft])2 (%) σi

0.1 5 49 0.8 0.0125
0.1 10 195 3 0.0125

0.33 5 531 0.8 0.004
0.33 10 2123 3 0.004

Table II
ROTATION ERROR STANDARD DEVIATION (σ) REQUIRED TO ACHIEVE

LEAKAGE WITH STANDARD DEVIATION OF 0.5%FORN = 289.

J∆ σ (o) 1− (E[Ft])2 (%) σi

0.1 12.2 4.4 0.012
0.2 6.1 1.1 0.006
0.33 3.7 0.4 0.004

It is interesting to note that, in contrast to previous section
where no source polarization was defined, the definition of
the unpolarized source provides information on the interplay
between rotation error and cross-polarization levels of the
element. Further, we point out that Tabs. I and II include
information gleaned from the previous sections to demonstrate
that both polarization and directivity properties of the array
may now be accounted for. We see that for all of the calculated
cases, the number of elements required to maintain a 0.5%
leakage are consistent with those which are required to keep
σi << 1. Should cases be found where these are not the case,
one should choose the higher number of elements.

VI. CONCLUSION

For an array of dual-polarized orthogonal Hertzian dipoles,
the polarimeter’s Jones IXR at the intended beam scan-
ning direction is unaffected by element rotation error; this
is approximately true for practical dual-polarized (such as
half-wavelength) dipoles for small rotation errors. When the
rotation error is random and the number of elements very
large, at the intended beam scanning, the relative Jones matrix
estimation error converges to that of the error-free case,
however, rotation error affects array directivity and radiation
pattern. To quantify the relation between rotation error, cross-
polarization levels of the elements and number of elements,we
presented calculations involving an unpolarized source where
the number of elements required to achieve a target cross-
polarization correlation leakage may be estimated. Depending
on the target, rotation error, and the Jones matrix of the
antenna, the required “large” number may vary from tens
to thousands of elements. Conversely, when the number of
(large) elements are fixed, one may compute the rotation error
required to maintain a cross-polarization correlation leakage.
Our calculations for 289 elements in an SKA LFAA station
show that a moderate antenna raw-cross polarization of 0.2
requires rotation standard deviation of approximately6.1o.
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APPENDIX A

This appendix discusses the small azimuthal undulations
seen in practical dipoles and their impact on our formulation.
Fig. 5 reports the IXR variation seen in orthogonal half-
wavelength dipoles as a function ofφ for a few θ. The
IXR undulations has a period of90o and therefore are not
φ invariant (the undulations decrease with decreasing dipole
lengths and in the limit of Hertzian dipoles are non-existent).

The rotation error model described by (2, 4) is a unitary
operation as (4) is a unitary matrix and therefore does not
reflect the rotation of the IXR pattern with rotation error. Thus,
the applicability of (2, 4) is to be limited to small angles. For
rotation errors of a few degrees, the expected IXR errors are
small (of roughly 0.5 dB or less for5o error) as annotated
in the figure below for the givenθ angles. The impact of
small IXR change to1+2/

√
IXR, the first factor in the right-

handside of (1), is also small. For instance for the annotated
points (φ = 20o and25o) at θ = 45o in Fig. 5,1+2/

√
IXR =

1.41 and1.39, respectively, a difference of only 1.4%.
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Figure 5. Azimuthal undulations calculated for orthogonal half-wavelength
dipoles (assuming sinusoidal current distribution) at the indicatedθ angles.
Note that for small angles (such as5o), the difference in IXR is approximately
0.5 dB or less.

APPENDIX B

This appendix is a commentary on Sec. III. We examine
the possibility of a more general statement regarding IXR at
(φ, θ). From (10)

F =

(

s
T
d
− 0

0 s
T (d−)∗

)

(31)

In general,sT (d−)∗ 6= (sTd−)∗ such thatIXR(Jerr
C (θ, φ)) 6=

IXR(JC(θ, φ)). However, if s is a real vector, which is
fulfilled at (φt, θt), sT (d−)∗ = (sTd−)∗ leading to (16). A
full design study should involve IXR evaluation for the array
in (θ, φ) of interest which, in practice, is limited to the main
beam.
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Next, we look at IXR(φ, θ) in an “average” sense. Letδi be
a Gaussian random variable with zero mean and varianceσ2

(independent and identically distributed fori = 1 . . . N ). The
mean array factor is

E[F±] =
1

N
E[sTd±]

= E[e±jδi ]F

= e−σ2/2F (32)

whereF = s
T [1 · · · 1]/N is the error-free array factor. The

mean Jones matrix with error is given by

E[Jerr
C ] = e−σ2/2FJC (33)

Thus if “average” IXR is computed asIXR(E[Jerr
C ]), we

obtain

IXR(E[Jerr
C (θ, φ)]) = IXR(JC(θ, φ)) (34)

More rigorous investigation on this question requires treating
the average IXR asE[IXR(Jerr

C )], which is beyond our current
scope. However, the result in (34) leads us to conjecture, given
the foregoing assumptions, that the average IXR is unaffected
by random errors.
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