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Two-way Compress-and-forward Relaying With Multiple MIMO Relay Nodes

Yue Rong, Senior Member, IEEE

Abstract—In this letter, we consider a two-way communication
system where two source nodes exchange information via multiple
relay nodes. The source and relay nodes may have multiple
antennas and the compress-and-forward strategy is applied at
each relay node. We aim at maximizing the sum-rate of two-way
communication. An iterative algorithm is proposed to jointly
optimize the source precoding matrices, the compression noise
covariance matrices, and the time-sharing factor. Numerical
simulation results show a better performance of the proposed
algorithm compared with existing techniques.

Index Terms—Compress-and-forward, MIMO relay, two-way
relay.

I. INTRODUCTION

Due to its great potential in extending the network coverage
and enhancing the link reliability, wireless relay communica-
tions have attracted much research interest recently. In general,
there are three types of relay strategies [1]: amplify-and-
forward (AF), decode-and-forward (DF), and compress-and-
forward (CF). In the AF strategy, the relay node only amplifies
(including a possible linear transformation) and retransmits its
received signals. Therefore, in general the AF strategy has
lower complexity and shorter processing delay than the DF and
CF strategies. However, the AF relay strategy does not stop the
noise propagation. In the DF strategy, the relay node first de-
codes the information from the received signal. Then, the relay
node re-encodes the information and retransmits the encoded
signals. Thus, the DF strategy stops noise propagation, but
at the cost of higher complexity and longer processing delay.
The CF strategy provides an effective complexity-performance
tradeoff by compressing the received signals at the relay node
before forwarding them to the destination node.

When nodes in a relay network have multiple trans-
mit/receive dimensions, we call such system a multiple-input
multiple-output (MIMO) relay system. Performance of various
relay strategies in MIMO relay systems has been investigated
in [2]. Recent progress on the optimization of AF MIMO relay
systems has been summarized in [3]. The optimization of the
transmit covariance matrices in DF MIMO relay systems has
been addressed in [4].

In [5], a one-way CF MIMO relay system with multiple
relay nodes has been studied, where the covariance matrices
of the compression noise vectors are optimized. For a two-
way CF MIMO relay system with one relay node, the optimal
covariance matrix of the compression noise vector has been
derived recently in [6]. It is shown in [6] that the CF strategy
can improve the system spectral efficiency, especially when
the relay node is close to one of the two source nodes.
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In this letter, we consider a two-way communication system
where two source nodes exchange information via multiple
relay nodes and the source and relay nodes may have multiple
antennas. Such system has been addressed in [7] where the
AF strategy is used at relay nodes and the two-way sum
mean-squared error (MSE) of the signal waveform estimation
is adopted as the design criterion. Different to [7], in this
letter, the CF strategy is applied at each relay node, and we
aim at maximizing the sum-rate of two-way communication.
Compared with [5], [6], [8], and [9], we consider two-way
MIMO relay systems with multiple relay nodes and develop
an iterative algorithm to jointly optimize the source precoding
matrices, the compression noise covariance matrices, and the
time-sharing factor.

Interestingly, we show that the optimal source precoding
matrices have a beamforming structure, and the proposed
algorithm can determine the optimal number of data streams
that should be transmitted by each source node in order to
maximize the sum-rate of two-way communication. More-
over, we optimize the covariance matrix of the compression
noise vector at each relay node iteratively by exploiting the
matrix approximate joint diagonalization. We also optimize
the time-sharing factor between two stages of two-way relay
communication. Numerical simulation results show a better
performance of the proposed algorithm compared with existing
techniques.

II. SYSTEM MODEL

We consider a two-way communication system where two
nodes exchange information with the assistance of K relay
nodes. For simplicity, we assume that each source node has N
antennas, while each relay node is equipped with L antennas.
The algorithm developed in this letter can be straightforwardly
generalized to relay systems where all nodes have different
number of antennas. Using half-duplex relay nodes, the com-
munication between two source nodes is completed in two
stages. At the first stage, node i transmits xi = Bisi to all
relay nodes for a time of t, where si is the Mi×1 information-
carrying source symbol vector, and Bi is the N ×Mi source
precoding matrix at node i. In general, there is Mi ≤ N , and
the approach of choosing the optimal Mi will be introduced
later on. We assume that E[sisHi ] = IMi , i = 1, 2, where E[·]
stands for the statistical expectation, (·)H denotes the matrix
(vector) Hermitian transpose, and In is the n × n identity
matrix. The received signal vector at the kth relay node is

yr,k = Hr1,kB1s1 +Hr2,kB2s2 + vr,k, k = 1, · · · ,K (1)

where Hri,k, i = 1, 2, k = 1, · · · ,K, is the L × N MIMO
channel from node i to the kth relay node, vr,k is the additive
white Gaussian noise (AWGN) vector at the kth relay node.
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At the second stage, the relay nodes compress the received
signal vectors as

ŷr,k = yr,k + qk, k = 1, · · · ,K (2)

where qk is the compression noise vector at the kth relay node
with complex Gaussian distribution as CN (0,Ck). Then ŷk

is encoded to xr,k and broadcasted to nodes 1 and 2 for the
remaining time of 1− t. The received signal vector yi at node
i can be written as

yi =
K∑

k=1

Hir,kxr,k + vi, i = 1, 2 (3)

where Hir,k is the N × L MIMO channel from the kth
relay node to node i and vi is the AWGN vector at node
i. We assume that vr,k, k = 1, · · · ,K, and vi, i = 1, 2,
are independent and identically distributed (i.i.d.) complex
circularly symmetric AWGN with zero mean and unit variance.

Let us introduce Ri as the rate of source node i, i = 1, 2.
According to [8], the achievable rate region of the two-
way MIMO multi-relay communication system using the CF
strategy is given by

Ri ≤ tI(si; ŷr|sī), i = 1, 2 (4)
s.t. tI(yr; ŷr|si) ≤ (1− t)I(xr;yi), i = 1, 2 (5)

where I(·; ·) denotes mutual information, ŷr,
[
ŷT
r,1,· · ·, ŷT

r,K

]T
,

yr ,
[
yT
r,1, · · · ,yT

r,K

]T , and xr ,
[
xT
r,1, · · · ,xT

r,K

]T . Here,
(·)T denotes matrix (vector) transpose, ī = 2 for i = 1, and
ī = 1 for i = 2. The constraints in (5) guarantee that the
information carried in ŷr can be reliably transmitted to nodes 1
and 2 [8].

For the two-way relay system in (1)-(3), the mutual infor-
mation terms in (4) and (5) can be written as

I(si; ŷr|sī) = log

∣∣∣∣∣IN+BH
i

K∑
k=1

HH
ri,k(IL+Ck)

−1Hri,kBi

∣∣∣∣∣(6)

I(yr; ŷr|si) = log
∣∣IKL + (HrīBīB

H
ī HH

rī + IKL)C
−1

∣∣ (7)

I(xr;yi) = log

∣∣∣∣∣IL +

K∑
k=1

Pr,k

L
HH

ir,kHir,k

∣∣∣∣∣ (8)

where Pr,k, k=1, · · · ,K, is the transmission power available
at the kth relay node, (·)−1 and | · | denote matrix inversion
and determinant, respectively, Hri ,

[
HT

ri,1, · · · ,HT
ri,K

]T ,
i = 1, 2, C , bd[C1, · · · ,CK ], and bd[·] stands for a block
diagonal matrix.

III. PROPOSED JOINT SOURCE AND RELAY DESIGN
ALGORITHM

In this section, we develop an iterative algorithm to maxi-
mize the sum-rate of two-way communication R1+R2 through
jointly optimizing the source precoding matrices B1 and B2,
the covariance matrices of the compression noise vectors Ck,
k = 1, · · · ,K, and the time-sharing factor t. Using (6)-(8),
the sum-rate optimization problem can be written as

max
t,{Ck},B1,B2

t

2∑
i=1

log

∣∣∣∣∣IN+BH
i

K∑
k=1

HH
ri,kC

−1
k (IL +C−1

k )−1

×Hri,kBi| (9)

s.t. t log
∣∣IKL + (HriBiB

H
i HH

ri + IKL)C
−1

∣∣
≤ (1− t)ai, i = 1, 2 (10)
tr(BiB

H
i ) ≤ Pi, i = 1, 2 (11)

0 < t < 1, Ck ≥ 0, k = 1, · · · ,K (12)

where {Ck} , {Ck, k = 1, · · · ,K}, tr(·) denotes matrix
trace, Pi, i = 1, 2, is the transmission power available at the
ith source node, and ai , log

∣∣∣IL +
∑K

k=1
Pr,k

L HH
īr,k

Hīr,k

∣∣∣,
i = 1, 2. It can be expected that the system sum-rate increases
with the number of relay nodes.

The problem (9)-(12) is highly nonconvex with matrix
variables, and the globally optimal solution is intractable to
obtain. In the following, we develop an iterative algorithm
to solve the problem (9)-(12). First, we show the optimal
structure of B1 and B2.

A. Optimal Source Precoding Matrices

Note that since∣∣IKL + (HriBiB
H
i HH

ri + IKL)C
−1

∣∣
=
∣∣IKL +C+HriBiB

H
i HH

ri

∣∣ |C−1|
=
∣∣IKL +HriBiB

H
i HH

ri(IKL +C)−1
∣∣ ∣∣C−1

∣∣ |IKL +C|

=

∣∣∣∣∣IMi +BH
i

K∑
k=1

HH
ri,kC

−1
k (IL +C−1

k )−1Hri,kBi

∣∣∣∣∣
×
∣∣IKL +C−1

∣∣ , i = 1, 2 (13)

the constraints in (10) can be rewritten as

log

∣∣∣∣∣IMi
+BH

i

K∑
k=1

HH
ri,kC

−1
k (IL +C−1

k )−1Hri,kBi

∣∣∣∣∣ ≤ ei

(14)
where ei , ai(1− t)/t− log

∣∣IKL +C−1
∣∣, i = 1, 2.

It can be seen from (9), (11), and (14) that for given {Ck}
and t, B1 and B2 can be optimized separately through solving
the problem of

max
Bi

log

∣∣∣∣∣IMi+B
H
i

K∑
k=1

HH
ri,kC

−1
k (IL+C−1

k )−1Hri,kBi

∣∣∣∣∣ (15)

s.t. log

∣∣∣∣∣IMi
+BH

i

K∑
k=1

HH
ri,kC

−1
k (IL+C−1

k )−1Hri,kBi

∣∣∣∣∣≤ei(16)

tr(BiB
H
i ) ≤ Pi. (17)

Let us introduce the eigenvalue decomposition (EVD) of
K∑

k=1

HH
ri,kC

−1
k (IL +C−1

k )−1Hri,k = Vi∆iV
H
i , i = 1, 2

where Vi is the N × Mi (semi)-unitary eigenvector matrix
with VH

i Vi = IMi , ∆i is the Mi × Mi eigenvalue matrix
with the main diagonal elements sorted in descending order.
It can be easily shown [9] that the optimal Bi as the solution
to the problem (15)-(17) has the structure of

Bi = ViΘ
1
2
i , i = 1, 2 (18)

where Θi is an Mi × Mi diagonal matrix. In fact, Mi is
the rank of

∑K
k=1 H

H
ri,kC

−1
k (IL +C−1

k )−1Hri,k. Thus, (18)
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determines the optimal number of data streams that should
be transmitted by each source node in order to maximize the
sum-rate of two-way communication.

Using (18), the problem (15)-(17) can be written as

max
θi,1,··· ,θi,Mi

Mi∑
n=1

log(1 + δi,nθi,n) (19)

s.t.

Mi∑
n=1

log(1 + δi,nθi,n) ≤ ei (20)

Mi∑
n=1

θi,n ≤ Pi, θi,n ≥ 0, n = 1, · · · ,Mi (21)

where δi,n and θi,n are the nth main diagonal elements of ∆i

and Θi, respectively. Using the Lagrange multiplier method
[11] to solve the problem (19)-(21), we obtain

θi,n = (1/νi − 1/δi,n)
+, n = 1, · · · ,Mi

where x+ , (x, 0), νi > 0 is the Lagrangian multiplier and
can be found as follows. Let us assume that the constraint∑Mi

n=1 θi,n ≤ Pi is active at the optimal solution, then νi is
the solution to the nonlinear equation of

Mi∑
n=1

(1/νi − 1/δi,n)
+ = Pi. (22)

Otherwise, the constraint (20) must be active at the optimal
point. Then νi is the solution to the nonlinear equation of

Mi∑
n=1

log(1 + δi,n(1/νi − 1/δi,n)
+) = ei. (23)

Since the left-hand side of (22) and (23) are both monoton-
ically decreasing with respect to νi, (22) and (23) can be
efficiently solved using the bisection method [11].

B. Optimization of the Compression Noise Covariance Matri-
ces and the Time-sharing Factor

From (9), (10), (12), and (13), for fixed B1, B2, and t,
{Ck} can be optimized by solving the problem of

max
{Ck}

2∑
i=1

log

∣∣∣∣∣IMi +

K∑
k=1

H̄H
ri,kC

−1
k (IL +C−1

k )−1H̄ri,k

∣∣∣∣∣ (24)

s.t. log

∣∣∣∣∣IMi +
K∑

k=1

H̄H
ri,kC

−1
k (IL +C−1

k )−1H̄ri,k

∣∣∣∣∣
+ log

∣∣IKL +C−1
∣∣ ≤ bi, i = 1, 2 (25)

Ck ≥ 0, k = 1, · · · ,K (26)

where H̄ri,k , Hri,kBi, bi , ai(1− t)/t, i = 1, 2. The prob-
lem (24)-(26) can be solved by updating {Ck} alternatingly.
For fixed Cj , j = 1, · · · ,K, j ̸= k, the problem of optimizing
Ck can be written as

max
Ck

2∑
i=1

log
∣∣Ai,k + H̄H

ri,kC
−1
k (IL +C−1

k )−1H̄ri,k

∣∣ (27)

s.t. log
∣∣Ai,k + H̄H

ri,kC
−1
k (IL +C−1

k )−1H̄ri,k

∣∣
+ log

∣∣IL +C−1
k

∣∣ ≤ ci,k, i = 1, 2 (28)
Ck ≥ 0 (29)

where Ai,k , IMi +
∑K

j=1,j ̸=k H̄
H
ri,jC

−1
j (IL+C−1

j )−1H̄ri,j ,
ci,k , bi −

∑K
j=1,j ̸=k log

∣∣IL +C−1
j

∣∣, i = 1, 2. Note that by
using the identity of∣∣Ai,k + H̄H

ri,kC
−1
k (IL +C−1

k )−1H̄ri,k

∣∣
=
∣∣∣IL + H̄ri,kA

−1
i,kH̄

H
ri,kC

−1
k (IL +C−1

k )−1
∣∣∣ |Ai,k|

=
∣∣∣IL + (IL + H̄ri,kA

−1
i,kH̄

H
ri,k)C

−1
k

∣∣∣ ∣∣IL +C−1
k

∣∣−1 |Ai,k|

the optimization problem (27)-(29) can be rewritten as

max
Ck

2∑
i=1

log
∣∣∣IL + (IL + H̄ri,kA

−1
i,kH̄

H
ri,k)C

−1
k

∣∣∣
−2 log |IL +C−1

k | (30)

s.t. log
∣∣∣IL+(IL+H̄ri,kA

−1
i,kH̄

H
ri,k)C

−1
k

∣∣∣≤di,k, i = 1, 2(31)

Ck ≥ 0 (32)

where di,k , ci,k − log |Ai,k|.
Let us introduce the following approximate joint diagonal-

ization [10] of two matrices

IL + H̄ri,kA
−1
i,kH̄

H
ri,k = UkΣi,kU

H
k , i = 1, 2 (33)

where Uk is a unitary matrix and Σi,k, i = 1, 2, are
approximate diagonal matrices. By neglecting the off-diagonal
elements of Σi,k, i = 1, 2, the optimal C−1

k is given by

C−1
k = UkΛkU

H
k (34)

where Λk is a diagonal matrix. Based on (33) and (34), the
problem (30)-(32) can be approximated as

max
λk,1,··· ,λk,L

L∑
l=1

2∑
i=1

[log(σi,k,lλk,l + 1)− log(λk,l + 1)] (35)

s.t.
L∑

l=1

log(σi,k,lλk,l + 1) ≤ di,k, i = 1, 2 (36)

λk,l ≥ 0, l = 1, · · · , L (37)

where σi,k,l and λk,l, l = 1, · · · , L, are the lth main diagonal
elements of Σi,k and Λk, respectively. Using the Lagrange
multiplier method [11], the solution to the problem (35)-(37)
is given by

λk,l = −gk,l,1 +
√
g2k,l,1 − gk,l,2, l = 1, · · · , L (38)

where

gk,l,1 =
1

2

[
1 +

1

µk,1 + µk,2

(
1 + µk,1

σ2,k,l
+

1 + µk,2

σ1,k,l
− 2

)]
gk,l,2 =

1

µk,1 + µk,2

(
µk,1 − 1

σ2,k,l
+

µk,2 − 1

σ1,k,l
+

2

σ1,k,lσ2,k,l

)
.

Here µk,1 ≥ 0 and µk,2 ≥ 0 are the Lagrangian multipliers.
We would like to mention that the approximate joint diag-
onalization approach has been used in [6] to optimize the
compression noise covariance matrix for a two-way CF MIMO
relay system with a single relay node.

For given B1, B2, and C, based on the constraint (10), the
optimal t is given by

t = min
i=1,2

ai

log
∣∣IKL + (HriBiBH

i HH
ri + IKL)C−1

∣∣+ ai
.

(39)
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TABLE I
PROCEDURE OF SOLVING THE PROBLEM (9)-(12) BY THE PROPOSED

ITERATIVE ALGORITHM

1) Initialize the algorithm with C
(0)
k = IL, k = 1, · · · ,K, and B

(0)
i =√

Pi/NIN , i = 1, 2; Set m = 0.
2) Update t(m+1) as (39) with fixed {C(m)

k } and {B(m)
i }.

3) For i = 1, 2, update B
(m+1)
i as (18) through solving the problem

(19)-(21) with given {C(m)
k } and t(m+1).

4) For k = 1, · · · ,K, update C
(m+1)
k as (34) by solving the problem

(35)-(37) with fixed
{
B

(m+1)
i

}
, t(m+1), and C

(m)
j , j = 1, · · · , L,

j ̸= k.
5) If SR(m+1) − SR(m) ≤ ε, then end.

Otherwise, let m := m+ 1 and go to Step 2.

Obviously, t given by (39) satisfies 0 < t < 1.
The procedure of using the proposed iterative algorithm to

solve the problem (9)-(12) is listed on Table I, where the
superscript (m) stands for the variable in the mth iteration,
SR refers to the sum-rate (9), and ε is a small positive number
of convergence criterion. We observed that under ε = 0.01,
the proposed algorithm usually converges within 10 iterations,
although a rigorous proof of the convergence is difficult. Since
the complexity order of updating Bi and Ck is O(N3) and
O(L2), respectively, the per-iteration computational complex-
ity of the proposed algorithm is O(N3 +KL2).

IV. NUMERICAL EXAMPLES

In the numerical simulations, all channel matrices have i.i.d.
complex Gaussian entries with zero-mean and unit variance.
The noises are i.i.d. Gaussian with zero mean and unit vari-
ance. We assume that Pr,k = Pr, k = 1, · · · ,K, and set
P1 = P2 = 0dB.

In the first example, we set K = 1, N = L = 4, and
compare the performance of the proposed algorithm with (a)
the “Relay Only” algorithm in [6] where the compression noise
covariance matrix C1 is optimized based on Bi =

√
Pi/NIN ,

i = 1, 2, and t = 0.5; (b) the “Source and Relay Only”
algorithm where C1, B1, and B2 are optimized iteratively
with t = 0.5. The sum-rate of three algorithms versus Pr is
shown in Fig. 1. It can be seen that the Relay Only algorithm
has the lowest sum-rate as the source precoding matrices
and the time-sharing factor are not optimized. By optimizing
the source precoding matrices, the system sum-rate can be
greatly improved. Obviously, the proposed algorithm yields
the largest sum-rate as it jointly optimizes C1, B1, B2, and
t. Interestingly, we observed that the optimal t increases with
Pr, and at the low Pr range (1dB – 6dB), the optimal t is
between 0.45 and 0.55. Therefore, in this example, t = 0.5 is
nearly optimal at low Pr.

In the second example, we study the sum-rate performance
of the proposed algorithm for two-way MIMO relay systems
with different K, N , and L. It can be clearly seen from
Fig. 2 that as expected, the system sum-rate increases with
the number of relay nodes and the number of antennas. We
can also observe that the proposed CF two-way MIMO relay
system has a higher sum-rate than the AF relay system in [7].

V. CONCLUSION

We have developed an iterative algorithm to jointly opti-
mize the source precoding matrices, the compression noise
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Fig. 1. Sum-rate of different algorithms versus Pr with K = 1.
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Fig. 2. Sum-rate versus Pr with different K, N , L.

covariance matrices, and the time-sharing factor of two-way
MIMO CF relay systems with multiple relay nodes. Simulation
results show a better performance of the proposed algorithm
compared with existing methods.
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[4] S. Simoens, O. Muñoz-Medina, J. Vidal, and A. del Coso, “On the
Gaussian MIMO relay channel with full channel state information,”
IEEE Trans. Signal Process. vol. 57, pp. 3588-3599, Sep. 2009.

[5] A. del Coso and S. Simoens, “Distributed compression for MIMO
coordinated networks with a backhaul constraint,” IEEE Trans. Wireless
Commun., vol. 8, pp. 4698-4709, Sep. 2009.

[6] X. Lin, M. Tao, and Y. Xu, “MIMO two-way compress-and-forward
relaying with approximate joint eigen-decomposition,” IEEE Commun.
Lett., vol. 17, pp. 1750-1753, Sep. 2013.

[7] Y. Rong, “Joint source and relay optimization for two-way MIMO
multi-relay networks,” IEEE Commun. Lett., vol. 15, pp. 1329-1331,
Dec. 2011.

[8] S. J. Kim, N. Devroye, P. Mitran, and V. Tarokh, “Achievable rate regions
and performance comparison of half duplex bi-directional relaying
protocols,” IEEE Trans. Inf. Theory, vol. 57, pp. 6405-6418, Oct. 2011.

[9] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beamform-
ing design for multicarrier MIMO channels: A unified framework for
convex optimization,” IEEE Trans. Signal Process., vol. 51, pp. 2381-
2401, Sep. 2003.

[10] J.-F. Cardoso and A. Souloumiac, “Jacobi angles for simultaneous
diagonalization,” SIAM Journal of Matrix Analysis and Applications,
vol. 17, pp. 161-164, Jan. 1996.

[11] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Uni-
versity Press, 2004.


