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Controlled and Conditioned Invariance with Stability
for Two-Dimensional Systems

Lorenzo Ntogramatzidis Michael Cantoni Ran Yang

Abstract-This paper collects, in a unified way, some recent
results on a geometric approach to two-dimensional (2-D)
system analysis and synthesis. The concepts of controlled and
conditioned invariant subspaces, stabilisability and detectability
subspaces, and output-nulling and input-containing subspaces,
which prove useful in solving various 2-D filtering and de
coupling problems, are developed for the Fornasini-Marchesini
model in a general form.

I. INTRODUCTION

Over the last thirty years, a stream of literature has
emerged regarding the modelling and analysis of two
dimensional (2-D) systems, which operate between sig
nals defined over a 2-D independent variable (e.g. space
and time). This includes the well-known Roesser [16] and
Fornasini-Marchesini (FM) [6], [7] models; these are inher
ently related as shown in [8], for example. Here, we consider
the FM model in the generalised form of Kurek [12]:

Xi+l,j+l = AOXi,j +AIXi+l,j +A2 Xi,j+l

+BoUi,j +Bi Ui+l,j +B2Ui,j+l, (1)

Yi,j = CXi,j+Dui,j,

where Xi,j E jRn, Ui,j E jRm and Yi,j E jRP are the local state,
input and output at the signal index (i,j), respectively.

The notions of controlled and conditioned invariance, first
developed for I-D systems by Basile and Marro in [1], are
central to the so-called geometric approach to linear control
system analysis and synthesis. Early results obtained in the
development of a counterpart for 2-D systems can be found
in [4], [11]. In particular, a definition of controlled invariance
was first proposed in [4] for FM models. The definition,
even though less powerful than its I-D counterpart, enjoys
feedback properties that are useful within the context of
synthesis problems, including 2-D disturbance decoupling.
Until recently [14], results pertaining to the computation of
stabilising (local- )state feedback matrices were not available,
which has limited application of these techniques, particu
larly from the perspective of numerical implementation.
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In this paper, we collate recent work on controlled and
conditioned invariance, with stability requirements. In par
ticular, the following are provided:

(i) definitions for controlled and conditioned invariant sub
spaces for the 2-D model (1);

(ii) results regarding the basic properties of these sub
spaces and their characterisation in terms of local state
feedback and output injection, respectively;

(iii) corresponding definitions and analysis of stabilisability
and detectability subpaces for the 2-D model (1);

(iv) LMI based analysis leading to sufficient conditions for
the computation of stabilising local-state feedback and
output injection matrices;

(v) corresponding definitions and analysis of output-nulling
and input-containing subspaces for the 2-D model (1).

To achieve a unified development, we extend slightly the
controlled invariance results of [14] to accommodate Ao
and Bo in the model (1) and we provide new definitions
of conditioned invariance compared to our initial work on
this [15], where stability was not considered and a less
general quotient observer structure is employed.

We denote the origin of jRn by On. The image, kernel,
transpose and Moore-Penrose inverse of a matrix M are de
noted imM, ker M, MT and Aft, respectively. The n x m zero
matrix is denoted by Onxm. We defined MD ~ diag(M,M,M),
and, accordingly, given a subspace / ~ jRn, the symbol
/D denotes the subspace /x/x/ of jR3n, where x
is the Cartesian product. Given the vector ~ E jRn, the
symbol ~ / / denotes the canonical projection of ~ on the
quotient space jRn/ /. Finally, given a triple of matrices
(Mo,Ml,M2), we define MH ~ [Mo M, M2] and Mv ~

[M6 M! MJ]T.

II. INVARIANT SUBSPACES FOR FM MODELS

We begin by considering the autonomous FM model

Xi+l,j+l = AOXi,j +AIXi+l,j +A2Xi,j+l. (2)

As boundary conditions for (2) we use Xi,j = bi,j E jRn for
all (i,j) E ~ and some constants bi,j E jRn, where ~ ~ (N x
{O}) U ({O} x N). 1

A subspace / of jRn is said to be (Ao,Al,A2)-invariant
if / is Ai-invariant for i E {O,1,2} in the usual I-D sense;
Le., Aix E / for all x E / and i E {O, 1,2}. The following
provides geometric and matrix conditions for invariance.

Lemma 1: The following are equivalent:

IOther choices of ~, for which a unique solution of (2) exists, are
possible; see [7]. The results in this paper can be adapted to these cases.
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(5)

(6)

B. Internal and External Stability ofInvariant Subspaces

A necessary and sufficient condition for asymptotic sta
bility of (2) - often said asymptotic stability of the triple
(Ao,AI,A2) - is that 'vi (ZI ,Z2) E s,p

As such, T [0 I
r

] is an r-dimensional (Ao,AI,A2)-
(n-r)xr

invariant subspace, by Lemma 1. •

A. Invariant Subspaces and Local-State Trajectories

Lemma 2: Consider an (Ao,AI,A2)-invariant subspace
/. A boundary condition Xi,) = bi,} E /' for (i,j) E ~,

gives rise to Xi,} E / for all i,j 2:: o.
Proof: In the set of coordinates corresponding to any
similarity transformation T = [TI T2 J, with imTI = /'

and partitioning local state comformably with T, as [::] =
I,l

T-Ixi,}, it follows by Theorem 1 that

[ ~tl ,j+ l ] _ [A61A62] [X~,}] + [AP ~l~] [~tl,j]
xi+I,}+I - 0 A62 x~~} 0 Al xi+I,}

[
"11 "12] [' ]+ A2 A2 Xi,}+1
o A~2 X~~}+I·

Note that any boundary condition Xi,} = bi,} E / is such
that x~~} = 0 for (i,j) E ~. Moreover, by (5), x~~} = 0 for all
i,j 2:: O. Hence, Xi,} E / for all i,j 2:: O. •

In the basis corresponding to T in Lemma 2, the com
ponent x~,} is the projection of the local state Xi,} onto the
invariant subspace /' while x~~} is the canonical projection
on to the quotient space jRn/ /.

where s,p ~ {('I, '2) E ex C 11'11 < 1 and 1'21 < I}; this is
equivalent to Xi,} ----+ 0 as i + j ----+ 00. Various, more compu
tationally tractable, sufficient stability conditions have been
proposed over the last two decades, in terms of Lyapunov
equations and/or spectral radius conditions of certain matri
ces, see e.g. [9], [10], [3]. In the very recent literature, new
necessary and sufficient criteria have appeared for asymptotic
stability in terms of conditions that can be checked in
finite terms, see [17], [5]. For the sake of argument and
clarity, however, the following simple sufficient condition for
asymptotic stability, expressed in terms of an linear matrix
inequality (LMI), will be used herein:

Lemma 3: ([10]) The triple (Ao,AI,A2) is asymptotically
stable if three symmetric positive definite matrices Po, PI and
P2 exist such that:

diag(Po,PI ,P2) - A~ (Po +PI+P2)AH > O. (7)
We now show that stability of (2) can be "split" into

two parts with respect to an invariant subspace / ~ jRnxn.

Expressing (2) in the set of coordinates corresponding to the
similarity transformation T in Theorem 1,

det(In - AOZI Z2 -AI Z2 -A2 ZI)
"11 "11 "11= det(I-Ao ZI Z2- AI Z2- A2 ZI)
"22 "22 "22·det(I -Ao zI z2 -AI z2 -A2 ZI).

(4)

(3)

Ai [c: ]= [ O(n~)xr ]

holds for Xj =A}I. Pre-multiplying (4) by T yields

Ai T [ O(n~)xr ] = T [ O(n~)xr ] Ai·

[
A ~ 1] [ A ~ 1 A ~2 ] [ t. ] " 1
A~I = A~I A~2 0 =AiT- J

1 1 1 (n-r)xr

= T- IAiJ = T- IJXj = [ Xj ] ,
O(n-r)xr

for i E {O,1,2}. That is, ATI = 0 as required.
2) ~ 1) Let T be such that (3) holds. Then,

[
"11 "12 ]"~-I _ Ai Ai

Ai - T Ai T - 0 A~2·
(n-r)xr 1

Proof: 1) ~ 2) Let J E jRnxr be a basis matrix for /.
Then, by Lemma 1, three matrices XO,XI,X2 E jRrxr exist
such that AiJ = JXj for all i E {0,1,2}. Since J is of full
column-rank, a non-singular matrix T E jRnxn exists such that

-1 _ [ Ir ] • "_ -1 _ [A} 1 A}2]T J - ° . As such, with Ai - T Ai T - A"21 A"22
(n-r)xr i i

for i E {O,1,2}, it follows that

1) / is (Ao,AI,A2)-invariant;
2) Av / ~ /D;
3)AH/D~/;

4) There existXo,XI,X2 E jRrxr such thatAiJ =JXj, where
J E jRnxr is a full column-rank matrix such that imJ =
/' Le., AvJ = JDXV ;

5) There exist Lo,LI,L2 E jR(n-r)x(n-r) such that QAi =
LiQ for i E {O,1,2}, where Q E jRrxn is a full row-rank
matrix such that ker Q = /' Le., QAH = LH QD.

Proof: 1) ~ 2) This follows directly by definition.
2) ~ 3) For;i E /' i E {O,1,2}, it follows that Ai;i E /'

andhence,Ao;0+AI;I+A2;2=AH[;oT ;! ;JJT E/.
3) ~ 1) Suppose there exist an i E {O,1,2} and an ; E

/ such that Ai; tt. ~; Le., / is not (Ao,AI,A2)-invariant.

Then AH [;TOOJT tt. /' which contradicts 3).
2) {:} 4) Note that 2) is equivalent to imAvJ ~ imJD, by
which the result holds, since for any matrices Y E jRpxm and
Z E jRPxq, imY ~ imZ if, and only if, there exist an X E

jRqxm such that Y = ZX; when Z has full column-rank then
X = (ZTZ)-IZTy = ztr is the unique solution.
3) {:} 5) Note that 3) is equivalent to kerQD ~ kerQAH , by
which the result holds, since for any matrices M E jRpxm

and N E jRqxp, kerM ~ kerN if, and only if, there exist an
L E jRqxm such that N = LM; when M has full row-rank then
L = NMT (MMT)-I = Nut is the unique solution. •

The following theorem is the 2-D counterpart of a well
known result (see [1]) concerning the decomposition of a
I-D system matrix with respect to an invariant subspace.

Theorem 1: The following are equivalent:

1) There exists an r-dimensional subspace / < jRn that is
(Ao,AI,A2)-invariant;

2) There exists a similarity transformation T E jRnxn such
that for each i E {O,1,2}
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minimal dimension which contains a given sequence satisfy
ing (1) is not necessarily controlled invariant. Nonetheless,
this definition enjoys good feedback properties, as shown for
the first time in [4], and briefly recalled in Lemma 4.

Lemma 4: Let 1/ be an r-dimensional subspace and let
V E jRnxr be a basis matrix for 1/. The following are
equivalent:

1) The subspace 1/ is controlled invariant for (1);
2) Matrices X E jR3rxr and Q E jRmxr exist such that

3) A matrix FE jRmxn exists such that with Af ~Ai+BiF,
1/ is (Ab ,Af,A~)-invariant,Le.,

A~ 1/ <1/n; (11)

4) Matrices F E jRmxn and X E jR3rxr exist such that

A~ V = VDX. (12)
Proof: The implication 1) ~ 2) follows from Definition
2 on noting that (10) is simply a matrix representation of
the subspace inclusion (9). To prove 2) ~ 3) it suffices
to take F = -Q(VTV)-1 VT . It follows that Q = -FV, that
can be used in (10) to get (11). The result 3) ~ 4) follows
directly from the fact that (12) is a matrix representation of
the inclusion (11). Finally, the implication 4) ~ 1) follows
by re-writing (12) as

by which (9) holds, completing the proof. •
Remark 1: For a controlled invariant subspace 1/ = imV,

with kerV = {O}, pairs of matrices X and Q that satisfy the
linear equation (10) can be parameterised by

[ ~ ] = WtAvV +HK, (14)

where W ~ [VD e; J, H is a basis matrix for ker Wand
K is an arbitrary matrix of suitable size.

Let F be such that (11) holds true. Applying a static local
state feedback Ui,} = FXi,} in (1) we find that

Xi+l,}+1 = Ab Xi,} +Af Xi+l,} +A~Xi,}+I. (15)

Moreover, under such control action and given a 1/-valued
boundary condition, Le., such that Xi,} E 1/ for all (i,j) E ~,

it follows as in the autonomous case discussed above, that
Xi,} E 1/ for all i,j E N. The set of matrices F such that
(11) holds is denoted by ~(1/,LO); when F E ~(1/,LO) it is
said to be a friend of the controlled invariant subspace 1/.
As in the I-D case, and since 1/ is (Ab,Af,A~)-invariant
for all F E ~(1/), the definitions for internal and external
stability can be used to define notions of internal and external
stabilisability with respect to a controlled invariant subspace.

Definition 3: The controlled invariant subspace 1/ is said
to be internally (resp. externally) stabilisable if there exists
an F E ~(1/,LO) such that 1/ is an internally (resp. exter
nally) stable (Ab ,Af,A~)-invariant subspace. An internally
stabilisable controlled invariant subspace is sometimes called
a stabilisability subspace.

It follows that (2) is asymptotically stable if and only if
(A6 1,All,A11) and (A62,A12,A~2) are asymptotically stable.

Definition 1: The (Ao,Al,A2)-invariant subspace / is

• internally stable if the corresponding triple
(A61,A~ 1,A11) is asymptotically stable.

• externally stable if the corresponding triple
(A62,A12,A~2) is asymptotically stable.

Hence, (2) is asymptotically stable if and only if any invariant
subspace is both internally and externally stable.

Corollary 1: Given the r-dimensional subspace / of jRn,

let J E jRnxr be a full column-rank matrix such that imJ =
/ and Q E jR(n-r)xn be a full row-rank matrix such that
kerQ= /. Then

1) / is an internally stable (Ao,Al,A2)-invariant sub
space if, and only if, an asymptotically stable triple
(XO,Xl,X2) exists such that AiJ = J~ for all i E
{0,1,2};

2) / is an externally stable (Ao,Al,A2)-invariant sub
space if, and only if, an asymptotically stable triple
(Lo,Ll,L2) exists such that QA i = L, Q for all i E

{0,1,2}.
Proof: Consider 1). With respect to a basis of jRn adapted
to /' the identity AiJ = J~ can be written as

[o(:lr~xr ~~~] [c: ]= [ c: ]~ (8)

for i E {0,1,2}, so that All =~. Now consider 2).
With respect to a basis of jRn adapted to / ' Q =
[O(n-r)xr I(n-r) x (n-r) ] is a full row-rank matrix such that
ker Q = /. Writing the identities QA i = L, Q for all i E
{0, 1,2} with respect to this basis yields

[ O(n-r) xr I(n-r) ] [AP A~~] = i, [ O(n-r) xr I(n-r) ] 'o Ai

leading to L, = A;2 for all i E {O, 1,2}. •

III. CONTROLLED INVARIANT SUBSPACES

Consider the non-autonomous FM model (1) Again, the
boundary conditions associated with this model correspond
ing to specifying the local state over ~.

Definition 2: ([4]) The subspace 1/ < jRn is controlled
invariant for (1) if

Av1/ <1/n + imBv . (9)
A direct consequence of this definition is that the sub

spaces On and jRn are controlled invariant subspaces for
(1). It is easy to see that the set of controlled invariant
subspaces is closed under subspace addition. Moreover, if 1/
is controlled invariant then it is both (AI ,Bl) and (A2,B2)
controlled invariant in the usual I-D sense [1]. The converse,
however, is not true in general, as observed in [11]. A
controlled invariant subspace 1/ implies the existence of
a set of inputs {Ui,} Ii,j 2: O} for which the corresponding
local state solution of (1) lies in 1/, for all i,j > 0 and any
1/-valued boundary condition. While in the I-D case the
converse is true as well, with this definition the subspace of

AvV = VDX+BvQ;

AvV = VDX-BvFV,

(10)

(13)
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(19)

there is only one solution to (10), and this either
achieves internal stabilisation or it does not.

• When W has non-trivial kernel, we can write (14) as

[ ~ ] = [ ~; ] + [ ~; ] K, (23)

where [L6 Li Li LIJ
T

~ WtAvV,
im [ R T H T R T R T JT - ker Wand K is° I 23-
an arbitrary matrix of suitable size. The problem
of internal stabilization with respect to 1/ then
becomes one of finding a K such that (XO,XI,X2) is
asymptotically stable. If such a K exists, we can exploit
it in order to compute Q from (23) along with the

Now we show that the matrices fif2(Q,F) in (18) do not
depend on Q. To this end, let Q I and Q2 be such that (10)
holds for some XI and X2, respectively. By difference,

VD(XI -X2) +Bv(QI - (2) = O. (20)

With Fk = -Qk(VT V)-I VT +F, for k = 1,2, where F is
any matrix such that FV = 0, it follows that (18) can be
written as

T-I(Ai+BiFk)T= [fii,II(Qk,F) fii,12(Qk,F,..)]. (21)
o fi i,22 (Qk,F)

For the sake of conciseness, let Li; ~ fii,*(QI,F) 
fii,*(Q2,F). Subtracting (21), with k = 2, from (21), with
k = 1, gives

Bi (Q 2 - Q I) (VT V)- IVT [ TI T2J=[TI 12J[
L
011 ~1,12]

1,22

which in particular, yields Bi(Q2 -QI)(VTV)-IVT12 =
TI Li,12 + 12Li,22. Since no generality is lost by assuming
TI = V, we find that

BV(Q2-QI)(VTV)-IVTT2= [ VLI,12+12 LI,22 ].
VL2,12 + 12 L2,22

Then using (20) to obtain

VD(XI-X2)(VTV)-IVTT2=VD [LI,12] + [T2 0] [LI,22]
L2,12 0 T2 L2,22

it follows that [~~] [~:'::] = 0, since V and T2 have
linearly independent columns. This in turns implies that
LI,22 = L2,22 = 0 since T2 has linearly independent columns.
This means fii,22(QI,F) = fi i,22 (Q2,F) for i E {O, 1,2}. •

Finding an Fn to internally stabilise 1/ is equivalent to
finding an Fn for which a triple (XO,XI,X2) satisfying (12)
is asymptotically stable. Since the only degree of freedom
lies in the choice of Q, which is given by (14), we have the
following.

• When the nullspace of W ~ [VD Bv] is zero, Le., when

(22)

To see how to choose a friend F of a controlled invariant
subspace 1/ to achieve internally (resp. externally) stability, a
more explicit characterisation of the set ~(1/, LO) is required.

Lemma 5: Let 1/ be an r-dimensional controlled invariant
subspace and let V E jRnxr be a basis matrix for 1/. Each
matrix F E ~(1/,LO) is a solution of the linear equation Q =
-FV, where Q E jRmxr is a solution of (10) for some X E
jR3rxr. In particular,

~(1/,LO) = {F = -Q(VTV)-I VT+F I
IQ satisfies (10) for some X and tv = O}. (16)

Proof: The statement follows on noting that any F E
~(1/,LO) satisfies (12) for some X E jR3rxr. Hence, (12) can
be written as (13). It follows that (10) is satisfied with this X
and Q = -FV. To complete the proof, note that since V is
full column-rank, all solutions of Q = - F V can be written
as

F=Fn+F, (17)

where Fn = -Q (VTV)-I VT and F is any matrix of suitable
size such that FV = o. •

Since all F E ~(1/,LO) are such that 1/ is (Ab,Af,A~)

invariant, the similarity transformation T = [TI T2 J, with
TI set to be a basis matrix for 1/, is such that

[

II '" 12 "']T-I(A. B.F)T= fii (Q,F) fii (Q,~) (18)
1 + 1 0 fif2(Q,F)

for i E {O, 1,2}. Equation (18) emphasises that for different
values of Q and F satisfying the conditions in (16), we
obtain different matrices fi; (Q,F). Importantly, it is shown
in Lemma 6 below that the matrices fill (Q,F) and fi~ I (Q,F)
do not depend on F, and similarly, the matrices fir2(Q,F)
and fi~2(Q,F) do not depend on Q. In this way, the two
matrices Q and F can be chosen independently to build a
friend of 1/, so that the former does not affect (fir2 ,fi~2)

and the latter does not affect (fill, fi~ I ). In other words,
when 1/ is internally stabilisable, Q can be chosen first
so that Fn stabilises (fill, fi~ I), and then F can be chosen
to stabilise (fir2 ,fi~2), if 1/ is also externally stabilisable,
without affecting the internal stabilisation achieved with Fn.
These two independent stabilisation procedures are examined
in the remainder of this section.

Lemma 6: The matrices fi}1 (Q,F) in (18) do not depend
on F. The matrices fif2(Q,F) in (18) do not depend on Q.

Proof: First, we prove that the matrices fi}1 (Q,F) in (18)
do not depend on F. Let Fk = Fn +Fk for k = 1,2, where
FI and F2 are such that FI V = 0 and F2 V = 0, and Fn =
-Q(VT V)-I VT, where Q is such that (10) holds for some
X. Then, (18) can be written as

[

II '" 12 "']T- I(A.+B.F1)T= fii (Q,Fk) fii (Q,~k)
11k 0 fif2(Q,Fk)·

Our aim is to show that fi}1 (Q,FI) = fi}1 (Q,F2) for i = 1,2.
From (19) we find

[
fi}I(Q,FI) -fi}I(Q,F2) fi}2(Q,FI) -fi}2(Q,F2) ]

o fif2(Q,FI) -fif2(Q,F2)

I '" I '"= T- (Ai +BiFn +BiFI) T - T- (Ai +BiFn +BiF2) T

= T- I Bi(FI- F2) [TI 12 J = [0 T- I Bi(FI- F2)12 J,
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where 8i 0. ~ 8 i 0. + B, STVT and V is a basis matrix for
kerVT . ' ,

suitable F in order to stabilise 1/ externally. Applying the
static feedback control action Ui,j = (Fo. +F)Xi,j in (1) yields

Xi+1,j+1 = (80,0.+BoF)Xi,j+(81,0.+B1 F)Xi+1,j

= +(82,0. +B2 F)Xi,j+1,

where 8 i,0. ~ Ai +B, Fo.. The problem can now be considered
as one of finding F such that

{
(80,0. +BoF,81,0. +B1 F,82,0. +B2 F) asympt. stable
FV=O

Theorem 3: Let 1/, with basis matrix V, be a controlled
invariant subspace for (1). Suppose that 1/ is inter
nally stabilised by the static feedback matrix Fo.; Le.,
(80,0.,81,0.,82,0.) is internally stable with respect to 1/.
Then 1/ is also externally stabilisable if there exist matrices
M=MT > 0, N=NT > 0, Z=ZT > 0, R=RT > 0 and S
of suitable dimensions such that

corresponding asymptotically stable triple (XO,X1,X2),
to yield the required solution of (10). Moreover, with
F = -Q(VTV)-l VT, we find that (12) is also satisfied,
which implies F internally stabilises 1/.

The following result provides a computationally tractable
sufficient condition for the internal stabilisability of a con
trolled invariant subspace.

Theorem 2: The controlled invariant subspace 1/ is in
ternally stabilisable if there exist matrices M = MT > 0,
N = NT > 0, Z = ZT > 0 and E, of suitable dimensions,
such that

[

""T ]
-M 0 0 Zo

""To -N 0 ~

~ ~ -(Z-!1- N) z; <0. (24)
z, z, Z2 -Z

where Zi ~ L, Z + ME and L, and M are as defined in
(23). Given a (M,N,E) in the convex set defined by (24),
K = E Z-l is such that the corresponding triple (Xo ,Xl ,X2)
obtained from (23) is asymptotically stable.
Proof: The controlled invariant subspace 1/ is internally
stabilisable if, and only if, there exist symmetric positive
definite matrices Po, PI and P2 such that the triple (XO,X1 ,X2)
satisfies (7) in Lemma 3. Since Xi = L, +MK (i = 0,1,2),
this is equivalent to the existence of three symmetric and
positive definite matrices <1>, 8 and 'II such that

[ -M
0 0 Brin]

B~n
-N 0 ..:::.-r

0 -(Z-M-N)
~!ro. < 0
......2,0.

81,0. 82,0. -R

with
ZR=I.

(25)

(26)

which is obviously another way of saying that (Lo,L1,L2)
satisfies the sufficient condition for stability (7). As men
tioned above, in this case there is only one solution (X,Q)
of equation (10), so that there are no degrees of freedom in
the choice of Fo..

2This may not always yield a feasible point, even if the non-convex set
defined by (25-26) is non-empty.

[~ ~] ~ O. (27)

The problem of finding (M,N,Z,R,S) that satisfy (25-26)
can then be tackled with the following algorithm.?

Algorithm 1: ([13])
Step 1: Check the existence of a pair (Z,R) satisfying (25)
and (27). If such pair exists, denote it with (zO ,RO).

Proof: First note that the condition FV = 0 can also be
written as imFT <kerVT . Then, consider a basis matrix V
ofker VT , so that imFT ~ im V. As such, FT = VS for some
matrix S so that F = STVT. Now by Lemma 3, the triple
(80,0.,81,0.,82,0.) is asymptotically stable if there exist three
symmetric positive definite matrices M, N, Z and a matrix S
of suitable dimension such that

-; -(Z-L-N) ~;~ ]<0
"" ' 181,0. 82,0. -Z-

which is equivalent to (25) when combined with (26). •
The set defined by the inequality (25) with the constraint

(26) is not convex. However, various established numerical
techniques are available for finding feasible points. Here
we consider the so-called sequential linear programming
matrix method (SLPMM) developed in [13]. To this end,
we first notice that condition (26) is satisfied if and only if
Trace(ZR) = nand

<0,
o
o

-(Z-M-N)
L2Z

-M 0

o -N
o 0

LoZ LIZ

[

-<I> 0
o -8
o 0

'PXo 'PX1

Pre- and post-multiplying this matrix inequality by
diag{'P-1, '11-1, '11-1, 'II-I} and defining M = '11-1<1>'11-1,

N = '11-18'11-1, Z = '11-1, and E = K'P- 1, yields (24).
Finally, note that K = E Z-l . •

When (22) holds, the matrices M in (23) can be considered
void. In this case, condition (24) in Theorem 2 reduces to
the existence M = M T > 0, N = NT > 0 and Z = ZT > 0
satisfying the LMI

A. External stabilisation for controlled invariance

Given a controlled invariant subspace 1/ and a correspond
ing basis matrix V, let (X,Q) be any solution of (10) and
let Fo. = -Q (VTV) -1 VT be a friend of 1/ that is internally
stabilising. We now consider the possibility of choosing a

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 09,2010 at 21:51:08 EST from IEEE Xplore.  Restrictions apply. 



a linear equation which can be solve for rand A. Given
a conditioned invariant subspace, the solutions of (30) are
given by

3) there exists a matrix G = [Go Gl G2] E jRnx3p such that

(AH+GCD)YD <Y. (29)
Proof: 1) ====} 2). Since Y is such that AH(YDnker CD) ~

.'/, it follows that ker [g~] ~ kerQAH and as such, there

exist r E jR(n-s)x3(n-s) and A E jR(n-s)x3p such that QAH =
rQD +ACD; see Proof of Lemma 1. 2) ====} 3). Equation
(29) follows from (28) with any G such that A = -QG. 3)
====} 1). This follows by definition. •

Property 3) in Lemma 7 means that Y is conditioned
invariant for (1) if and only if there exists an output
injection matrix G = [Go Gl G2] E jRnx3p such that Y is a
(Ao+ GOC,Al + GIC,A2 + G2C)-invariant subspace. Let T
and A be such that (28) holds, which can be written as

Step 2: Given (Zk,R k), k ~ 0, obtain a solution (Z,R)
together with S, to the convex optimization problem

min Trace(ZRk+ZkR)
subject to (25), (27).

Denote this solution with (Z;,R}).
Step 3: If ITrace(Z;R k+ZkR}) -2· Trace(ZkRk)I <v
then stop, where v is a sufficiently small positive scalar.

Step 4: Compute a E [0,1] by solving

min Trace ([z' +a(Z; - Zk)] [Rk+a(R} - Rk)]).
aE[O,I]

Step 5: SetZk+1 = (I-a)Zk+aZ; and Rk+1 = (I-a)Rk+

aR}, then go to Step 2.

IV. CONDITIONED INVARIANT SUBSPACES

Now we focus our attention on the definition of condi
tioned invariant subspaces.

Definition 4: The subspace Y ~ jRn is conditioned invari
ant for (1) if AH(YDnkerCD) ~ Y.
It is can be seen that the set of conditioned invariant
subspaces is closed under subspace intersection but not under
subspace addition. Its smallest element is On, its largest
element is jRn.

Lemma 7: Let Y be an s-dimensional subspace of jRn,

and let Q E jR(n-s)xn be such that ker Q = Y with Q of full
row-rank. The following statements are equivalent:

1) the subspace Y is conditioned invariant for (1);
2) there exist matrices T = [ro r, r2] E jR(n-s)x3 (n-s) and

A = [Ao Al A2 ] E jR(n-s)x3p such that (34)

(36)

for (1) with ui,i = 0, it follows that with ei,i := QXi,i - wi,i'

[

Xi,) ] [ 0);,) ]ei+li+1 = (QAH- LHCD) Xi+l,) +KH 0);+1,) •
, Xi,)+1 OJi,)+1

For KH = rand LH = A, where (A, I") satisfy (30), this
becomes

Wi+l,i+l = KOWi,i +KI Wi+l,i +K2 Wi,i+l

+LOYi,i +LIYi+l,i +L2Yi,i+l, (35)

where the rows of H span the null-space of [Q~ CJ ]

and K is an arbitrary matrix of suitable size. When [~] is
full-rank matrix K has zero rows; i.e., the only solution of, t,."
(30) is [r A] = QAH [~] • By (29), r exists such that

Q(AH+GCD)=fQD. (32)

We now investigate the relation between the pairs (r,A) and
(G, f) satisfying (30) and (32), respectively. First, notice
that given a pair (G,f) such that (32) holds, then (30) is
satisfied with T = f and A = -QG. Conversely, given a pair
of matrices (I", A) such that (30) holds, then (32) is satisfied
with f = r and with any G such that A = -QG. As such,
no generality is lost by assuming f = r, and by representing
the set of all friends of the conditioned invariant subspace
Y as the set of matrices G E jRnx3p satisfying A = -QG,
where A E jR(n-s)x3p is any matrix for which another matrix
T E jR(n-s)x3(n-s) exists so that (30) holds. For any pair (r,A)
such that (30) holds, the solutions of the linear equation
A = -QG are parameterised as

3This is different to the form considered in [15].

ei+l,i+l = rQD [x::'{)] +r [OJ:'!,)]
Xi,)+1 0);,)+1

= roei,i +rl ei+l,i+r2 ei,i+l, (37)

so that with observer boundary conditions wi,i = xi,i/ Y, for
(i,j) E 23, it follows that ei,i = 0 for (i,j) E 23, and hence,

G = GA+G, (33)

where GA~ _QT (QQT)-1 A and G is any n x 3p matrix
such that QG = 0, or, equivalently, such that imG ~ ker Q.
The choice of G affects the external stability of Y, but
not the internal stability of Y. Similarly, GA can affect the
internal but not the external stability of Y. With reference

to the proof of Corollary 1, note that with S ~ [~], where
the rows of S; are linearly independent from those of Q, so
that QS-l = [0 I], we have that for all i E {O, I,2}

[
11 ,." 12 ""]

S(A .+G·C)S-1 - ~i (A,G) ~i (A,q)
1 1 - 0 ~T2(A,G)·

Lemma 8: For all i E {O,I,2}, the matrix ~T2(A,G) does
not depend on G, and the matrix ~ll(A,G) does not depend
on the particular A which satisfies (30) for some r.
Proof: The proof follows the same line as the proof of
Lemma 6. •

Conditioned invariance is linked to the existence of 2-D
quotient observers [15]. For an observer of the fomr'

(30)

(28)

(31)[
QD ]t[r A] = QAH CD +KH,
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all (i,j) E N x N by (37). If (ro, r., r2) is asymptotically
stable, then the observer is said to be asymptotic in the sense
that ei,} ---+ 0 as i + j ---+ 0 for any boundary conditions. In
view of Corollary 1, part 2), we are therefore interested in
finding G = [Go GI G2] such that Y is an externally stable
(Ao+GoC,AI +GIC,A2 +G2C)-invariant subspace; Le., such
that there exists an asymptotically stable triple (ro, rI, r2)
for which Q (AH+ GCD) = r QD. When such a G exists, Y
is called a detectability subspace.

For a given a conditioned invariant Y, write (31) as

[r° r 1 r2 A] = [Vo VI V2 V3] +K [Ho HI H2 H3],

where [Vo VI V2 V3] = QAH [~~r and the rows

of [Ho HI H2 H3], partitioned comformably with
[ro r, r2 A], span the kernel of [QI cX]. If this
null space is zero, Le., if Y D+ ker CD = jR3n, there is
only one solution to (30), so that there are no degrees
of freedom in the choice of the triple (T0, T1, T2). In
this case, if (ro, rI, r2) = (Vo, VI, V2) is stable, then
with the corresponding A = [Ao Al A2] = V3, the matrix
GA ~ _QT(QQT)-I A = [GA,O GA,I GA,2] is such that Y is
an externally stable (Ao + GA,oC,AI + GA,IC,A2 + GA,2C)
invariant subspace. On the other hand, if the triple
(ro, r., r2) = (Vo, VI, V2) is not asymptotically stable, the
subspace Y is not a detectability subspace.

Now, when Y D+ ker CD C jR3n, the problem we need to
solve is to find a matrix K such that the resulting triple
(rO,rI,r2) = (Vo +KHo, VI +KHI, V2 +KH2) is asymptot
ically stable; the corresponding A = [Ao Al A2] = V3 +KH3,
for which (r,A) is a solution of (28), is such that GA ~

_QT(QQT)-I A, yielding Q(AH+GACD) = rQD, so that Y
is an externally stable (AO+GA,OC,AI +GA,IC,A2+GA,2C)
invariant subspace. Towards characterising a subset of such
matrices K, we can rewrite the sufficient condition for
asymptotic stability in Lemma 3 for the triple (ro, rI, r2)
as shown below

[~ ~ ~ ]-[~f ]8 [ro r, r2] > 0,
o 0 8-<1> -qJ rJ

for some <I> ~ Po > 0, qJ ~ PI > 0 and 8 ~ Po +PI +P2 > o.
Standard manipulation and T, = ft + KM, for i = 0, 1,2, yield
the equivalent condition

[~ j .r. ~~] > 0 (38)

VOVI V2 8

for some <I> > 0, qJ > 0, 8 > 0 and Il of suitable dimensions,
where Vi ~ 8ft + rIM and n = 8K.

Theorem 4: Let Y be a conditioned invariant subspace

[QD]tfor (1), [Va VI V2 V3] = QAH CD and [Ho HI H2 H3] be

such that its rows are a basis for the kernel of [QI cX].
The subspace Y is a detectability subspace if there exist
<I> = <I>T > 0, \}I = qJT > 0, 8 = 8 T > 0 and Il of suitable

dimensions such that (38) holds. Moreover, given a quadruple
(8,<I>,qJ,n) in the convex set defined by (38), a matrix K
for which the triple (ro, rI, r2) is asymptotically stable is
given by K = 8-1n".

V. OUTPUT-NULLING AND INPUT-CONTAINING

SUBSPACES

We now tum our attention to output-nulling subspaces,
which play a fundamental role in several control problems,
like disturbance localisation and decoupling, non-interaction
and optimal control problems. These are a particular type of
controlled invariant subspaces for (1). The subspace 1/ ~ jRn

is an output-nulling subspace for (1) if

[ ~ ] Y ~ (~ x Op) + im [ ~ ] . (39)

An output-nulling subspace 1/ is such that for any 1/-valued
boundary condition, there is an input function for which the
local state trajectory of (1) lies in 1/ and the corresponding
output is zero for all (i,j) such that i,j 2:: o. Such an input
can always be expressed as a static state feedback.

Lemma 9: Let V be a basis matrix for an r-dimensional
subspace 1/ ~ jRn. The following statements are equivalent:

1) The subspace 1/ is output-nulling for (1).
2) Two matrices X E jR3rxr and Q E jRmxr exist such that

3) A matrix F E jRmx n exists such that

[ C:~F ] Y ~ ~ x Op. (41)

The set of output-nulling controlled invariant subspaces is
denoted with the symbol mo. Given a 1/ E mo, any matrix
F such that (41) holds is called an output-nulling friend.
It is not difficult to see that, as in the I-D case, the set
mo is closed under subspace addition. Thus, the sum of all
output-nulling subspaces for (1) is the largest output-nulling
subspace and this is denoted by 1/*. The following enables
computation of 1/* in finite terms, as the (n - 1)-th term of
a monotonically non-increasing sequence of subspaces.

Algorithm 2: The sequence of subspaces (1/ i)iEN de
scribed by the recurrence

1/0 = jRn,

y i
= [~rl ((Yd-IXOp)+im[ ~ ]), i>O,

is monotonically non-increasing. Moreover, there exists an
integer k:Sn-l such that 1/k+I =1/k. For such k the
identity 1/* = 1/k holds.

Algorithm 2 is a generalisation of a corresponding result
in [4, Proposition 2.7], to the case of 'non-strictly proper'
systems. Due to the invariance property (41) of the set
of all output-nulling friends associated with the elements
of the output-nulling controlled invariant subspaces mo for
(1), we can introduce the notions of internal stabilisability
and external stabilisability for output-nulling subspaces: An
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3) a matrix G E jRnx3p exists such that

Q[AH BH]=r[QD O]+A[CD DD]; (43)

[AH+GCD BH+GDD] (Y"DX]R3m) ~Y" (44)

The following is an algorithm for computing the smallest
input-containing subspace Y*.

output-nulling subspace 1/ E Wo is said to be internally
stabilisable (resp. externally stabilisable) if there exists an
output-nulling friend F such that 1/ is an internally stable
(resp. externally stable) (AS' ,Af,A~)-invariant.

Given a 1/-valued boundary condition for (1) with 1/ E

Wo, any control action Ui,) = FXi,} with F satisfying (41) is
such that Xi,} E 1/ and Yi,} = 0 for all i,j such that i,j 2: O.
To see this, it suffices to substitute Ui,} = FXi,} in (1) to get
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Algorithm 3: The sequence of subspaces (yi)iEN de
scribed by the recurrence

yO = On

Y"i = [A H BH] ( (Y"t- l
X ]R3m) nker [CD DD])'

for i > 0, is monotonically non-increasing. An integer
k~n-l exists such that y k+1=yk• For such k, the
identity y* = yk holds.

VI. CONCLUSIONS

The problem of internal and external stabilisation of
controlled and conditioned invariant subspaces has been con
sidered for 2-D Fornasini-Marchesini models in the general
form of Kurek. The main results enable the extension of var
ious geometric analysis and synthesis results for 2-D systems
already available in the literature by accommodating sta
bility requirements. These include geometric approaches to
problems of disturbance decoupling with unaccessible, mea
sureable and previewed signals, model matching problems,
full information problems, non-interaction control problems,
unknown-input observation and fault detection problems.
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(42)
Xi+l,}+l = AS'Xi,} +AfXi+l,} +A~ Xi,}+l

Yi,} = (C+DF)Xi,),

and to observe that when Xi,}, Xi+l,} and Xi,}+l belong
to 1/, so does Xi+l,}+l because of (41). As a result, for
any 1/-valued boundary condition it is found that Xi,} E 1/
and Yi,} = 0 since 1/ ~ ker (C +DF). This shows that the
control input required to maintain the output at zero and
the local state on 1/ can always be expressed as a static
local state feeback. As such, all of the material developed
in Section III for controlled invariant subspaces can be
adapted straightforwardly to output-nulling subspaces with
few modifications. Indeed, by replacing (10) with (40) and
(22) with 1/n n Bv ker D = 03n, the internal and external
stabilisation of output-nulling subspaces via output-nulling
static feedback can be carried out along the same lines as
the internal and external stabilisation of arbitrary controlled
invariant subspaces.

Now we tum our attention to input-containing subspaces,
which are particular types of conditioned-invariant subspaces
useful in the context of various filtering/estimation problems,
like unknown-input observation and fault detection.

Definition 5: We define a input-containing subspace Y
for (1) as a subspace of jRn such that

[AH BH] ((Y"DX]R3m)nker[ CD DD J) ~Y".
The set of input-containing subspaces for (1) is denoted

by the symbol 60. The intersection of two input-containing
subspaces is input-containing. It follows that the set 60 is
closed under subspace intersection. The same is not true
for subspace addition. The intersection of all the input
containing subspaces of L is the smallest input-containing
subspace of L, and is usually denoted by Y*.

Lemma 10: Given the s-dimensional subspace Y of jRn,

let QE jR(n-s)xn be such that kerQ = Y with Q of full row
rank. The following statements are equivalent:

1) the subspace Y is input-containing for (1);
2) two matrices T E jR(n-s)x3(n-s) and A E jR(n-s)x3p exist

such that
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