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Abstract. In this paper, we consider an optimal investment-consumption
problem subject to a closed convex constraint. In the problem, a constraint is

imposed on both the investment and the consumption strategy, rather than just

on the investment. The existence of solution is established by using the Mar-
tingale technique and convex duality. In addition to investment, our technique

embeds also the consumption into a family of fictitious markets. However, with
the addition of consumption, it leads to nonreflexive dual spaces. This difficulty

is overcome by employing the so-called technique of “relaxation-projection” to

establish the existence of solution to the problem. Furthermore, if the solution
to the dual problem is obtained, then the solution to the primal problem can

be found by using the characterization of the solution. An illustrative example

is given with a dynamic risk constraint to demonstrate the method.

1. Introduction. The continuous-time consumption-portfolio optimization prob-
lem was pioneered by Merton [18, 19], where the dynamic programming approach
is used. The solution of a nonlinear partial differential equation is constructed, and
it is then verified that the solution is the value function for the original optimiza-
tion problem. Cox and Huang [4, 5], Karatzas et al.[12] and Pliska [21] developed
an alternative approach, which is known as the Martingale approach, to solve the
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continuous-time optimization problem. A clear advantage of the Martingale ap-
proach over the dynamic programming approach is that it gives rise to only linear
partial differential equations, rather than the nonlinear partial differential equation
when the dynamic programming approach is used. Another major advantage is
that it is not required to assume that the wealth should be governed by Markovian
dynamics. This assumption is needed when the dynamic programming approach is
used.

The Martingale method was initially applied to optimal investment/consumption
problems under the assumption of a complete market 1, meaning that the family
of Martingale measures is a singleton. With the help of the Girsanov Theorem (see
Theorem 5.2.12 in [1]), the original probability measure can be transformed into an
equivalent Martingale measure under which all the stock prices discounted by the
bond rate become martingales. Its proof is based on the fact that every martingale
relative to a Brownian filtration can be represented by a stochastic integral with
respect to the underlying Brownian motion. However, difficulties arise in the case
of incomplete markets. Fortunately, the notion of equivalent Martingale introduced
by Harrison and Kreps [8], Harrison and Pliska [9] and Ross [22] has opened up the
possibility of solving such problems by convex − duality methods. A distinctive
feature of this approach is that it relates the original stochastic optimal control
problem (the primal problem) to a “dual” problem such that a solution to the pri-
mal problem induces a solution to the dual problem (and vice versa). This duality
dated back to Bismut [2], and it has since been exploited by many researchers, such
as in [10, 11, 13], and more recently by Kramkov and Schachermayer [14]. They
related the marginal utility from the terminal wealth of the optimal portfolio to the
density of the Martingale measure, using powerful convex− duality techniques. In
particular, the minimal conditions on the agent’s utility function and the financial
market model are discussed by Kramkov and Schachermayer [14]. Since then, sto-
chastic duality theory has become very successful as a method for solving portfolio
selection problems. A common theme of all these papers is to take the original
problem, which involves a maximization over a class of policies, and restate it in
the form of the dual problem, which involves a minimization over the constructed
measures. The dual problem is easier to solve than the primal problem. The con-
vexity properties of the primal problem are critical in establishing the connection
between this problem and the corresponding dual problem. Based on this connec-
tion, the solution to the primal problem can be constructed by using the solution
to the dual problem.

The works mentioned above dealt with the application of the Martingale ap-
proach and convex duality to problems in which there are no portfolio constraints,
that is, at every instant the investor can freely distribute the wealth among all of
the assets. In reality, there are many situations where the portfolios are restricted
in some way. For example, the holding of the money-market account should never
be below some fixed value (see Karatzas et al. [13]), or there is a convex constraint
with the strategy (see Cvitanic and Karatzas [7]). Their solution method involves a

1Incomplete markets in correspond to a setting which the investor has full information about

many aspects of the the market, but various exogenously constraints (taxation, transaction costs,
bad credit rating, legislature etc.) prevent him/her from choosing the portfolio outside a given

constraint set. In fact, even without government-imposed portfolio constraints, financial markets

will typically not offer tradable assets corresponding to certain sources of uncertainty (weather
conditions, non-listed companies, etc.) The financial agent will still observe many of these sources,

as their uncertainty evolves, but will typically not be able to trade in all of them.
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completion of the incomplete market. This is called a fictitious completion, since
the market is completed with fictitious stocks. The fictitious stocks are carefully
chosen so that the optimal portfolio has no constraint on the investment of these
fictitious stocks. The optimal portfolio process in the fictitious market will then
provide a potential solution to the original, incomplete market. The optimal solu-
tion to the original incomplete market is then the optimal portfolio process which
minimizes the expected utility of the terminal wealth.

In the literature, if the portfolio constraint is imposed on the investment strategy
alone, exact solutions can be constructed [3, 17] in some special cases. For more
general situations, Pirvu [20], Liu et al.[16] and Yiu [23, 24] considered the optimal
portfolio problem with risk constraint, which is imposed on the whole investment-
consumption portfolio rather than just on the investment strategy. Under the as-
sumption that there is a smooth solution to the associated HJB equation, numer-
ical methods are developed. However, no result on the existence of solution was
reported. Motivated by this, we aim to use the Martingale approach and convex
duality to investigate the existence of the optimal investment and consumption
strategy with constraint imposed on the whole investment-consumption portfolio.
This is different from [7] who considered mainly constraints on investment. In [7],
the investment is embedded into a family of fictitious markets without constraint,
where the family of fictitious markets are characterized by the elements in a con-
vex subspace of a Hilbert space. Then the problem is transformed into solving
the minimization problem in this subspace. In this paper, our method embed not
only investment but also consumption into the fictitious market. In particular, we
construct a mapping for the consumption from the original market to the fictitious
market. However, if we simply consider the dual objective function with the sub-
space of the Hilbert Space, the dual objective function does not satisfy the coercive
condition due to the embedding of the consumption, yet the coercive condition is
needed in establishing the existence of the solutions to the dual problem. In view
of this, we consider the parameter set characterizing the fictitious markets in L1.
Although the L1 space leads to a non reflexive dual space to work with, we can
make use of the so-called technique of “relaxation-projection” [15] to tackle it.

The rest of the paper is organized as follows. In Section 2, we present the
model and formulation of the optimal portfolio problem. The original constrained
problem is embedded into a family of markets without constraint, which is the
primal problem. In Section 3, we investigate the properties of the fictitious market
so that the optimal strategy will coincide with that in the original market. If such
a market exists, then we deal with this problem by using the Martingale approach.
The dual optimal problem, which aims to find such a market, is investigated in
Section 4. Then, the existence of the optimal investment-consumption strategy is
established via solving this dual problem. Finally, some discussions and an example
with an investment-consumption constraint are given in Section 5. For logarithmic
utility function, we derive the optimal solution from both primal and dual problems.

2. Model and problem. Suppose that an agent is allowed to invest its surplus in
a financial market consisting of a risk-free asset (bond) and d risky assets (stocks).
Specifically, the price process of the risk-free asset is given by

dP 0(t) = rP 0(t)dt, r > 0,

and the price processes of the risky assets evolve according to the system of the
stochastic differential equations given below,
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dPi(t) = Pi(t)(µi(t)dt+

d∑
j=1

σij(t)dWj(t)), µi > r, i = 1, · · · , d,

where W (t) = (W1(t), ...,Wd(t))
> is a standard Brownian motion on the probability

space (Ω,F ,P), µ(t) = (µ1(t), · · · , µd(t))> are the appreciation rates for the risky
assets, and the volatility matrix σ(t) = {σi,j(t)}1≤i,j≤d is invertible. Throughout
the paper, the supperscript “>” denotes the transpose of a vector or a matrix. Let
{Ft}t≥0 be the P -augmentation of the filtration σ(W (s), 0 ≤ s ≤ t).

Let π(t) = (π1(t), π2(t), ..., πd(t))
> denote the proportional risky investments

and let c(t) denote the consumption with a proportional rate. Besides the trading
strategy, we regard consumption as proportion of wealth, rather than the dollar
amounts, so as to avoid the situation of bankruptcy. A strategy (π(t), c(t)) is
called admissible if (π(t), c(t)) is Ft progressively measurable.

Let Xπ,c(t) denote the wealth process corresponding to (π(t), c(t)). It evolves
according to

dXπ,c(t)
Xπ,c(t) = (r +π>(t)(µ(t)−r(t)1)− c(t))dt+ π>(t)σ(t)dW (t)

= (r − c(t))dt+ π>(t)σ(t)dW0(t),
X(0) = x,

(2.1)

where 1 = (1, 1, ..., 1︸ ︷︷ ︸
d

)>,W0(t) = W (t) +
∫ t

0
σ−1(s)(µ(s)− r(s)1)ds.

In practice, there often exist constraints on the strategy, such as the constraint
on no short selling, the constraint on no borrowing, the risk constraint on (π(·), c(·))
(see [23, 16]). Suppose that the strategy (π(·), c(·)) is confined to a convex set B at
time t, denoted by

Ax := {admissible (π, c), (π(t), c(t)) ∈ B}.

Let U1(·) : (0,∞)→ R and U2(·) : (0,∞)→ R be both strictly increasing, concave
functions satisfying

U ′1(0+) =∞, U ′2(0+) =∞,
U ′1(∞) = 0, U ′2(∞) = 0, (2.2)

where “ ′ ” denotes the derivative of a function. Furthermore, it is assumed that
U ′1(x) and U ′2(x) are non-decreasing on R+ = (0,∞), and that for any α ∈ (0, 1),
there exists a β ∈ (1,∞) such that

αU ′i(x) ≥ U ′i(βx), i = 1, 2, ∀ x ∈ (0,∞), (2.3)

which are, respectively, equivalent to

Ii(αy) ≤ βIi(y), i = 1, 2, ∀ y ∈ (0,∞), (2.4)

where for each “i=1,2”, the function Ii : R+ → R+, denotes the inverse of U ′i(·).
This assumption is for later use. Moreover, we suppose that U1(·) and U2(·) satisfy
(2.4) with the same constants.

Define the utility function

J(x, π, c) = E

∫ T

0

U1(c(t)Xπ,c(t))dt+ U2(Xπ,c(T )), (π, c) ∈ Ax. (2.5)
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The objective is to maximize the utility function, yielding

V (x) = sup
(π,c)∈Ax

J(x, π, c). (2.6)

This problem is the initial problem we consider in this work. Without constraint,
the Martingale approach is a widely used approach to this optimal control problem.
The key idea is to construct the optimal strategy with Martingale representation.
Here, when the strategy is constrained within certain convex set, the technique we
use is to embed the strategy into a set of fictitious markets and then construct a new
utility function without constraint in this market. We will show that the optimal
strategy in a certain class of fictitious markets is optimal to the original one.

2.1. The embedding (primal) problem. Let γ := γ(t) = (γ1(t), ..., γd(t))
> ∈

Rd and γ̃ := γ̃(t) = (γ1(t), ..., γd(t), γd+1(t))> ∈ Rd+1 be Ft-progressively measur-
able process. The 1-norm and 2-norm of γ, γ̃ and γ(t), γ̃(t) are defined as follows:

‖γ̃‖1 = E

∫ T

0

d+1∑
i=1

|γi(t)|dt, ‖γ̃(t)‖1 =

d+1∑
i=1

|γi(t)|, (2.7)

‖γ‖1 = E

∫ T

0

d∑
i=1

|γi(t)|dt, ‖γ(t)‖1 =

d∑
i=1

|γi(t)|, (2.8)

‖γ‖2 = (E

∫ T

0

d∑
i=1

|γi(t)|2dt)
1
2 , ‖γ(t)‖2 = (

d∑
i=1

|γi(t)|2)
1
2 . (2.9)

Denote

δ(γ̃) ≡ δ(γ̃ | B) := sup
b∈B

(−b · γ̃) := sup
(π,c)∈B

−(π>γ + cγd+1),

B̃ = {γ̃ : δ(γ̃) <∞}, γ̃ ∈ Rd+1. (2.10)

It is assumed that δ(·|B) is continuous on B̃ and bounded below on Rd+1 by δ0.
Define

H = {γ̃ : ‖γ̃‖1 <∞, γ̃(t) is progressively measurable with respect to Ft},
C = {γ̃ ∈ H : γd+1(t) < 1, γ̃(t, ω) ∈ B̃, a.e. on [0, T ]× Ω},

D = {γ̃ ∈ C : E

∫ T

0

δ(γ̃(t))dt <∞}. (2.11)

We introduce a set of fictitious marketsMγ̃ , γ̃ ∈ H, below. In the marketMγ̃ , the
dynamics of risk free and risky assets evolve as follows:{

dP γ̃0 (t) = (r(t) + δ(γ̃(t)))P γ̃0 (t)dt,

dP γ̃i (t) = P γ̃i (t)(µi(t) + δ(γ̃(t)) + γi(t))dt+
∑d
j=1 σij(t)dWj(t)).

To continue, we need the following notations.

For each γ̃ ∈ H and Ft progressively measurable (π, c), let Xπ,c
γ̃ (t) denote the

wealth in Mγ̃ , corresponding to (π, c). Now we construct a project from Xπ,c
γ̃ in

Mγ̃ to X
π, c

1−γd+1 in the original market. That is, the strategy (π, c) in Mγ̃ is cor-
responding to (π, c

1−γd+1
) in the original market, or equivalently, the strategy (π, c)

in the original market is corresponding to (π, (1− γd+1)c) in Mγ̃ .
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In the market Mγ̃ , corresponding to (π, c) in the original market, the dynamics
of Xπ,c

γ̃ (t) evolves according to

dXπ,c
γ̃ (t)

Xπ,c
γ̃ (t)

= (r(t)− c(t))dt+ (δ(γ̃(t)) + π>(t)γ(t) + γd+1c(t))dt

+π>(t)σ(t)dW0(t). (2.12)

Let

Rγ̃(t) = exp{−
∫ t

0

[r(s) + δ(γ̃(s))]ds},

Mγ̃(t) = exp{−
∫ t

0

θγ̃(s)dW (s)− 1

2

∫ t

0

‖θγ̃(s)‖22ds}

:= exp{−ζγ̃(t)}, (2.13)

Hγ̃(t) = Rγ̃(t)Mγ̃(t), (2.14)

where

θγ̃(t) = σ−1(t)(µ(t)− r(t)1) + σ−1(t)γ(t). (2.15)

Then, applying Ito Lemma leads to

Hγ̃(t)Xπ,c
γ̃ (t) +

∫ t

0

Hγ̃(s)c(s)Xπ,c
γ̃ (s)ds

= x+

∫ t

0

Hγ̃(s)(π>(s)σ(s)− θ>γ̃ (s))dW (s). (2.16)

Now we define a new utility function in Mγ̃ ,

Jγ̃(x, π, c) = E

∫ T

0

U1(c(t)X
π,(1−γd+1)c
γ̃ (t))dt+ U2(X

π,(1−γd+1)c
γ̃ (T )),(2.17)

and let

Vγ̃(x) = sup
(π,c)

Jγ̃(x, π, c). (2.18)

Remark 1. (a) If (π(t), c(t)) ∈ Ax, by comparing (2.1) with (2.12), we have

Xπ,c(t) ≤ Xπ,(1−γd+1)c
γ̃ (t). (2.19)

Thus, it follows from (2.18) that

V (x) ≤ Vγ̃(x). (2.20)

(b) Suppose that the following conditions are satisfied.
(i) (π(t), c(t)) ∈ Ax, and
(ii) δ(γ̃(t)) + γ(t)π(t) + γd+1(t)c(t) = 0.

Then, it follows from (2.12) that X
π,(1−γd+1)c
γ̃ is equal to Xπ,c in the initial market.

Thus,

Jγ̃(x, π(t), c(t)) = J(x, π(t), c(t)) ≤ V (x). (2.21)

(c) In particular, if Vγ̃(x) = Jγ̃(x, π(t), c(t)) and (π(t), c(t)) are such that the con-
ditions stated in (b) are satisfied, then

V (x) ≥ Vγ̃(x), (2.22)
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which, together with (2.20), leads to

V (x) = Vγ̃(x). (2.23)

By this remark, the problem with constraint can be reduced to the optimal
control problem (2.18) if there exists a γ̃ ∈ H such that the conditions specified in
(b) of Remark 1 are satisfied.

In the following section, we will investigate the conditions specified in (b) of
Remark 1.

3. The optimal portfolio in a fictitious market. In Lemma 3.1, we shall show
that the conditions specified in (b) of Remark 1 are satisfied. Lemma 3.3 verifies
the validity of the conditions specified in (c) (equivalently, Problem (2.18)). The
main results are given in Theorem 3.4.

Lemma 3.1. For any (C(t), ξ), where C(t) ≥ 0 and ξ > 0 a.e., if there exists a

λ̃ ∈ D such that for any γ̃ ∈ H,

E

[
Hγ̃(T )ξ +

∫ T

0

Hγ̃(t)(1− γd+1(t))C(t)dt

]
≤

E

[
Hλ̃(T )ξ +

∫ T

0

Hλ̃(t)(1− λd+1(t))C(t)dt

]
= x, (3.1)

then there exists (π, c) ∈ Ax such that

Xπ,c(T ) = ξ, c(t)Xπ,c(t) = C(t), (3.2)

and

δ(λ̃(t)) + λ(t)π(t) + λd+1(t)c(t) = 0. (3.3)

The proof is given in Appendix.

The next lemma is needed in the proof of Lemma 3.3.

Lemma 3.2. For any (C(t), ξ)(C(t) ≥ 0, ξ > 0 a.e.) and the fictitious market Mγ̃ ,
there exists a Ft progressively measurable (πγ̃ , cγ̃) and Xπγ̃ ,cγ̃ (t) such that

(Xπγ̃ ,cγ̃ (T ), c(t)Xπγ̃ ,cγ̃ (t)) = (ξ, C(t)).

Proof. Denote

Xγ̃(t) :=
1

Hγ̃(t)
E[

∫ T

t

Hγ̃(s)C(s)ds+Hγ̃(T )ξ|Ft] (3.4)

and

M0(t) := E[

∫ T

0

Hγ̃(s)C(s)ds+Hγ̃(T )ξ|Ft]

= Hγ̃(t)Xγ̃(t) +

∫ t

0

Hγ̃(s)C(s)ds. (3.5)

Obviously, M0(t) is a Ft-Martingale. From the Martingale representation theory,
we have

M0(t) = x+ E

∫ t

0

ψ∗(s)dW (s), (3.6)
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where ψ∗(s) is Ft progressively measurable and satisfying E
∫ T

0
‖ψ∗(s)‖22ds < ∞.

As Xγ̃(0) = x and Xγ̃(T ) = ξ, it follows from (3.5), (3.6) and (2.16) that

Xγ̃(T ) = ξ,

ψ∗(s) = Hγ̃(s)(σ(s)π(s)− θγ̃(s))>. (3.7)

Let π that satisfies (3.7) be referred as πγ̃ .
Define

cγ̃(t) =
C(t)

Xγ̃(t)
, (3.8)

which makes sense as, from (3.4), Xγ̃(t) > 0, t ∈ [0, T ], holds a.e in the marketMγ̃ .
The construction above shows that Xγ̃(t) is corresponding to (πγ , cγ), namely,
Xγ̃(t) = Xπγ̃ ,cγ̃ (t).

Sometimes we also write Jγ̃(x, π, c) as Jγ̃(x,C(t), ξ) if (π, c) is the strategy corre-
sponding to (C(t), ξ) in the market Mγ̃ .

Lemma 3.3. Denote

C∗γ̃(t) := I1((1− γd+1(t))yγ̃Hγ̃(t)),

ξ∗γ̃(T ) := I2(yγ̃Hγ̃(T )), (3.9)

where yγ̃ > 0 satisfies

E

[ ∫ T

0

I1((1− γd+1(t))Hγ̃(t)yγ̃)(1− γd+1(t))Hγ̃(t)dt+ I2(Hγ̃(T )yγ̃)Hγ̃(T )

]
= x.

Then,

Vγ̃(x) = E

∫ T

0

U1(
C∗γ̃(t)

1− γd+1(t)
)dt+ U2(ξ∗γ̃(T )). (3.10)

Proof. From Lemma 3.2, there exists a (π∗γ̃(t), c∗γ̃(t)) ∈ Ax such that

c∗γ̃(t)X
π∗
γ̃ ,c

∗
γ̃

γ̃ = C∗γ̃(t) and X
π∗
γ̃ ,c

∗
γ̃

γ̃ (T ) = ξ∗γ̃(T ).

Thus, for any Ft-progressively measurable (π(t), cγ̃(t)),

E[

∫ T

0

U1(
c∗γ̃

1− γd+1(t)
X
π∗
γ̃ ,c

∗
γ̃

γ̃ )dt+ U2(ξ∗γ̃(T ))

−E
∫ T

0

U1(
c(t)

1− γd+1(t)
Xπ,c
γ̃ (t))dt+ U2(ξπ,c(T ))]

≥ E[

∫ T

0

(1− γd+1(t))yγ̃Hγ̃(t)(
C∗γ̃(t)

1− γd+1(t)
− c(t)

1− γd+1(t)
Xπ,c
γ̃ (t))dt

+yγ̃Hγ̃(t)(ξ∗γ̃(T )−Xπ,c
γ̃ (T ))]

≥ yλ̃(x− E
∫ T

0

(1− γd+1(t))Hγ̃(t)
c(t)Xπ,c

γ̃ (t)

1− γd+1(t)
dt+Hγ̃(T )Xπ,c

γ̃ (T ))

≥ 0. (3.11)

Therefore,

Vγ̃(x) ≤ E
∫ T

0

U1(
C∗γ̃(t)

1− γd+1(t)
)dt+ U2(ξ∗γ̃(T )). (3.12)
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By the construction of (π∗γ̃(t), c∗γ̃(t)), we have

Vγ̃(x) = Jγ̃(x, π∗γ̃ ,
c∗γ̃

1− γd+1
). (3.13)

We now present the following theorem.

Theorem 3.4. Suppose there exists a λ̃ ∈ D such that

E

[
Hγ̃(T )ξ∗

λ̃
(T ) +

∫ T

0

Hγ̃(t)(1− γd+1(t))C∗
λ̃
(t)dt

]
≤ E

[
Hλ̃(T )ξ∗

λ̃
(T ) +

∫ T

0

Hλ̃(t)(1− λd+1(t))C∗
λ̃
(t)dt

]
= x, ∀ γ̃ ∈ D. (3.14)

Then, V (x) = Vλ̃(x). Furthermore, C∗
λ̃
(t) and ξ∗

λ̃
(t) are the optimal consumption

and the final wealth, respectively.

Proof. From Lemma 3.1, (π∗
λ̃
(t), c∗

λ̃
(t)) ∈ Ax satisfies (3.3), thus X

(π∗
λ̃
,c∗
λ̃

)

λ̃
(t) is in

the initial market. It follows from Lemma 3.3 that

Vλ̃(x) = Jλ̃(x, π∗
λ̃
(t), c∗

λ̃
(t))

(2.13) J(x, π∗
λ̃
(t),

c∗
λ̃
(t)

1− λd+1
)

≤ V (x). (3.15)

Together with (2.20), we have Vλ̃(x) = V (x). Thus, it can be seen from (3.15) that

(π∗
λ̃
(t),

c∗
λ̃

(t)

1−λd+1(t) ) is the optimal strategy.

The main idea of Theorem 3.4 can be further explained as follows. Find a class

of λ̃ and construct the solution in the market Mλ̃. Then, we verify that it is also
optimal in the initial market. However, it is difficult to show the existence of such an

λ̃ and Mλ̃. The difficulty is simplified through the duality method to be presented
in the following section.

4. The dual problem. In this section, we introduce the dual problem with the
market Mγ̃ . We first show the existence of the optimal strategy. Then, the con-
nection of the value function and the optimal solution between the primal and its
dual problem will be established.

For i = 1, 2, the conjugate function Ũi(y)(y > 0) of Ui(x) is defined by

Ũi(y) := max
x

Ui(x)− xy = Ui(I(y))− yI(y).

Clearly,

Ui(x) := min
y
Ũi(y) + xy = Ũi(U

′
i(x)) + xU ′i(x).
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Observe that Ũi(y), i = 1, 2, are strictly convex and decreasing in their domain.
Denote

D̄ = {γ̃ ∈ D : E

∫ T

0

I1((1− γd+1(t))Hγ̃(t)y)(1− γd+1(t))Hγ̃(t)dt

+I2(t,Hγ̃(t)y)Hγ̃(t) <∞,∀ y ∈ (0,+∞)}. (4.1)

Suppose that U1(·) and U2(·) satisfy (2.2) with the same constants α and β, it
follows from [13] that

{γ̃ ∈ D̄} ⇔ {γ̃ ∈ D; E

∫ T

0

I1((1− γd+1(t))Hγ̃(t)y)(1− γd+1(t))Hγ̃(t)dt

+I2(t,Hγ̃(t)y)Hγ̃(t) <∞, ∃ y ∈ (0,+∞)}.

Let the function J̃(y, γ̃) : H → R ∪∞ be defined by

J̃(y, γ̃) :=


E

[ ∫ T
0
Ũ1(y(1− γd+1(t)) exp{−

∫ t
0
(r(s) + δ(γ̃(s)))ds− ζγ(t)})dt

+Ũ2(y exp{−
∫ T

0
(r(t) + δ(γ̃(t)))dt− ζγ(T )})

]
, γ̃ ∈ C,

∞, otherwise.

The dual problem is defined by

Ṽ (y) := inf
γ̃∈H

J̃(y, γ̃). (4.2)

By duality, the optimal control problem is reduced to solving the optimal control
problem with the parameter γ̃(t, ω) defined on the subset of L1([0, T ] × F). The
main results of this work are presented in the following as a theorem.

Theorem 4.1. (1) There exists a λ̃y ∈ D̄, such that

Ṽ (y) := inf
γ∈D̄

J̃(y, γ̃) = J̃(y, λ̃y). (4.3)

(2) The value function V (x) and the dual value function Ṽ (y) form a conjugate
pair; namely,

U(x) = inf
y
Ṽ (y) + xy,

Ṽ (y) = sup
x
U(x)− xy. (4.4)

(3) For any given x, suppose that there exist yx and λ̃yx satisfying, respectively,

Ṽ (yx) = U(x)− xyx,
Ṽ (yx) = J̃(yx, λ̃yx),

then,

E

∫ T

0

(1− λyx,d+1(t))Hλ̃yx
(t)I1((1− λyx,d+1(t))Hλ̃yx

(t)yx)dt

+Hλ̃yx
(T )I2((1− λyx,d+1(t))Hλ̃yx

(T )yx) = x, (4.5)

where λyx,d+1(t) is the d+ 1 element of λ̃yx(t).

(4) (C∗(t), X∗(T )) := (I1(yxHλ̃yx
(t)(1−λyx,d+1(t))), I2(yxHλ̃yx

(T )(1−λyx,d+1(T ))))
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are, respectively, the optimal consumption and the final wealth process in the primal
problem.

The proof will be given in following subsection.

Remark 2. Define 0̃ = (0, · · · , 0︸ ︷︷ ︸
d+1

)>. From Cvitanic and Karatzas [7], it follows

that J̃(y, 0̃) <∞ for any y > 0, and hence (4.3) is well defined.

Remark 3. From Theorem 4.1, we see that the optimal control problem is to seek

a λ̃ ∈ D̄ and yx ∈ R+ such that

Ṽ (yx) = J̃(yx, λ̃),

where yx satisfies

E

[ ∫ T

0

(1− λyx,d+1(t))Hλ̃(t)I1((1− λyx,d+1(t))yxHλ̃(t))dt

+Hλ̃(T )I2((1− λyx,d+1(t))yxHλ̃(T ))

]
= x.

4.1. The proof of Theorem 4.1.

4.1.1. The proof of part (1) of Theorem 4.1. As the dual space is not reflexive, the
problem is often solved by using the so-called technique of “relaxation-projection”
[15]. We adopt some technical notations and a lemma given in [6] as follows:
F : σ(

⋃
0≤t≤T Ft).

PL : The Lebesgue measure on [0,T].
PL×P: The unique measure on the measurable space (T×Ω,B[0, T ]×F) satisfying
the property (PL × P)(A×B) = PL(A)× P(B) for all A ∈ B[0, T ], B ∈ F .
L∗: The class of PL × P-null sets in B([0, T ])×FT .
M: The σ-field generated by the Ft- progressively measurable processes.
M∗ = σ(M

⋃
L∗): The smallest σ-field containing M and L∗.

L1(PL × P) = L1([0, T ] × Ω,M∗,PL × P): The set of M∗-measurable integrable
processes.

The following lemma was excerpted from [6].

Lemma 4.2. (i) M∗ = {A ∈ B[0, T ] × F : ∃ B ∈ M such that A M B ∈ L∗},
where the symbol A M B denotes the symmetric difference of A and B, i.e., A M
B = (A \ B) ∪ (B \A).
(ii) Suppose that X: [0, T ] × Ω → R is (B[0, T ] × F)-measurable. Then, X is M∗-
measurable if and only if there exists a progressive process Y such that X = Y ,
PL × P a.e. on [0, T ]× Ω.

Denote

Ce = {γ̃ : γ̃ isM∗ measurable, γ̃(t) ∈ B̃
and γd+1(t) < 1 (PL × P)− a.e. on [0, T ]× Ω};
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Ce = {γ̃ : γ̃ isM∗ measurable, γ̃(t) ∈ B̃
and γd+1(t) ≤ 1 (PL × P)− a.e. on [0, T ]× Ω};

De = {γ̃ ∈ Ce : E

∫ T

0

δ(γ̃(t))dt <∞};

D̄e = {γ̃ ∈ De : E

∫ T

0

I1((1− γd+1(t))Hγ̃(t)y)(1− γd+1(t))Hγ̃(t)dt

+I2(Hγ̃(T )y)Hγ̃(T ) <∞. ∀ y ∈ (0,+∞)}. (4.6)

Remark 4. From the notations and Lemma 4.2, for any process γ̃1(t) ∈ D̄e, there
exists a progressive measurable process γ̃2(t) ∈ D̄ such that γ̃1 = γ̃2 PL×P a.e. on
[0, T ]× Ω. Thus, we will look for γ̃ in D̄e instead of D̄.

Now we consider the function J̃(y, γ̃) defined by (4.2) with a larger domainM∗,

J̃(y, γ̃) =

 E[
∫ T

0
Ũ1(y(1− γd+1(t)) exp{

∫ t
0
(−r(s)− δ(γ̃e(s)))ds− ζγ̃(t)})dt

+Ũ2(y exp{
∫ T

0
(−r(t)− δ(γ̃(t)))dt− ζγ̃(T )})], γ̃ ∈ Ce,

∞, otherwise.

and the dual problem of (2.18) is

Ṽe(y) := inf
γ̃∈M∗

J̃(y, γ̃). (4.7)

The next two lemmas will be needed in the proof of Theorem 4.1.

Lemma 4.3. (Excerpted from Theorem 1 in [15]) Let F : L1(S,Σ, µ)→ R∪+∞ be
a convex function, where (S,Σ, µ) is a measure space with µ-finite and nonnegative
and Σ complete. If F is lower semicontinuous in the topology of convergence in
measure, then it attains a minimum on any convex set K ∈ L1(µ) that is closed
and norm-bounded.

Lemma 4.4. Suppose there exists (0, ..., 0d, kd+1) ∈ B, where (kd+1 ∈ R+), and
Ui(∞) =∞, i=1,2. Then,

lim
‖γ̃‖1→∞

J̃(y, γ̃) =∞, ∀ y ∈ (0,∞). (4.8)

Proof. By the convexity of Ũi(·), i = 1, 2, it follows from the application of Jensen’s
inequality that
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J̃(y, γ̃) ≥ E

[ ∫ T

0

Ũ1(y(1− γd+1(t)) exp{
∫ t

0

−δγ̃(s)ds− ζγ(t)})dt

+Ũ2(y exp{
∫ T

0

−δ(γ̃(t))dt− ζγ̃(T )})
]

≥
∫ T

0

Ũ1(y exp(E{ln(1− γd+1(t))−
∫ t

0

δγ̃(s)ds+ ζγ(t)}))dt

+Ũ2(y exp{E
∫ T

0

−δγ̃(t)dt− ζγ̃(T )})

=

∫ T

0

Ũ1(y exp(E{ln(1− γd+1(t))− E
∫ t

0

(δγ̃(s)

+
1

2
‖θ(s) + σ−1(s)γ(s)‖22)ds}))dt

+ Ũ2(y exp(−E{
∫ T

0

(δγ̃(t)dt+
1

2

∫ T

0

‖θ(s) + σ−1(s)γ(s)‖22)dt})).(4.9)

Before showing lim‖γ̃‖1→∞ J̃(y, γ̃) =∞, let us first show the validity of the following
relation

lim
‖γ̃‖1→∞

∫ T

0

δγ̃(t)dt+
1

2
E

∫ T

0

‖θ(t) + σ−1(t)γ(t)‖22dt =∞. (4.10)

Indeed, by the assumptions of the theorem, we have

δγ̃(t) ≥ kd+1|γd+1(t)| − kd+1. (4.11)

Since ∫ T

0

δγ̃(t)dt+
1

2
E

∫ T

0

‖θ(t) + σ−1(t)γ(t)‖22dt

≥
∫ T

0

(kd+1|γd+1(t)| − kd+1)dt+
1

2
E

∫ T

0

‖θ(t) + σ−1(s)γ(t)‖22dt, (4.12)

it suffices to prove

lim
‖γ̃‖1→∞

∫ T

0

kd+1|γd+1(t)|dt+
1

2
E

∫ T

0

‖θ(t) + σ−1(t)γ(t)‖22dt =∞. (4.13)

By

‖γ̃‖1 = ‖γ‖1 + E

∫ T

0

|γd+1(t)|dt, (4.14)

we have

‖γ̃‖1 →∞, (4.15)

which implies that at least one of the following two statements is valid:

(i) ‖γ‖1 →∞; (4.16)

or

(ii) E

∫ T

0

|γd+1(t)|dt→∞. (4.17)
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If E
∫ T

0
|γd+1(t)|dt → ∞, it follows from (4.11) that (4.10) holds. On the other

hand, if ‖γ‖1 →∞, then ‖γ‖2 →∞, and hence

‖θ + σ−1γ‖2 =∞. (4.18)

Therefore, (4.10) holds. Ũ2(0+) =∞ together with (4.9) gives (4.8).

Before we begin with the proof of Theorem 4.1, we need the following lemma.

Lemma 4.5. Denote

Ky := {γ̃, J̃(y, γ̃) ≤ J̃(y, 0), γ̃ ∈ Ce}.

Then, there exists a λ̃y ∈ Ky such that

Ṽ (y) = J̃(y, λ̃y) = inf
γ̃∈C̄e

J̃(y, γ̃). (4.19)

Proof. The proof is proceeded in two steps:

1. We first show that J̃(y, γ̃) : C̄e → R ∪∞ is convex and lower-semicontinuous.
The lower-semicontinuity is, for any γ̃ and γ̃n ∈M∗, with limn→∞ ‖γ̃n−γ̃‖1 =
0,

J̃(γ̃) ≤ lim inf
n→∞

J̃(γ̃n). (4.20)

By the arguments similar to Cvitanic and Karatzas [7], the lower-semicontinuo-

uty can be obtained. Thus, we only need to verify the convexity of J̃(y, γ̃).
Rewrite

(1− γd+1(t)) exp{−
∫ t

0

(r(s) + δ(γ̃(s)))ds− ζγ̃(t)}

as

exp{−
∫ t

0

(r(s) + δ(γ̃(s)))ds− ζγ̃(t) + ln(1− γd+1(t))}.

Since Ũ1(exp(·)) and Ũ2(exp(·)) are convex and decreasing, the conclusion
follows readily from the convexity of δ(γ̃(t)), ζγ̃(t) and − ln(1− γd+1(t)).

2. Now we show that Ky is norm bounded, convex and closed in the topology of
convergence in measure. In fact, the convexity of Ky is clear by virtue of the
convexity of J(y, γ̃). Closure follows from Fatou’s lemma and the fact that
any sequence converging in measure has a subsequence converging a.e. By
Lemma 4.4, it follows from (4.8) that there exists a constant M such that if

‖γ̃‖1 > M , then J̃(y, γ̃) ≥ J̃(y, 0̃) + 1, where 0̃ is defined by Remark 2. Now,
following an argument similar to that given for showing the closure, we can
show that the norm is bounded by D + 1.

Now, by Lemma 4.4 and Lemma 4.3, we conclude that there exists a λ̃y ∈ Ky such

that Ṽe(y) = J̃(y, λ̃y).

Proof of Part (1) of Theorem 4.1.

Proof. By Lemma 4.5, it suffices to show that λ̃y ∈ D̄e. In deed, let λy,d+1 be the

d+ 1 element of λ̃y, then
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J̃(y, λ̃y)

≥
∫ T

0

Ũ1(y exp{E(ln(1− λy,d+1(t))−
∫ t

0

[r(s) + δ(λ̃(s))

+
1

2
‖θ(s) + σ−1(s)λy(s)‖22]ds)})dt

+Ũ2(y exp{−E
∫ T

0

[(r(t) + δ(λ̃y(t))) +
1

2
‖θ(t) + σ−1(t)λy(t)‖22]dt})

≥
∫ T

0

Ũ1(y expE ln(1− λy,d+1(t)))dt+

Ũ2(y exp(E

∫ T

0

−(r(t) + δ(λy(t)))dt)). (4.21)

Since Ũ1(0+) =∞, we have

λy,d+1(t, ω) < 1 PL × P a.e, on [0, T ]× Ω. (4.22)

Thus, λ̃y ∈ Ce and Ũ2(0+) =∞, meaning that

J̃(y, λ̃y) =∞, if λ̃y ∈M∗ \ De. (4.23)

Therefore, λ̃y ∈ De. Now, by Theorem 12.3 in [12], we have λ̃y ∈ D̄e. Thus, the
validity of Part (1) of the theorem follows readily from Remark 4.

4.1.2. The proof of part (2) of Theorem 4.1. To prove Part (2), we need the following
proposition.

Proposition 1. Assume that there exists y > 0 satisfying

E

[ ∫ T

0

(1− λy,d+1(t))Hλ̃y
(t)I1((1− λy,d+1(t))yHλ̃y

(t))dt+Hλ̃y
(T )I2(yHλ̃y

(T ))

]
= x,

and

Ṽ (y) = J̃(y, λ̃), (4.24)

or equivalently, for any γ̃ ∈ H,

E

[ ∫ T

0

Ũ1((1− λy,d+1(t))yHλ̃y
(t))dt+ Ũ2(yHλ̃y

(T ))

]
≤ E

[ ∫ T

0

Ũ1((1− γd+1(t))yHγ̃(t))dt+ Ũ2(yHγ̃(T ))

]
. (4.25)

If there exist (Cy(t), ξy(T )) such that

(Cy(t), ξy(T )) = (I1(y(1− λy,d+1(t))Hλ̃y
(t)), I2(yHλ̃y

(T ))),

then there exist

(πy(t), cy(t)) ∈ Ax
and Xπy,cy

λ̃y
(t) such that

(cy(t)Xπy,cy

λ̃y
(t), Xπy,cy

λ̃y
(T )) = (Cy(t), ξy(T )),
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and

δλ̃y (t) + λyπ
y(t) + λy,d+1(t)cy(t) = 0.

The proof is given in Appendix.

Now let us return to the proof of Part (2) of the theorem.

Proof. Note that

J(x, c, π) = E

{∫ T

0

[U1(c(t)Xπ,c)]dt+ U2(Xπ,c(T ))

}
≤ J̃(y, γ̃) + yE

{∫ T

0

(1− γd+1(t))Hγ̃(t)yc(t)Xπ,c(t)dt+Hγ̃(T )yXπ,c(T )

}
≤ J̃(y, γ̃) + xy − yE

∫ T

0

Xπ,c(t)[δ(γ̃(t)) + π(t)γ(t) + c(t)γd+1(t)]dt

≤ J̃(y, γ̃) + xy. (4.26)

Thus,

V (x) ≤ Ṽ (y) + xy. (4.27)

By part (1) of the theorem, there exists a λ̃y ∈ D̄ such that

Ṽ (y) = J̃(y, λ̃y).

Let

(Cy(t), ξy(T )) = (I1((1− λy,d+1(t))Hλ̃y
(t)y), I2((1− λy,d+1(T ))Hλ̃y

(T )y)). (4.28)

Then, by Proposition 1, there exists a (πy(t), cy(t)) ∈ Ax with

(cy(t)Xπy,cy (t), Xπy,cy (T )) = (Cy(t), ξy(T ))

such that

δλ̃y (t) + λyπ
y(t) + λy,d+1c

y(t) = 0,

X
πy,(1−λy,d+1)cy

λ̃y
(t) = Xπy,cy (t). (4.29)

Then, (πy(t), cy(t)) ensures the two sides of (4.26) are equal. Thus,

Ṽ (y) = J̃(y, λ̃y) = J(x, πy, cy)− xy
≤ sup

x
[V (x)− xy]. (4.30)

Together with (4.27), the proof of Part (2) of the theorem is finished. As a by-
product, the proof of Part (4) of the theorem has already been included in the
proof for Part (2). To be more specific, from (4.30), we have

J(x, πy, cy) = Ṽ (y) + xy.

By this, together with the fact that J(x, πy, cy) ≤ V (x) ≤ Ṽ (y) + xy, we obtain

V (x) = J(x, πy, cy).
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4.1.3. The proof of part (3) of Theorem 4.1.

Proof. Denote

fx(y) = Ṽ (y) + xy, (4.31)

and M = Tδ0. Then, EHγ̃(t) ≤ eM . Applying Jensen’s inequality, we obtain

J̃(y, γ) ≥
∫ T

0

Ũ1(E((1− λd+1(t))Hλ̃(t)y))dt+ Ũ2(E(Hλ̃(T )y))

≥
∫ T

0

Ũ1(yeME ln(1− λd+1(t)))dt+ Ũ2(yeM ). (4.32)

As U2(∞) =∞ implies Ũ2(0) =∞, we have

fx(0+) = lim
y→0

J̃(y, γ̃) =∞. (4.33)

From (4.33), the fact that

fx(∞) =∞, (4.34)

and Remark 2, it follows that fx(y) attains its infimum in (0,∞).
Denote

yx = argminyṼ (y) + xy, (4.35)

and

g(z) = yxxz + J̃(yxz, λ̃yx). (4.36)

Then,

inf
z
g(z) = inf

z
{yxxz + J̃(yxz, λ̃yx)}

= inf
y
{yx+ J̃(y, λ̃yx)}

≥ yxx+ Ṽ (yx)

= yxx+ J̃(yx, λ̃yx), (4.37)

the last equality follows from Theorem 4.1(1). Thus,

inf
z
g(z) = g(1). (4.38)

Follow an argument similar to that given for the proof of Lemma 12.3 in Cvitanic
and Karatzas [7], and use (2.4), (4.8) and the assumption that U1(·) and U2(·)
satisfy (2.4) with the same constants, we can show that g(y) is well defined and
differentiable everywhere in its domain. Furthermore, g′(1) = 0, that is

xyx

= yx

(
E

∫ T

0

I1((1− λyx,d+1(t))Hλ̃yx
(t)yx)(1− λyx,d+1(t))Hλ̃yx

(t)dt

+ I2(Hλ̃yx
(T )yx)Hλ̃yx

(T )

)
.
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Hence,

x

= E

∫ T

0

I1((1− λyx,d+1(t))Hλ̃yx
(t)yx)(1− λyx,d+1(t))Hλ̃yx

(t)dt

+ I2(Hλ̃yx
(T )yx)Hλ̃yx

(T ).

5. Example and discussions.

5.1. Relative value at risk (RVaR) constraint example. We consider a case
when (c(t), π(t)) are constrained by a convex set K. Here, the dynamic risk con-
straint is imposed as a portfolio constraint. Here, r(t), µ(t) and σ(t) are assumed
to be constants. They are written, respectively, as r, µ and σ. Assume that all the
parameters are constants.

Given an arbitrary but fixed time t, (π(s), c(s)) are approximated as constants
from t to t+ ∆t. Then, conditioned on time t,

Xt+∆t =

∫ t+∆t

t

X(t) exp(((r +π>(t)(µ−r1)− c(t))dt+ π>(t)σdW0(t)))

= X(t) exp(((r +π>(t)(µ−r1)− c(t))∆t
+π>(t)σ(W0(t+ ∆t)−W0(t))). (5.1)

For a given confidence level k, the dynamic relative value at risk (RVaR) is defined
by

P (
X(t)−X(t+ ∆t)

X(t)
≤ RV aR) = k. (5.2)

Thus,

RV aR = 1− exp((r + π(t)(µ− r1)− c(t))∆t+ Φ−1(1− k)
√

∆tπ>(t)Σπ(t)). (5.3)

Suppose that the maximal risk is constrained to be less or equal to a level R, that
is,

1− exp((r + (µ− r1)π(t)− c(t))∆t+ Φ−1(1− k)
√

∆tπ>(t)Σπ(t)) ≤ R, (5.4)

where R is a given constant.
We consider the logarithmic utility function with primal embedding problem and

the dual problem. Here, we assume that

U1(x) = U2(x) = log x. (5.5)

Let k be larger than 0.5. Then, this constraint set B is a convex closed set with
respect to (π, c). δ(·, B) is bounded below by 0. Thus the condition of Lemma 4.4
is satisfied.
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5.1.1. The dual problem. We have

I1(y) =
1

y
,

Ũ(y) = inf
x

(log x− xy) = − log y − 1. (5.6)

From Theorem 4.1 (3), the problem is to look for a (λ̃, yλ̃) such that

E

[ ∫ T

0

Ũ((1− λd+1(t))Hλ̃(t)yλ̃)dt+ Ũ(Hλ̃(T )yλ̃)

]
= inf

γ̃
E

[ ∫ T

0

Ũ((1− γd+1(t))Hγ̃(t)yλ̃)dt+ Ũ(Hγ̃(T )yλ̃)

]
= inf

γ̃
E

[ ∫ T

0

log
1

(1− γd+1(t))Hγ̃(t)yλ̃
dt+ log

1

Hγ(T )yλ̃
− (1 + T )

]
(5.7)

and

E

[ ∫ T

0

(1− λd+1(t))Hλ̃(t)I1((1− λd+1(t))yλ̃Hλ̃(t))dt

+Hλ̃(T )I2((1− λd+1(T ))yλ̃Hλ̃(T ))

]
= x. (5.8)

It follows from (5.8) that

yλ̃ =
T + 1

x
. (5.9)

Substituting (5.9) into (5.7) gives

λ̃ = argminγ̃∈D̄E

[ ∫ T

0

(log
1

1− γd+1(t)
+ log

1

Hγ̃(t)
)dt+ log

1

Hγ̃(T )

]
. (5.10)

It follows from the expression of Hγ̃(t) that

λ̃ = argminγ̃∈D̄E

[ ∫ T

0

(− log(1− γd+1(t)) +

∫ t

0

(δ(γ̃(s)) +
1

2
‖θ(s)

+
1

σ
γ(s)‖22)ds)dt+

∫ T

0

(δ(γ̃(t)) +
1

2
‖θ(t) +

1

σ
γ(t)‖22)dt

]
= argminγ̃∈D̄E

∫ T

0

(
− log(1− γd+1(t)) + (δ(γ̃(t)) +

1

2
‖θ(t)

+
1

σ
γ(t)‖22)(T − t+ 1)

)
dt.

Then, it is sufficient to consider the static optimization given below:

λ̃(t) = argminγ̃(t)∈B̃,γd+1(t)<1{− log(1− γd+1(t)) + (δ(γ̃(t)) +
1

2
‖θ(t)

+
1

σ
γ(t)‖22)(T − t+ 1)}.

From the expression of (3.4), we have

Hλ̃(t)Xλ̃(t) =
x(T + 1− t)

T + 1
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and

Hλ̃(T )Xπ,c

λ̃
(T ) +

∫ T

0

Hλ̃(t)c(t)Xλ̃(t)dt = x.

Thus, the optimal strategy π can be obtained from

σπ − θλ̃ = 0,

where 0 = (0, · · · , 0︸ ︷︷ ︸
d

)>. The optimal consumption is

C(t) = I1(yλ̃(1− λd+1(t))Hλ̃(t))

=
1

yλ̃(1− λd+1(t))Hλ̃(t)

=
x

(T + 1)(1− λd+1(t))Hλ̃(t)

=
Xλ̃(t)

(1− λd+1(t))(1 + T − t)
.

In other words,

c(t) =
1

(1− λd+1(t))(1 + T − t)
.

5.1.2. The primal problem. For the logarithmic utility function, the optimal strat-
egy can be solved from the primal problem with Theorem 3.4.
Consider the primal problem (3.14). Then, by Theorem 3.4, we have

yλ̃ =
T + 1

x
,

and hence the primal problem is reduced to

λ̃ = arg sup
γ̃∈B̃

E

∫ T

0

[log(1− γd+1(t)) + logHγ̃(t)]dt+ logHγ̃(T ), (5.11)

which is equivalent to (5.10).

5.2. Discussions on the consumption function. In [7], when the consumption
C(t), t ∈ [0, T ) is included, an additional no-bankruptcy constraint is required.
Here, we relax the bankruptcy constraint by using c(t) being proportional to the
wealth. As a result, the wealth dynamics (2.1) shows that X(t), t ∈ [0, T ], is strictly
positive whenever the initial wealth is strictly positive. Thus, the no-bankruptcy
constraint become redundant in our setting. Indeed, any proportional strategy
c(t) gives rise to a monetary amount equal to C(t) = c(t)X(t). On the other
hand, from Section 10 in [7] and Theorem 9.1, we learn that the no-bankruptcy
constraint implies the optimal wealth X∗(t) > 0, t ∈ [0, T ]. Therefore, for any
admissible strategy with a strictly positive wealth process X(t), we can recast the
consumption function into a proportional consumption strategy defined by c(t) =
C(t)
X(t) . Consequently, the optimal consumption function in [7] can be represented

fully by a proportional consumption strategy proposed here.
Moreover, when there is no constraint on c(t), we have, from the notation of δ(γ̃),

B̃ = {γ̃ ∈ B : δ(γ̃) <∞}
= {γ̃ ∈ B : δ(γ) <∞, γd+1 = 0}. (5.12)
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Thus, δ(γ̃) = δ(γ) and our model reduces to the case in [7]. Therefore, this work
serves as an extension.

6. Concluding remarks. In this paper, we have studied the optimal investment-
consumption problem with a closed convex constraint on both investment and con-
sumption. The initial problem is first embedded into a family of fictitious markets
parameterized by γ̃ and the unconstrained optimal investment-consumption strate-
gies are sought. A specific market has been identified such that the optimal strategy
under this market coincides with the optimal strategy to the original constrained
problem. We have proven the existence of such a market using the theory of dual-
ity. Furthermore, we have demonstrated by using the logarithmic utility function
how to construct the optimal strategy from the solution to the dual problem. In
addition, we have relaxed the no-bankruptcy constraint by using a consumption
function being proportional to the wealth. As a future extension, it is of interest to
study other utility functions and include further stochastic processes in the model.

7. Appendix. Proof of Lemma 3.1.

Proof. For an arbitrary but fixed γ̃ ∈ H, let

δ̆γ̃(λ̃(s)) =

{
−δ(λ̃(s)), γ̃ = 0̃,

δ(γ̃(s)− λ̃(s)), otherwise.

where 0̃ = (0, · · · , 0︸ ︷︷ ︸
d+1

)>. Denote

λ̃γ̃ε,n(t) = λ̃γ̃(t) + ε(γ̃(t)− λ̃(t))1t≤τn , 0 < ε ≤ εn,

Lγ̃(t) =

∫ t

0

δ̆γ(λ̃(s))ds,

N γ̃(t) =

∫ t

0

σ−1(γ(s)− λ(s))ds, (A.1)

where

1t≤τn =

{
1, if t ≤ τn(ω),
0, otherwise,

for any ω ∈ Ω.

Define a sequence of stopping times

τn := T ∧ inf{t ∈ [0, T ];

∫ t

0

‖θ(s) + σ−1λ(s)‖22ds ≥ n;

or

∫ t

0

‖σ−1(γ(s)− λ(s))‖22ds ≥ n;

or

∫ t

0

X2(s)R2
λ̃
(s)‖σ−1(γ(s)− λ(s)) + (Lγ̃(s) +N γ̃(s)>σ∗(s)π(s)‖2ds ≥ n;

or |N γ̃(t)| ≥ n; or |Lγ̃(t)| ≥ n; or |γd+1 − λd+1| ≥ n;

or λd+1 ≥ 1− 1

n
; or λd+1 ≤ −n}, (A.2)
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for n ∈ N .

Denote εn = 1
2n . Thus,

Hλ̃γε,n(t)

Hλ̃(t)

= exp{−
∫ t

∧
τn

0

(δ(γ̃(s) + ε(γ̃(t)− λ̃(t)))− δ(γ̃(s))ds− εN γ̃(t ∧ τn)

−ε
2

2

∫ t
∧
τn

0

‖σ−1(s)(γ(s)− λ(s))‖22ds)}

≥ exp{−ε(Lγ̃(t ∧ τn) +N γ̃(t ∧ τn)− ε2

2

∫ t
∧
τn

0

‖σ−1(γ(s)− λ(s))‖22ds}

≥ e−3εn. (A.3)

Similarly,

Hλ̃γε,n(t)

Hλ̃(t)
≤ e

∫ t∧ τn
0 δ(λ̃(s))ds+εn

= eL
λ̃(t∧τn)+εn. (A.4)

Let λε,n,d+1(t) be the d+ 1 element of λε,n(t). Then,

Hλ̃(T )
ξ

ε
(1−

Hλ̃γε,n
(T )

Hλ̃(T )
)

+

∫ T

0

Hλ̃(t)
C(t)

ε
((1− λd+1(t))− (1− λε,n,d+1(t))

Hλ̃(t)
Hλ̃ε,n

(t))dt

≤ sup
ε

1− e−3εn

ε
[Hλ̃(T )ξ +

∫ T

0

Hλ̃(t)C(t)((1− λd+1(t)))dt]

+ sup
ε
e2εn+

∫ t
0
δ(γ̃(s))ds

∫ T

0

Hλ̃(t)C(t)(λd+1(t)− γd+1(t))dt

≤ Kn[Hλ̃(T )ξ +

∫ T

0

Hλ̃(t)C(t)(1− λd+1(t))dt

+

∫ T

0

Hλ̃(t)C(t)(λd+1(t)− γd+1(t))dt],

(A.5)

where

Kn = max{sup
ε

1− e−3εn

ε
, sup
ε
eL

λ̃
τn

(t)+2εn}. (A.6)
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By Fatou’s lemma, we have

lim sup
ε→0

x(λ̃)− x(λ̃ε,n)

ε

= E lim sup
ε→0

[Hλ̃(T )
ξ

ε
(1−

Hλ̃γε,n
(T )

Hλ̃(T )
)

+

∫ T

0

Hλ̃(t)
C(t)

ε
(1− λ(t))(1−

Hλ̃(t)

Hλ̃ε,n
(t)

)dt]

+

∫ T

0

Hλ̃(t)C(t)
λε,n,d+1(t)− λd+1(t)

ε

Hλ̃(t)

Hλ̃ε,n
(t)
dt

≤ E[Hλ̃(T )ξ(Lγ̃(τn) +N γ̃(τn))] +

∫ T

0

Hλ̃(t)C(t)(1− λd+1(t))(Lγ̃(t ∧ τn)

+N γ̃(t ∧ τn))dt+

∫ T

0

Hλ̃(t)C(t)((γd+1(t)− λd+1(t))1t∧τndt

= E

∫ τn

0

Hλ̃(t)Xλ̃(t)[π∗(t)(γ(t)− λ(t)) +
C(t)

Xλ̃(t)
(γd+1(t)− λd+1(t))]dt

+dLγ̃(t ∧ τn).

(A.7)

The last equality of the above equation follows from

lim sup
ε→0

∫ T

0

Hλ̃(t)
C(t)

ε
(
λ̃ε,n(t)− λ̃(t)

Hλ̃(t)
Hλ̃ε,n

(t))dt

=

∫ T

0

Hλ̃(t) lim sup
ε→0

C(t)
λ̃ε,n(t)− λ̃(t)

ε

Hλ̃ε,n
(t)

Hλ̃(t)
dt

=

∫ T

0

Hλ̃(t) lim sup
ε→0

C(t)(γd+1(t)− λd+1(t))[
Hλ̃ε,n

(t)

Hλ̃(t)
− 1 + 1(t≤τn)]dt

=

∫ T

0

Hλ̃(t)C(t)(γd+1(t)− λd+1(t)) lim
ε→0

[
Hλ̃ε,n

(t)

Hλ̃(t)
− 1]dt

+

∫ T

0

Hλ̃(t)C(t)(γd+1(t)− λd+1(t))1t≤τndt

=

∫ T

0

Hλ̃(t)C(t)(γd+1(t)− λd+1(t))1t≤τndt, (A.8)

and

E[Hλ̃(T )ξ(Lγ̃(τn) +N γ̃(τn))]

+

∫ T

0

Hλ̃(t)c(t)Xλ̃(t)(1− λd+1(t))(Lγ̃(t ∧ τn) +N γ̃(t ∧ τn))dt

= E

∫ τn

0

Hλ̃(t)Xλ̃(t)[π(t)(γ(t)− λ(t))dt+ dLγ̃(t)], (A.9)

with Xπ,c(T ) = ξ, the proof of (A.9) is similar to that gives for Step 3 of Theorem
9.1 in Karatzas and et al. [13].
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Then,

lim sup
ε→0

x(λ)− x(λε,n)

ε

≤ E[Hλ̃(T )ξ(Lγ̃(t ∧ τn) +N γ̃(t ∧ τn))

+

∫ T

0

Hλ̃(t)c(t)Xλ̃(t)((1− λd+1(t))(Lγ̃(t ∧ τn) +N γ̃(t ∧ τn))dt

+

∫ T

0

Hλ̃(t)c(t)Xλ̃(t)(γd+1(t)− λd+1(t))1t∧τndt

= E

∫ τn

0

[
Hλ̃(t)Xλ̃(t)[π(t)(γ(t)− λ(t)) + c(t)(γd+1(t)− λd+1(t))]dt+ dLγ̃(t)

]
,

where c(t) = C(t)
X
λ̃

(t) . Now, by using the same procedure as that gives for Step 3 in

the proof of Theorem 9.1 given in Cvitanic and Karatzas [7], it follows that for any
ρ̃ ∈ H, we have

δ(ρ̃(t)) + π(t)ρ(t) + ρd+1(t)c(t) ≥ 0, (A.10)

and (π(t), c(t)) ∈ Ax. Meanwhile, γ̃ = 0 leads to

δλ̃(t) + π(t)λ(t) + λd+1(t)c(t) ≤ 0. (A.11)

From (A.10) and (A.11), X
π,(1−λd+1)c

λ̃
(t) is equal to Xπ,c(t) in the initial market.

Proof of Proposition 1.

Proof. Let γ̃ be replaced by λ̃ε,n in the statement and assume that εn = 1
2n and

0 < ε ≤ εn. Then,

lim sup
ε→0

1

ε
E{
∫ T

0

[Ũ1((1− λε,n,d+1(t))Hλ̃ε,n
(t)y)

−Ũ1((1− λy,d+1(t))Hλ̃y
(t)y)]dt+ Ũ2(U ′−1

2 (Hλ̃ε,n
(T )y))

−Ũ2(U ′−1
2 (Hλ̃y

(T )y))}

≤ lim sup
ε→0

y

ε
E[

∫ T

0

I1(y(1− λε,n,d+1(t))Hλ̃ε,n
)((1− λy,d+1(t))Hλ̃y

−(1− λ̃ε,n(t))Hλ̃ε,n
(t))dt+ I2(T, yε,nHλ̃ε,n

(t))((1− λy,d+1(t))Hλ̃y
(t)

−(1− λε,n,d+1(t))Hλ̃ε,n
(t))]

≤ lim sup
ε→0

yE[

∫ T

0

I1(y(1− λε,n,d+1(t))e−3εnHλ̃)Qε,n(t)dt

+I2(T, ye−3nHλ̃(T )Qε,n(T ))]
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= lim sup
ε→0

yE[

∫ T

0

I1(y(1− λy,d+1(t))Hλ̃y
(t))Qε,n(t)dt+ I2(T, yHλ̃y

(T )Qε,n(T ))]

= yλE[

∫ T

0

Hλ̃y
(t)C λ̃,0(t)(1− λy,d+1(t))(Lλ̃ε,n(t ∧ τn) +N λ̃ε,n(t ∧ τn))dt

+

∫ T

0

Hλ̃y
(t)C λ̃,0(t)(λε,n,d+1(t)− λy,d+1(t))1t∧τndt

+Hλ̃y
(T )ξλ̃y (T )(Lλ̃ε,n(τn) +N λ̃ε,n(τn))].

(A.12)

Here,

ξλ̃(T ) = I2(yHλ̃y
(T )),

C λ̃,0(t) = I1(y(1− λy,d+1)Hλ̃y
),

Qε,n(t) =
(1− λε,n,d+1(t))Hλ̃ε,n

(t)− (1− λy,d+1(t))Hλy (t)

ε
.

The second inequality follows from Fatou’s lemma, as it is bounded above by

Qn = KnyE

[ ∫ T

0

I1(ye−3n(1− λy,d+1(t)− ε0)Hλ̃y
)(1− λy,d+1(t))Hλ̃y

(t)dt

+I2(T, ye−3nHλ̃y
(T ))

]
. (A.13)

Here,

Kn = max{lim sup
0<ε<εn

e3εn − 1

ε
, e2εn+

∫ T
0
δ(λ̃ε,n(s))ds}. (A.14)

The remaining part follows in a similar way as that given for the proof of Lemma
3.1, showing that there exists a (πy(t), cy(t)) ∈ Ax satisfying

δλ̃y (t) + λy(t)πy(t) + λy,d+1(t)cy(t) = 0.
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