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Abstract

In this paper, we consider a class of nonlinear semi-infinite optimization problems. These problems involve
continuous inequality constraints that need to be satisfied at every point in an infinite index set, as well
as conventional equality and inequality constraints. By introducing a novel penalty function to penalize
constraint violations, we form an approximate optimization problem in which the penalty function is mini-
mized subject to only bound constraints. We then show that this penalty function is exact—that is, when
the penalty parameter is sufficiently large, any local solution of the approximate problem can be used to
generate a corresponding local solution of the original problem. On this basis, the original problem can be
solved as a sequence of approximate nonlinear programming problems. We conclude the paper with some
numerical results demonstrating the applicability of our approach to PID control and filter design.
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1. Introduction

In this paper, we consider semi-infinite programming problems of the following form:

minimize f(x) (1a)

subject to ϕi(x, ω) ≤ 0, ω ∈ Ωi, i ∈ C, (1b)

gi(x) ≤ 0, i ∈ I, (1c)

hi(x) = 0, i ∈ E , (1d)

aj ≤ xj ≤ bj, j = 1, . . . , n, (1e)

where x = [x1, . . . , xn]
⊤ ∈ R

n is the decision vector; f , gi, hi : R
n → R and ϕi : R

n × Ωi → R are
continuously differentiable functions; aj and bj are given constants satisfying aj < bj; and Ωi ⊂ R are
compact intervals of positive measure. We refer to this problem as Problem (P).

If C = ∅, then Problem (P) is a standard nonlinear programming problem that can be solved efficiently
using well-known methods such as sequential quadratic programming (see [9, 10]). Thus, the main difficulty
with Problem (P) is the continuous inequality constraints (1b), which arise in a wide range of important
applications such as signal processing [11], circuit design [1, 12], and optimal control [6, 16]. Each continuous
inequality constraint in (1b) actually defines an infinite number of constraints—one for each point in Ωi.

Teo and Goh in [14] have proposed a simple approach for tackling Problem (P). This approach in-
volves transforming the continuous inequality constraints (1b) into the following set of equivalent equality
constraints:

ci

∫

Ωi

[

max{ϕi(x, ω), 0}
]2
dω = 0, i ∈ C, (2)

where ci > 0, i ∈ C are given weights. Thus, the continuous inequality constraints are replaced by a
finite set of equality constraints, and the resulting optimization problem can, in principle, be solved using
conventional techniques. The downside of this approach, however, is that the equality constraints (2) do not
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satisfy the standard linear independence constraint qualification, and thus numerical convergence cannot be
guaranteed.

To overcome this limitation, Jennings and Teo in [7] proposed an alternative method in which the
continuous inequality constraints (1b) are approximated as follows:

∫

Ωi

Lǫ(ϕi(x, ω))dω ≤ τ, i ∈ C, (3)

where ǫ > 0 and τ > 0 are adjustable parameters and Lǫ : R → R is a smooth approximation of max{·, 0}.
The approximating function Lǫ is specially designed so that Lǫ(η) ≥ 0 and Lǫ(η) → max{η, 0} as ǫ → 0.
Replacing (1b) with (3) yields an approximate nonlinear programming problem. It can be shown that for
each ǫ > 0, if τ is chosen sufficiently small, then any solution of the approximate problem is feasible for
Problem (P). Furthermore, the optimal cost of the approximate problem converges to the optimal cost of
Problem (P) as ǫ → 0. On this basis, a solution of Problem (P) can be obtained by solving a sequence of
approximate problems, where the parameters ǫ and τ are adjusted appropriately according to certain rules.

This idea was further developed in [15] with the introduction of the following penalty function, which is
based on the constraint approximation (3):

f(x) + σ
∑

i∈C

∫

Ωi

Lǫ(ϕi(x, ω))dω, (4)

where σ > 0 is the penalty parameter. Note that violations of the continuous inequality constraints (1b)
are penalized by the integral term in (4). It can be shown that for each ǫ > 0, if σ is made sufficiently large,
then any minimizer of (4) on the region defined by (1c)-(1e) is feasible for Problem (P). Thus, a solution of
Problem (P) can be obtained by minimizing (4) for appropriate choices of the parameters ǫ and σ.

Although the constraint approximation methods in [7, 15] generally perform well, numerical convergence
is only guaranteed when the approximate problems are solved in a global sense. However, in practice, the
approximate problems (and the original problem) are usually non-convex, and thus we can only expect
to solve them locally. Unfortunately, conditions under which a local solution of the approximate problem
converges to a local solution of the original problem are not known.

Motivated by this drawback, Yu et al. in [17, 18] recently introduced a new penalty function defined as
follows:

F (x, ǫ) ,











f(x), if ǫ = 0, ∆(x, ǫ) = 0,

f(x) + ǫ−α∆(x, ǫ) + σǫβ , if ǫ > 0,

∞, otherwise,

(5)

where

∆(x, ǫ) ,
∑

i∈C

∫

Ωi

[

max{ϕi(x, ω)− ǫγWi, 0}
]2
dω. (6)

Here, ǫ is a new decision variable, σ > 0 is the penalty parameter, and α > 0, β > 2, γ > 0, and Wi ∈ (0, 1),
i ∈ C are fixed constants.

Unlike (4), the penalty function (5) only involves one adjustable parameter (the penalty parameter σ).
Furthermore, when σ is sufficiently large (and certain technical conditions are satisfied), any local minimizer
of (5) can be used to generate a corresponding local minimizer of Problem (P) (with E = I = ∅). This
result is more practical than the convergence results given in [7, 15], which are only applicable when the
approximate problems are solved globally.

The penalty function (5) is a clear improvement over (4). However, it still has two disadvantages:

(i) Equations (5) and (6) involve |C|+ 3 fixed parameters, each of which needs to be selected judiciously.

(ii) Convergence is only guaranteed when there are no standard equality or inequality constraints (i.e.
I = E = ∅) and none of the bound constraints are active at an optimal solution.
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The aim of this paper is to address these issues by proving new convergence results under less stringent
conditions. In particular, we will show that the parameters Wi in (6) are actually unnecessary, and (5) is
still an effective penalty function when Wi = 0. Accordingly, the number of fixed parameters in the penalty
function can be significantly reduced from |C| + 3 to just 2. This simplified penalty function is still exact
in the sense that the penalty parameter is not required to reach infinity for the constraints in Problem (P)
to be satisfied. Furthermore, the numerical results in Section 5 show that our simplified penalty function is
just as effective as the original one proposed in [17, 18].

2. An Exact Penalty Function for Problem (P)

2.1. Definition of the Penalty Function

Let
X ,

{

x ∈ R
n : aj ≤ xj ≤ bj , j = 1, . . . , n

}

.

Define a constraint violation function on X as follows:

G(x) ,
∑

i∈E

[

hi(x)
]2

+
∑

i∈I

[

max{gi(x), 0}
]2

+
∑

i∈C

∫

Ωi

[

max{ϕi(x, ω), 0}
]2
dω.

Clearly, G(x) = 0 if and only if constraints (1b)-(1d) are satisfied. Furthermore, by Leibniz’s rule,

∂G(x)

∂x
= 2

∑

i∈E

hi(x)
∂hi(x)

∂x
+ 2

∑

i∈I

max{gi(x), 0}
∂gi(x)

∂x
+ 2

∑

i∈C

∫

Ωi

max{ϕi(x, ω), 0}
∂ϕi(x, ω)

∂x
dω. (7)

Thus, the constraint violation function is continuously differentiable.
Let ǫ ∈ [0, ǭ] be a new decision variable, where ǭ > 0 is a given upper bound. We define the following

penalty function on X × [0, ǭ]:

Fσ(x, ǫ) ,











f(x), if ǫ = 0, G(x) = 0,

f(x) + ǫ−αG(x) + σǫβ , if ǫ ∈ (0, ǭ],

∞, if ǫ = 0, G(x) 6= 0,

where σ > 0 is the penalty parameter and α and β are positive constants satisfying 1 ≤ β ≤ α. Note that
this condition on α and β is different to the condition in [17, 18], which requires α > 0 and β > 2.

The penalty function Fσ works as follows: when σ is large, the term σǫβ forces ǫ to be small, which
in turn causes the term ǫ−αG(x) to severely penalize constraint violations. Hence, minimizing the penalty
function for large values of σ will likely yield a feasible point of Problem (P). Accordingly, we consider the
following penalty problem in which the penalty function Fσ is minimized on X × [0, ǭ]:

min
(x,ǫ)∈X×[0,ǭ]

Fσ(x, ǫ).

We refer to this problem as Problem (Pσ).

2.2. Three Preliminary Lemmas

For each fixed σ > 0 and x ∈ X , consider the following one-dimensional subproblem of Problem (Pσ):

min
ǫ∈[0,ǭ]

Fσ(x, ǫ).

We refer to this subproblem as Problem (Pσ,x). Our first result characterizes the solution of Problem (Pσ,x).
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Lemma 1. Let σ > 0 and x ∈ X be arbitrary but fixed. Define

δ =
σβǭα+β

α
,

τ =

(

αG(x)

σβ

)
1

α+β

,

ǫ∗ =

{

τ, if G(x) < δ,

ǭ, if G(x) ≥ δ.

Then Problem (Pσ,x) has a unique global minimizer ǫ = ǫ∗. Furthermore, Problem (Pσ,x) does not have any

non-global local minimizers.

Proof. We consider two cases: (i) G(x) = 0 and (ii) G(x) 6= 0. For case (i), ǫ∗ = τ = 0 because δ > 0. Also,

Fσ(x, ǫ) = f(x) + σǫβ , ǫ ∈ [0, ǭ]. (8)

Since σ > 0 and β ≥ 1, it is clear from (8) that ǫ∗ = 0 is the unique global minimizer of Fσ(x, ·) on [0, ǭ].
Furthermore,

∂Fσ(x, ǫ)

∂ǫ
= σβǫβ−1 > 0, ǫ ∈ (0, ǭ],

which shows that Fσ(x, ·) is strictly increasing on (0, ǭ]. Hence, there are no local minimizers of Fσ(x, ·) on
the interval (0, ǭ].

Now, consider case (ii). We have

Fσ(x, ǫ) = f(x) + ǫ−αG(x) + σǫβ, ǫ ∈ (0, ǭ].

Differentiating Fσ with respect to ǫ yields

∂Fσ(x, ǫ)

∂ǫ
= −αǫ−α−1G(x) + σβǫβ−1, ǫ ∈ (0, ǭ].

Thus, for each ǫ ∈ (0, ǭ],

∂Fσ(x, ǫ)

∂ǫ











< 0, if ǫ < τ,

= 0, if ǫ = τ,

> 0, if ǫ > τ.

(9)

This shows that Fσ(x, ·) is strictly decreasing from ǫ = 0 to ǫ = τ , and then strictly increasing from ǫ = τ

onwards. Thus, there is only one possible minimizing point for Problem (Pσ,x): ǫ = τ if τ < ǭ, and ǫ = ǭ if
τ ≥ ǭ.

If G(x) ≥ δ, then

τ =

(

αG(x)

σβ

)
1

α+β

≥

(

αδ

σβ

)
1

α+β

= ǭ,

which implies that ǫ∗ = ǭ is the unique global minimizer of Problem (Pσ,x).
On the other hand, if G(x) < δ, then

τ =

(

αG(x)

σβ

)
1

α+β

<

(

αδ

σβ

)
1

α+β

= ǭ.

Hence, it follows that ǫ∗ = τ is the unique global minimizer of Problem (Pσ,x).
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Recall that the constraint violation G is a continuous function defined on the compact set X . Thus, G
is bounded on X ; that is, there exists a positive real number C > 0 such that

G(x) ≤ C, x ∈ X .

Let

σ̄ =
Cα

βǭα+β
.

Then for all σ > σ̄,

G(x) ≤ C =
σ̄βǭα+β

α
<

σβǭα+β

α
= δ, x ∈ X .

Thus, the following result follows immediately from Lemma 1.

Lemma 2. For each σ > 0 and x ∈ X , let

τ(σ,x) =

(

αG(x)

σβ

)
1

α+β

.

Then for all sufficiently large σ > 0, the unique global minimizer of Problem (Pσ,x) is ǫ = τ(σ,x).

On the basis of Lemma 1, we now derive the following result.

Lemma 3. Let (x∗, ǫ∗) be a local solution of Problem (Pσ). Then x∗ is a local solution of Problem (P) if

and only if ǫ∗ = 0.

Proof. Since (x∗, ǫ∗) is a local solution of Problem (Pσ), ǫ
∗ is a local solution of Problem (Pσ,x∗). But we

know from Lemma 1 that Problem (Pσ,x∗) does not have any non-global local solutions, and hence ǫ∗ must
be the unique global solution of Problem (Pσ,x∗).

Now, suppose that x∗ is a local solution of Problem (P). Then clearly G(x∗) = 0. Hence, Lemma 1
implies that the unique global solution of Problem (Pσ,x∗) is

ǫ∗ = τ =

(

αG(x∗)

σβ

)
1

α+β

= 0,

as required.
Conversely, suppose that ǫ∗ = 0. Then ǫ∗ = 0 is the unique global solution of Problem (Pσ,x∗). Thus,

since ǭ > 0, it follows from Lemma 1 that τ = ǫ∗ = 0. Therefore,

τ =

(

αG(x∗)

σβ

)
1

α+β

= 0.

This implies that G(x∗) = 0 and hence x∗ is feasible for Problem (P).
Next we will prove that x∗ is locally optimal for Problem (P). Since (x∗, ǫ∗) = (x∗, 0) is a local solution

of Problem (Pσ), there exists a real number γ > 0 such that

f(x∗) = Fσ(x
∗, 0) ≤ Fσ(x, 0), x ∈ Nγ(x

∗),

where
Nγ(x

∗) = {y ∈ X : ‖y − x∗‖ < γ }.

In particular, for all feasible points x ∈ Nγ(x
∗) satisfying constraints (1b)-(1d),

f(x∗) ≤ Fσ(x, 0) = f(x).

This shows that x∗ is a local solution of Problem (P), as required.
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3. Convergence Results and Algorithm

Recall that the penalty function Fσ is designed to penalize constraint violations more and more severely
as σ is increased. In this section, we will show that Fσ is a so-called exact penalty function. This means
that when the penalty parameter σ is sufficiently large, any local solution of Problem (Pσ) can be used
to generate a corresponding local solution of Problem (P). As we will see, this result forms the basis of a
computational algorithm for solving Problem (P).

Our first result shows that Problem (Pσ), the penalty problem, is well-posed.

Theorem 1. For each σ > 0, Problem (Pσ) has an optimal solution.

Proof. Let H(x) denote the optimal cost of Problem (Pσ,x). That is,

H(x) = min
ǫ∈[0,ǭ]

Fσ(x, ǫ).

Furthermore, let
X1 = {x ∈ X : G(x) ≤ δ }

and
X2 = {x ∈ X : G(x) ≥ δ },

where δ is as defined in Lemma 1. Then the sets X1 and X2 are clearly compact because G is continuous.
Let

τ(σ,x) =

(

αG(x)

σβ

)
1

α+β

It is easy to see that if G(x) = δ, then τ(σ,x) = ǭ. Hence, by Lemma 1, for each x ∈ X1,

H(x) = Fσ(x, τ(σ,x)) = f(x) +M
[

G(x)
]

β

α+β , (10)

where

M = σ
α

α+β

[

(

β

α

)
α

α+β

+

(

α

β

)

β

α+β

]

.

Since f and G are continuous, H defined by (10) is also continuous. Thus, H achieves its minimum value
on the compact set X1. In other words, there exists a vector x∗

1 ∈ X1 such that

Fσ(x
∗
1, τ(σ,x

∗
1)) = H(x∗

1) = min
x∈X1

H(x) = min
x∈X1

{

min
ǫ∈[0,ǭ]

Fσ(x, ǫ)

}

= min
(x,ǫ)∈X1×[0,ǭ]

Fσ(x, ǫ). (11)

Similarly, it follows from Lemma 1 that for each x ∈ X2,

H(x) = Fσ(x, ǭ) = f(x) +
G(x)

ǭα
+ σǭβ .

Thus, there exists a vector x∗
2 ∈ X2 such that

Fσ(x
∗
2, ǭ) = H(x∗

2) = min
x∈X2

H(x) = min
x∈X2

{

min
ǫ∈[0,ǭ]

Fσ(x, ǫ)

}

= min
(x,ǫ)∈X2×[0,ǭ]

Fσ(x, ǫ). (12)

Since X1 ∪ X2 = X , equations (11) and (12) give

min
(x,ǫ)∈X×[0,ǭ]

Fσ(x, ǫ) = min

{

min
(x,ǫ)∈X1×[0,ǭ]

Fσ(x, ǫ), min
(x,ǫ)∈X2×[0,ǭ]

Fσ(x, ǫ)

}

= min
{

Fσ(x
∗
1, τ(σ,x

∗
1)), Fσ(x

∗
2, ǭ)

}

.

Hence, either (x∗
1, τ(σ,x

∗
1)) or (x

∗
2, ǭ) is a global solution of Problem (Pσ).
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We now show that if a sequence of local solutions of Problem (Pσ) converges to a limit (x∗, ǫ∗) as σ → ∞,
then x∗ must be feasible for Problem (P).

Theorem 2. Let {σk}∞k=1 be an increasing sequence of penalty parameters such that σk → ∞ as k → ∞.

Furthermore, let (xk,∗, ǫk,∗) be a local solution of Problem (Pσk
). Suppose that {Fσk

(xk,∗, ǫk,∗)}∞k=1 is

bounded and xk,∗ → x∗ as k → ∞. Then x∗ is feasible for Problem (P).

Proof. Since {xk,∗} ⊂ X and X is compact, it is clear that x∗ ∈ X . We complete the proof by showing that
G(x∗) = 0.

Note that G(xk,∗) → G(x∗) as k → ∞ because G is a continuous function. Thus, if G(xk,∗) = 0 for all
sufficiently large k, then clearly G(x∗) = 0 and the proof is complete. We may therefore assume that there
exists a subsequence {xkl,∗}∞l=1 such that G(xkl,∗) > 0 for each integer l.

Since (xkl,∗, ǫkl,∗) is a local solution of the penalty problem with σ = σkl
, Lemma 1 implies that ǫkl,∗ is

the unique global solution of Problem (Pσ,x) with σ = σkl
and x = xkl,∗. Hence, since σkl

→ ∞ as l → ∞,
it follows from Lemma 2 that there exists an integer l1 > 0 such that

ǫkl,∗ = τ(σkl
,xkl,∗) =

(

αG(xkl ,∗)

σkl
β

)
1

α+β

> 0, l ≥ l1. (13)

Now, assume that G(x∗) > 0. Since f and G are continuous, there exists a real number γ > 0 and an integer
l2 ≥ l1 such that for all l ≥ l2,

f(xkl,∗) > f(x∗)− γ,

and

G(xkl,∗) > G(x∗)− γ > 0. (14)

Without loss of generality, we may assume that for all l ≥ l2,

σkl
>

α

β

(

M − f(x∗) + γ
(

G(x∗)− γ
)

β

α+β

)

α+β
α

, (15)

where M is an upper bound for Fσkl
(xkl,∗, ǫkl,∗) (recall that the sequence of penalty function values is

assumed to be bounded). Then for each integer l ≥ l2,

Fσkl
(xkl,∗, ǫkl,∗) = f(xkl,∗) +

G(xkl,∗)

(ǫkl,∗)α
+ σkl

(ǫkl,∗)β ≥ f(xkl,∗) +
G(xkl,∗)

(ǫkl,∗)α
> f(x∗)− γ +

G(xkl,∗)

(ǫkl,∗)α
.

It thus follows from (13)-(15) that

Fσkl
(xkl,∗, ǫkl,∗) > f(x∗)− γ +

G(xkl,∗)

(ǫkl,∗)α

= f(x∗)− γ +G(xkl,∗)
β

α+β

(

σkl
β

α

)
α

α+β

> f(x∗)− γ +
(

G(x∗)− γ
)

β

α+β

(

σkl
β

α

)
α

α+β

> f(x∗)− γ +
(

G(x∗)− γ
)

β

α+β
M − f(x∗) + γ
(

G(x∗)− γ
)

β

α+β

= M,

which contradicts the definition of M . Therefore, our initial assumption that G(x∗) > 0 is false. This
completes the proof.
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Our next result is concerned with the behavior of global solutions of Problem (Pσ) as σ → ∞.

Theorem 3. Let {σk}∞k=1 be an increasing sequence of penalty parameters such that σk → ∞ as k → ∞.

Furthermore, let (xk,∗, ǫk,∗) be a global solution of Problem (Pσk
). Then the sequence {xk,∗}∞k=1 has at least

one limit point, and any limit point is a global solution of Problem (P).

Proof. It is clear that {xk,∗}∞k=1 ⊂ X has at least one limit point because X is compact. Let x̄ denote one
such limit point. Then by passing to a subsequence if necessary, we may assume that xk,∗ → x̄ as k → ∞.

Now, let x∗ be a global solution of Problem (P). Then

Fσk
(xk,∗, ǫk,∗) ≤ Fσk

(x∗, 0) = f(x∗), k ≥ 1. (16)

Thus, the sequence {Fσk
(xk,∗, ǫk,∗)}∞k=1 is bounded. Theorem 2 then implies that the limit point x̄ is feasible

for Problem (P).
Since σk < σk+1,

Fσk
(x, ǫ) ≤ Fσk+1

(x, ǫ), (x, ǫ) ∈ X × [0, ǭ],

which implies
Fσk

(xk,∗, ǫk,∗) ≤ Fσk
(xk+1,∗, ǫk+1,∗) ≤ Fσk+1

(xk+1,∗, ǫk+1,∗).

Hence, the sequence {Fσk
(xk,∗, ǫk,∗)}∞k=1 is non-decreasing. Since this sequence is also bounded, it must be

convergent. From (16), we obtain
lim
k→∞

Fσk
(xk,∗, ǫk,∗) ≤ f(x∗). (17)

On the other hand, since x̄ is feasible for Problem (P),

lim
k→∞

Fσk
(xk,∗, ǫk,∗) ≥ lim

k→∞
f(xk,∗) = f(x̄) ≥ f(x∗). (18)

Combining (17) and (18) gives
f(x̄) = f(x∗).

This shows that the limit point x̄ is a global solution of Problem (P).

We now focus on the behavior of local solutions of Problem (Pσ) when σ → ∞. Let {σk}∞k=1 be an
increasing sequence of penalty parameters such that σk → ∞ as k → ∞ and suppose that each (xk,∗, ǫk,∗)
is a local solution of Problem (Pσk

). We assume that any limit point x∗ of {xk,∗}∞k=1 satisfies the following
regularity conditions.

(A1) The vectors ∂hi(x
∗)

∂x
, i ∈ E are linearly independent (assuming that E 6= ∅).

(A2) There exists a vector p = [p1, . . . , pn]
⊤ ∈ R

n and real numbers ϑ1 < 0 and ϑ2 < 0 such that

p⊤ ∂hi(x
∗)

∂x
= 0, i ∈ E ,

p⊤ ∂gi(x
∗)

∂x
< 0, i ∈ Ī(x∗) , { j ∈ I : gj(x

∗) = 0 },

p⊤ ∂ϕi(x
∗, ω)

∂x
< ϑ1, ω ∈ Ωϑ2

i (x∗) , { η ∈ Ωi : ϕi(x
∗, η) ≥ ϑ2 }, i ∈ C,

pj

{

> 0, if x∗
j = aj ,

< 0, if x∗
j = bj .

(A3) There exists real numbers L > 0 and γ > 0 such that for each i ∈ C,

[

max{ϕi(x, ω), 0}
]2

≤ L

∫

Ωi

[

max{ϕi(x, η), 0}
]2
dη, (x, ω) ∈ Nγ(x

∗)× Ωi,

where Nγ(x
∗) , {y ∈ X : ‖y − x∗‖ < γ }.
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Note that Assumption (A2) is similar to the standard Mangasarian-Fromovitz constraint qualification in
mathematical programming (see [4, 5, 8]). Note also that in (A1) and (A2), the partial derivatives ∂hi

∂x
, ∂gi

∂x
,

and ∂ϕi

∂x
are assumed to be column vectors. We will continue this convention throughout the remainder of

the paper.
To prove our main convergence result, we will need the following lemma.

Lemma 4. Let {σk}∞k=1 be an increasing sequence of penalty parameters such that σk → ∞ as k → ∞.

Furthermore, let (xk,∗, ǫk,∗) be a local solution of Problem (Pσk
). Suppose that xk,∗ → x∗ as k → ∞. Then

for all sufficiently large k, the following inequalities hold:

ϕi(x
k,∗, ω) < 0, ω ∈ Ωi \ Ω

ϑ2

i (x∗), i ∈ C, (19)

p⊤ ∂ϕi(x
k,∗, ω)

∂x
< ϑ1, ω ∈ Ωϑ2

i (x∗), i ∈ C, (20)

where p, ϑ1, and ϑ2 are as defined in Assumption (A2 ).

Proof. We first consider the ith inequality in (19). Suppose, to the contrary of the lemma, that there exists
a subsequence {xkl,∗}∞l=1 and another sequence {ωl}∞l=1 ⊂ Ωi \ Ω

ϑ2

i (x∗) such that

ϕi(x
kl,∗, ωl) ≥ 0, l ≥ 1. (21)

Recall that Ωi is a compact interval. Hence, the sequence {ωl}∞l=1 ⊂ Ωi is bounded. By invoking the
Bolzano-Weierstrass theorem and passing to a subsequence if necessary, we may assume that there exists a
ω̄ ∈ Ωi such that ωl → ω̄ as l → ∞. Since ϕi is continuous, taking the limit in (21) gives

ϕi(x
∗, ω̄) = lim

l→∞
ϕi(x

kl,∗, ωl) ≥ 0. (22)

Now, since {ωl}∞l=1 ⊂ Ωi \ Ω
ϑ2

i (x∗),

ϕi(x
∗, ωl) < ϑ2 < 0, l ≥ 1.

Thus,
ϕi(x

∗, ω̄) = lim
l→∞

ϕi(x
∗, ωl) ≤ ϑ2 < 0.

But this contradicts (22). Hence, there must exist an integer k1i > 0 such that the ith inequality in (19)
holds for each k ≥ k1i . Since x∗ satisfies Assumption (A2), in a similar manner, we can show that there
exists an integer k2i > 0 such that the ith inequality in (20) holds for each k ≥ k2i . It follows that both (19)
and (20) hold for all integers k ≥ max{ k1i , k

2
i : i ∈ C }. This completes the proof.

We are now ready to state our main convergence result showing that the penalty function Fσ is exact.
The proof is given in the next section.

Theorem 4. Let {σk}∞k=1 be an increasing sequence of penalty parameters such that σk → ∞ as k → ∞.

Furthermore, let (xk,∗, ǫk,∗) be a local solution of Problem (Pσk
). Suppose that {Fσk

(xk,∗, ǫk,∗)}∞k=1 is

bounded. Then for all sufficiently large k, xk,∗ is a local solution of Problem (P).

Let (x∗, ǫ∗) be a local solution of Problem (Pσ). Then according to Theorem 4, when the penalty
parameter σ is sufficiently large, x∗ is a local solution of Problem (P). Recall also from Lemma 3 that x∗

is a local solution of Problem (P) if and only if ǫ∗ = 0. On this basis, we can solve Problem (P) by solving
Problem (Pσ) sequentially for increasing values of σ, stopping once ǫ∗ = 0. The following algorithm is based
on this idea.

Algorithm 1. Input x0 ∈ X (initial guess), σ0 > 0 (initial penalty parameter), ρ (tolerance), and σmax

(maximum penalty parameter).

9



Step 1. Set ǭ → ǫ0 and σ0 → σ.

Step 2. Starting with (x0, ǫ0) as the initial guess, use a standard nonlinear programming algorithm to
solve Problem (Pσ). Let (x

∗, ǫ∗) denote the local minimizer obtained.

Step 3. If ǫ∗ < ρ, then stop: x∗ is a (local) solution of Problem (P). Otherwise, set 10σ → σ and go to
Step 4.

Step 4. If σ ≤ σmax, then set (x∗, ǫ∗) → (x0, ǫ0) and go to Step 2. Otherwise, stop: the algorithm cannot
find a solution of Problem (P).

If Algorithm 1 terminates without finding a solution of Problem (P), then there are two possible remedies
that we can try: (i) Choose a different initial guess; or (ii) Adjust the parameters α and β in the exact
penalty function.

4. Proof of Theorem 4

We follow the approach suggested in [5]. Suppose that the theorem is false. Then there exists a subse-
quence {xkl,∗}∞l=1 such that for each l ≥ 1, xkl,∗ is not a local solution of Problem (P). We will now proceed
to derive a contradiction in five steps.

4.1. Preliminaries

Note that {xkl,∗} ⊂ X and X is compact. Therefore, by invoking the Bolzano-Weierstrass theorem and
passing to a subsequence if necessary, we may assume that there exists a limit point x∗ ∈ X such that
xkl,∗ → x∗ as l → ∞. It then follows from Theorem 2 that G(x∗) = 0. Also, since (xkl,∗, ǫkl,∗) is a local
solution of the penalty problem, but xkl,∗ is not a local solution of Problem (P), Lemma 3 implies that
ǫkl,∗ > 0 for each l ≥ 1.

Now, recall that σkl
→ ∞ as l → ∞ and ǫkl,∗ is the unique global solution of Problem (Pσ,x) with

σ = σkl
and x = xkl,∗. Thus, it follows from Lemma 2 that there exists an integer l1 such that

ǫkl,∗ =

(

αG(xkl,∗)

σkl
β

)
1

α+β

> 0, l ≥ l1. (23)

Consequently,
G(xkl,∗) > 0, l ≥ l1. (24)

Furthermore, by (23) and our requirement that α ≥ β,

lim
l→∞

(ǫkl,∗)α
√

G(xkl,∗)
= lim

l→∞
G(xkl,∗)

α−β

2(α+β)

(

α

σkl
β

)
α

α+β

= 0. (25)

4.2. Definition of {zl}

By virtue of (24), the following vectors are well-defined for each l ≥ l1:

zl
1 =

[

zl1,i
]

i∈E
,

1
√

G(xkl,∗)

[

hi(x
kl,∗)

]

i∈E
,

zl
2 =

[

zl2,i
]

i∈I
,

1
√

G(xkl,∗)

[

max{gi(x
kl,∗), 0}

]

i∈I
,

zl
3 =

[

zl3,i
]

i∈C
,

1
√

G(xkl,∗)

[(
∫

Ωi

[

max{ϕi(x
kl,∗, ω), 0}

]2
dω

)
1
2
]

i∈C

,

zl ,

[

(zl
1)

⊤, (zl
2)

⊤, (zl
3)

⊤

]⊤

.
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It is clear that ‖zl‖ = 1 and hence the sequence {zl}∞l=l1
is bounded. Thus, by invoking the Bolzano-

Weierstrass theorem and passing to a subsequence if necessary, we may assume that there exists a z∗ 6= 0
such that zl → z∗ as l → ∞, where

z∗ ,

[

(z∗
1)

⊤, (z∗
2)

⊤, (z∗
3)

⊤

]⊤

.

Clearly, ‖z∗‖ = 1. Furthermore,

z∗1,i = lim
l→∞

1
√

G(xkl,∗)
hi(x

kl,∗), i ∈ E ,

z∗2,i = lim
l→∞

1
√

G(xkl,∗)
max{gi(x

kl,∗), 0}, i ∈ I,

z∗3,i = lim
l→∞

1
√

G(xkl,∗)

(
∫

Ωi

[

max{ϕi(x
kl,∗, ω), 0}

]2
dω

)
1
2

, i ∈ C.

Recall from Section 4.1 that G(x∗) = 0. Thus, gi(x
∗) ≤ 0 for each i ∈ I. If gi(x

∗) < 0, then gi(x
kl,∗) < 0

and max{gi(xkl,∗), 0} = 0 whenever l is sufficiently large. Hence,

z∗2,i

{

= 0, i ∈ I \ Ī(x∗),

≥ 0, i ∈ Ī(x∗),
(26)

where Ī(x∗) is as defined in Assumption (A2).

4.3. Definition of {ul}

By (24), we know that the following vectors are well-defined for each l ≥ l1:

ul ,
1

√

G(xkl,∗)

∂G(xkl,∗)

∂x
.

It follows from (7) that for each l ≥ l1,

ul =
2

√

G(xkl,∗)

[

∑

i∈E

hi(x
kl,∗)

∂hi(x
kl,∗)

∂x
+
∑

i∈I

max{gi(x
kl,∗), 0}

∂gi(x
kl,∗)

∂x

+
∑

i∈C

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

∂ϕi(x
kl,∗, ω)

∂x
dω

]

= 2

[

∑

i∈E

zl1,i
∂hi(x

kl,∗)

∂x
+
∑

i∈I

zl2,i
∂gi(x

kl,∗)

∂x

+
∑

i∈C

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)

∂ϕi(x
kl,∗, ω)

∂x
dω

]

. (27)

Next we will show that {ul}∞l=l1
(or an appropriate subsequence) is convergent.

Since the partial derivatives of ϕi are continuous on the compact set X ×Ωi, there exists a real number
M1 > 0 such that

∣

∣

∣

∣

∂ϕi(x, ω)

∂xj

∣

∣

∣

∣

≤ M1, (x, ω) ∈ X × Ωi, j = 1, . . . , n, i ∈ C.
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Thus, for each l ≥ l1,
∣

∣

∣

∣

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)

∂ϕi(x
kl,∗, ω)

∂xj

dω

∣

∣

∣

∣

≤

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)

∣

∣

∣

∣

∂ϕi(x
kl,∗, ω)

∂xj

∣

∣

∣

∣

dω

≤ M1

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)
dω. (28)

Applying the Hölder inequality (with p = q = 2) gives
∣

∣

∣

∣

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)

∂ϕi(x
kl,∗, ω)

∂xj

dω

∣

∣

∣

∣

≤ M1

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)
dω

≤ M1

√

|Ωi|

(

∫

Ωi

[

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)

]2

dω

)
1
2

= zl3,iM1

√

|Ωi|.

Recall that zl3,i → z∗3,i as l → ∞. Thus, the inequalities above show that there exists a real number M2 > 0
such that

∣

∣

∣

∣

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)

∂ϕi(x
kl,∗, ω)

∂xj

dω

∣

∣

∣

∣

≤ M1

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)
dω ≤ M2, l ≥ l1.

Therefore, by invoking the Bolzano-Weierstrass theorem and passing to a subsequence if necessary, we may
assume that there exist vectors qi ∈ R

n and constants ri ∈ R such that

lim
l→∞

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)

∂ϕi(x
kl,∗, ω)

∂x
dω = qi, i ∈ C, (29)

and

lim
l→∞

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)
dω = ri, i ∈ C. (30)

From (26), (27), and (29), we obtain that

lim
l→∞

ul = lim
l→∞

1
√

G(xkl,∗)

∂G(xkl,∗)

∂x
= 2

[

∑

i∈E

z∗1,i
∂hi(x

∗)

∂x
+

∑

i∈Ī(x∗)

z∗2,i
∂gi(x

∗)

∂x
+
∑

i∈C

qi

]

. (31)

Let u∗ denote the limit of ul. In the next part of the proof, we will investigate the signs of the components
of u∗.

4.4. Signs of the Components of u∗

Recall that xkl,∗ → x∗ as l → ∞. Let

I1 =
{

j ∈ {1, . . . , n} : x∗
j = aj

}

,

I2 =
{

j ∈ {1, . . . , n} : aj < x∗
j < bj

}

,

I3 =
{

j ∈ {1, . . . , n} : x∗
j = bj

}

.

Then I1, I2, and I3 form a partition of {1, . . . , n}. It is clear that there exists an integer l2 ≥ l1 such that
for each l ≥ l2,

aj ≤ x
kl,∗
j < bj , j ∈ I1,

aj < x
kl,∗
j < bj , j ∈ I2,

aj < x
kl,∗
j ≤ bj , j ∈ I3.
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Recall that ǫkl,∗ > 0 and (xkl,∗, ǫkl,∗) is a local solution of the penalty problem with σ = σkl
. Then,

∂Fσkl
(xkl,∗, ǫkl,∗)

∂xj

=
∂f(xkl,∗)

∂xj

+ (ǫkl,∗)−α ∂G(xkl,∗)

∂xj











≥ 0, if xkl,∗
j = aj ,

= 0, if aj < x
kl,∗
j < bj ,

≤ 0, if xkl,∗
j = bj .

Thus, for each l ≥ l2,

∂f(xkl,∗)

∂xj

+ (ǫkl,∗)−α ∂G(xkl,∗)

∂xj











≥ 0, if j ∈ I1,

= 0, if j ∈ I2,

≤ 0, if j ∈ I3,

and

(ǫkl,∗)α
√

G(xkl,∗)

∂f(xkl,∗)

∂xj

+
1

√

G(xkl,∗)

∂G(xkl,∗)

∂xj

=
(ǫkl,∗)α
√

G(xkl,∗)

∂f(xkl,∗)

∂xj

+ ul
j











≥ 0, if j ∈ I1,

= 0, if j ∈ I2,

≤ 0, if j ∈ I3.

Consequently, by virtue of (25) and (31),

u∗
j











≥ 0, if j ∈ I1,

= 0, if j ∈ I2,

≤ 0, if j ∈ I3.

(32)

4.5. A Contradiction

We now complete the proof by showing that z∗ = 0. This is a contradiction because we have already
seen in Section 4.2 that ‖z∗‖ = 1.

Note that Assumptions (A1)-(A3) hold for x = x∗. By Assumption (A2), there exists a vector p ∈ R
n

and real numbers ϑ1 < 0 and ϑ2 < 0 such that

p⊤ ∂hi(x
∗)

∂x
= 0, i ∈ E , (33)

p⊤ ∂gi(x
∗)

∂x
< 0, i ∈ Ī(x∗), (34)

p⊤ ∂ϕi(x
∗, ω)

∂x
< ϑ1, ω ∈ Ωϑ2

i (x∗), i ∈ C,

pj

{

> 0, if j ∈ I1,

< 0, if j ∈ I3.
(35)

By (32) and (35),
p⊤u∗ ≥ 0. (36)

Furthermore, (26), (31), (33), and (34) give

p⊤u∗ = 2

[

∑

i∈E

z∗1,ip
⊤∂hi(x

∗)

∂x
+

∑

i∈Ī(x∗)

z∗2,ip
⊤ ∂gi(x

∗)

∂x
+
∑

i∈C

p⊤qi

]

= 2

[

∑

i∈Ī(x∗)

z∗2,ip
⊤ ∂gi(x

∗)

∂x
+
∑

i∈C

p⊤qi

]

≤ 2
∑

i∈C

p⊤qi. (37)

13



Note that equality holds in (37) if and only if z∗
2 = 0 (according to (26), we automatically have z∗

2 = 0
when Ī(x∗) = ∅).

Since xkl,∗ → x∗ as l → ∞, Lemma 4 implies that there exists an integer l3 ≥ l2 such that for each
l ≥ l3,

ϕi(x
kl,∗, ω) < 0, ω ∈ Ωi \ Ω

ϑ2

i (x∗), i ∈ C,

and

p⊤ ∂ϕi(x
kl,∗, ω)

∂x
< ϑ1, ω ∈ Ωϑ2

i (x∗), i ∈ C.

It thus follows from (29) and (30) that

∑

i∈C

p⊤qi =
∑

i∈C

lim
l→∞

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)
p⊤ ∂ϕi(x

kl,∗, ω)

∂x
dω

=
∑

i∈C

lim
l→∞

∫

Ω
ϑ2
i

(x∗)

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)
p⊤ ∂ϕi(x

kl,∗, ω)

∂x
dω

≤ ϑ1

∑

i∈C

lim
l→∞

∫

Ω
ϑ2
i

(x∗)

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)
dω

= ϑ1

∑

i∈C

lim
l→∞

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)
dω

= ϑ1

∑

i∈C

ri. (38)

Recall that ϑ1 < 0. Note also that ri ≥ 0 for each i ∈ C. Hence, by (37) and (38),

p⊤u∗ ≤ 2
∑

i∈C

p⊤qi ≤ 2ϑ1

∑

i∈C

ri ≤ 0. (39)

Combining (36) and (39) gives

p⊤u∗ = 0. (40)

Hence, the equality in (37) holds, so we must have z∗
2 = 0.

Now, inequalities (39) and (40) give

ri = lim
l→∞

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)
dω = 0, i ∈ C. (41)

Thus, by (28) and (30),

lim
l→∞

∫

Ωi

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)

∂ϕi(x
kl,∗, ω)

∂xj

dω = 0, j = 1, . . . , n, i ∈ C.

That is, qi = 0 for each i ∈ C. Substituting z∗
2 = 0 and qi = 0 into (31) gives

u∗ = lim
l→∞

ul = 2
∑

i∈E

z∗1,i
∂hi(x

∗)

∂x
.

But we know that p⊤u∗ = 0, and so it follows from (32) and (35) that u∗ = 0. That is,

u∗ = 2
∑

i∈E

z∗1,i
∂hi(x

∗)

∂x
= 0.
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Recall from Assumption (A1) that ∂hi(x
∗)

∂x
, i ∈ E are linearly independent vectors. Thus, we must have z∗

1 = 0.
To conclude the proof, we will show that z∗

3 = 0. From equation (41), there exists a subsequence, which
we denote by the original sequence, such that

lim
l→∞

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)
= 0, a.e. ω ∈ Ωi, i ∈ C. (42)

Now, by Assumption (A3), there exists an integer l4 ≥ l3 such that for each l ≥ l4,

[

max{ϕi(x
kl,∗, ω), 0}

]2
≤ L

∫

Ωi

[

max{ϕi(x
kl,∗, η), 0}

]2
dη, ω ∈ Ωi, i ∈ C. (43)

For each fixed l ≥ l4, we consider two cases:

(i)
∫

Ωi

[

max{ϕi(x
kl,∗, η), 0}

]2
dη = 0.

(ii)
∫

Ωi

[

max{ϕi(x
kl,∗, η), 0}

]2
dη > 0.

In case (i), the continuity of ϕi implies that max{ϕi(x
kl,∗, η), 0} = 0 for all η ∈ Ωi. In case (ii), inequality (43)

implies that

[

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)

]2

≤

[

max{ϕi(x
kl,∗, ω), 0}

]2

∫

Ωi

[

max{ϕi(xkl,∗, η), 0}
]2
dη

≤ L, ω ∈ Ωi.

Hence, in both cases, the quotient of max{ϕi(x
kl,∗, ω), 0} and

√

G(xkl,∗) is uniformly bounded with respect
to ω and l.

This means that we can use (42) in conjunction with Lebesgue’s dominated convergence theorem to
obtain

z∗3,i = lim
l→∞

1
√

G(xkl,∗)

(
∫

Ωi

[

max{ϕi(x
kl,∗, ω), 0}

]2
dω

)
1
2

=

(

lim
l→∞

∫

Ωi

[

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)

]2

dω

)
1
2

=

(

∫

Ωi

lim
l→∞

[

max{ϕi(x
kl,∗, ω), 0}

√

G(xkl,∗)

]2

dω

)
1
2

= 0, i ∈ C.

Hence z∗
3 = 0, as required. This completes the proof.

5. Numerical Examples

To demonstrate the effectiveness and power of Algorithm 1, we consider three example problems, each of
which involves difficult continuous inequality constraints. To solve Problem (Pσ), we use the Fortran sub-
routine NLPQLP [13]. The integrals in the constraint violation function G are evaluated using Simpson’s
rule. The fixed parameters in Algorithm 1 are ǭ = 10, σ0 = 1, σmax = 106, and ρ = 10−6.

Example 1. Consider the following optimization problem:

minimize f(x) =
x2(122 + 17x1 + 6x3 − 5x2 + x1x3) + 180x3 − 36x1 + 1244

x2(408 + 56x1 − 50x2 + 60x3 + 10x1x3 − 2x2
1)

subject to ϕ(x, ω) = Im(T (x, ω))− 3.33
[

Re(T (x, ω))
]2

+ 1 ≤ 0, ω ∈ [10−6, 30],

0 ≤ x1, x3 ≤ 100, 0.1 ≤ x2 ≤ 100,
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where

T (x, ω) = 1 +

(

x1 +
x2

iω + ix3ω
)

(3 + iω)(2− ω2 + i2ω)
, i2 = −1.

This problem is a PID control problem in which the aim is to choose the PID compensator gains x1, x2,
and x3 to minimize the mean-square error [3, 7, 15, 17]. We solve the problem using Algorithm 1 with the
following inputs:

x0 = [50, 50, 50]⊤, α = 2, β = 2.

Note that this initial guess of x0 = [50, 50, 50]⊤ was also used in [17]. Here, we choose 10−8 as the error
tolerance for NLPQLP and partition the integration interval into 30,000 subintervals.

Algorithm 1 gives the following optimal solution:

x∗
1 = 16.9559238246, x∗

2 = 45.4397319897, x∗
3 = 34.6736696052.

The corresponding optimal cost is f(x∗) = 0.1746273739. The value of ϕ(x∗, ω) on [10−6, 30] is always less
than −1.5 × 10−9, and thus the solution produced by Algorithm 1 is feasible. Note that this solution is
slightly better than the solution reported in [17], which has an optimal cost of 0.174778004.

Example 2. Consider the following optimization problem:

minimize f(x) = (x1 + x2 − 2)2 + (x1 − x2)
2 + 30

[

min{0, x1 − x2}
]2

subject to ϕ(x, ω) = x1 cos(ω) + x2 sin(ω)− 1 ≤ 0, ω ∈ [0, π].

This problem was considered in [17]. Since there are no bound constraints, we choose sufficiently large finite
numbers for the bounds on x1 and x2.

As in Example 1, we choose 10−8 as the error tolerance for NLPQLP and partition the integration interval
into 30,000 subintervals. We run Algorithm 1 with the initial guess x0 = [0.5, 0.5]⊤ and fixed parameters

α = 2, β = 2.

Algorithm 1 gives the following optimal solution:

x∗
1 = 0.7071240599, x∗

2 = 0.7070895002.

The corresponding optimal cost is f(x∗) = 0.3431457543 and the solution satisfies the given continuous
inequality constraint (the value of ϕ(x∗, ω) on [0, π] is always less than −1.7× 10−9). As with Example 1,
Algorithm 1 here outperforms the algorithm in [17], which gives an optimal cost of 0.3432592109 for this
example.

Example 3. Consider the following optimization problem:

minimize f(x) = x⊤Hx− 2c⊤x

subject to g1(x, ω) =
∣

∣φ(ω)⊤x− 1
∣

∣− 0.05 ≤ 0, ω ∈ [0, 0.05],

g2(x, ω) =
∣

∣φ(ω)⊤x
∣

∣− 0.01 ≤ 0, ω ∈ [0.1, 0.5],

where x ∈ R
18 and

φ(ω) = [2 cos(34πω), 2 cos(32πω), . . . , 2 cos(2πω), 1]⊤,

H =

∫ 0.05

0

φ(ω)φ(ω)⊤dω + 1000

∫ 0.5

0.1

φ(ω)φ(ω)⊤dω,

c =

∫ 0.05

0

φ(ω)dω.
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x∗
1 x∗

2 x∗
3 x∗

4 x∗
5 x∗

6

0.0056459702 0.0030387544 0.0006012952 −0.0032460689 −0.0079542542 −0.0143351706

x∗
7 x∗

8 x∗
9 x∗

10 x∗
11 x∗

12

−0.0203065017 −0.0224669279 −0.0224005907 −0.0143936721 −0.0008034870 0.0195827365

x∗
13 x∗

14 x∗
15 x∗

16 x∗
17 x∗

18

0.0453308083 0.0733901025 0.1001082981 0.1234568179 0.1379288243 0.1436543078

Table 1: Optimal solution for Example 3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
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0.06

ω

 

 

Optimal solution in [19]
Optimal solution from Algorithm 1

Figure 1: Plots of |φ(ω)⊤x− 1| (left) and |φ(ω)⊤x| (right) for the optimal solutions from [19] and Algorithm 1.

This problem is a FIR filter design problem [2, 19].
Here, we choose 10−5 as the error tolerance for NLPQLP and partition the integration interval into 2,000

subintervals. The inputs to Algorithm 1 are

x0 = [1, . . . , 1]⊤, α = 2, β = 1.

The optimal solution obtained from Algorithm 1 is given in Table 1 and the corresponding cost is−0.0386933156.
Note that this optimal solution is feasible:

max
ω∈[0,0.05]

g1(x
∗, ω) < −8.1× 10−6, max

ω∈[0.1,0.5]
g2(x

∗, ω) < −1.7× 10−6.

The cost of the optimal solution given in [19] is −0.0383876371, which is similar to our result. However,
the solution in [19] slightly violates the continuous inequality constraints, with the maximum values of g1
and g2 being greater than or equal to 8.9 × 10−8 and 2.29× 10−7, respectively. The continuous inequality
constraints g1 and g2 are plotted in Figure 1 for the optimal solution in [19] and the optimal solution
produced by Algorithm 1.
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6. Conclusion

In this paper, we have introduced a new exact penalty method for solving nonlinear semi-infinite pro-
gramming problems. Our new method is based on the exact penalty function in [17, 18]. Our work in this
paper has shown that: (i) the convergence results in [17, 18] can be considerably strengthened; and (ii) the
number of fixed parameters in the exact penalty function in [17, 18] can be reduced. Future research will
involve developing rules for selecting optimal values of the fixed parameters to yield fast convergence.
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