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Abstract 

 

In the current project we have developed a novel insolation model which allows 

users to incorporate the impact of space activity (solar flares, galactic radiation) 

on the Earth’s climate. The incoming radiation was modelled as a flux passing 

through a cross-section (latitudinal belt), and the changes of light throughout the 

year were represented by an ellipse with changing parameters. This approach has 

allowed us to get the results for any latitude at any particular time. Obtained 

results indicate an average accuracy of 97% with only a few percent less for polar 

regions. 
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Introduction 

Researchers have been trying to model incoming solar radiation for a long time 

already, with the first attempts belonging to Milankovitch [4], who first developed 

a set of formulae for calculating daily insolation. The method was based on 

spherical trigonometry applied to the astronomical coordinates on the celestial 

sphere. The English version is available in, for example, [5]. The theory was 

developed in order to explain the long-term variations in the orbital parameters. 

Later on a work was continued by Budyko [2] and Sellers [9], who started the 

development of simple energy balance models, where some representation of 

insolation was required. In both works, the annual mean tabulated values for each 

latitudinal belt were used in order to model insolation reaching the outer boundary 

of the atmosphere. North in his research [6] also used the mean annual distribution 

of radiation, but he approximated it by the second Legendre polynomial. His later 

research [7] includes the seasonal distribution of insolation as well, which was 

again approximated by the second order Legendre polynomial. At the same time 

Berger in his paper [1] brought back the attention to the geometry based formulae 

for computing daily insolation proposed earlier by [4]. 

These existing modelling approaches are commonly used in current global climate 

models, such as those described in [3], [8], [10], [11]. However, they cannot 

incorporate the influence of external forces which can have a big impact on our 

climate and which may even lead to extreme events. In this paper we aim to 

model the incoming radiation as a flux coming from space, which will be a good 

basis for incorporating the impact of space activity in the future. The derivation 

uses the methods of vector field theory and surface integrals.  

Obtained results indicate an average accuracy of 97% with only a few percent less 

for the regions beyond the polar circles. The chosen modelling approach is 

sufficiently flexible for incorporating the impact of space activity, such as solar 

flares, galactic radiation, cross galactic radiation etc. 

 

1. Model description 

 

Consider Figure 1 
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Fig.1. Coordinate systems and radiation vector (annual cycle). 

Here the radiation vector is -  0)),(cos()),(sin())(( tFtFta   , F = 1367 

Wt/m
2 

is the solar constant, and   360,0  is the angle of the Earth’s rotation 

around the Sun, where α=0 corresponds to the winter solstice. The Earth rotates 

around the Sun in an anticlockwise direction. 

The (x, y, z) coordinate axes are aligned with the equatorial plane. The OZ axis 

represents the Earth’s axis of rotation and OY is in the Earth’s equatorial plane. 

The (x1, y1, z1) axes are aligned with the ecliptic plane and this is inclined to the 

equatorial plane by an obliquity angle ε = 23°26' under present astronomical 

conditions. This coordinate system remains fixed as the Earth rotates around the 

Sun.  

All the calculations are performed in the (x1, y1, z1) coordinates. The reason for this 

choice is that the formulation of the radiation vector a  remains the same as the 

Earth rotates around the Sun.  

The Y1OZ1 plane was chosen for projecting a latitudinal belt in the (x1, y1, z1) 

coordinate frame. Clearly, the projections obtained in that plane are the easiest for 

calculations (see Figure 2). The ellipses obtained as the projections of the 

latitudinal belts in the two other planes (X1OZ1 and X1OY1) are considerably more 

difficult to use for computations. 
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Fig.2. The projection of a latitudinal belt in the chosen projection plane.  

In Figure 2, R is the Earth’s radius; r and h are the perpendicular distances from the 

equatorial plane to the upper and lower latitude limits of the belt, respectively. 

The direction of radiation vector in the Earth plane and the chosen orientation of the 

surface are shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

Fig.3. The direction of radiation vector in the Earth plane and the surface orientation.  
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In Figure 3, n  denotes the outward unit normal vector. 

The positively-oriented surface (  ) in the chosen projection plane is the part of 

the sphere closer to the observer. The negatively-oriented surface (  ) is the part 

of the sphere pointing away from the observer.  

The amount of light which is received by any particular area changes throughout 

the year. In the current approach it was modelled by an ellipse which changes 

with time since it has been determined by α (see Figure 4). An ellipse change 

affects the change of size of the hatched area of the latitudinal belt. This area is 

referred to as the illumination area from this point onwards. The equations of the 

ellipse, circle, equator line and upper and lower latitudes are presented in terms of 

the notations used (see Figure 4). 

Sunlight is received by both sides of the surface. However, for computational 

simplicity this needs to be split into two parts. The illumination area for the 

positively-oriented surface and for the negatively-oriented surface is introduces in 

Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. The illumination area for the positively-oriented and for the negatively-oriented 

surface of the latitudinal belt. 
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In Figure 4,  the forward- hatched illumination area is on the negatively-oriented 

surface, so it is a strip coming from the side located further from the observer 

(  ). The back- hatched illumination area is on the positively-oriented surface, 

which is a small piece on the side located closer to the observer (  ). 

An example of the illumination area changing as time progresses for the 

equatorial latitudinal belt (10°-20°) is shown in Figure 5.  

 

 

 

 

 

 

 

Fig.5. Illumination area change for 10°-20° latitudinal belt for the different 

moments of time between the winter solstice and the vernal equinox (a-c).   

For the latitudes beyond the polar circles the phenomena of polar night and polar 

day can be observed. This has also been incorporated into modelling. An example 

is shown in Figure 6.  
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Fig.6. Illumination area change for the 80°-90° latitudinal belt for the different 

moments of time between the winter solstice and the vernal equinox (a-c). 

 

For the Southern Hemisphere the illumination areas below the equator need to be 

considered. However, for computational simplicity the symmetrical areas in the 

Northern Hemisphere were used for calculations. One example is shown in Figure 

7. 
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Fig.7. An example of actual illumination area for latitudinal belt in Southern 

Hemisphere (a) and a symmetrical one in the Northern Hemisphere used for 

calculation (b) 

 

2. Radiation Calculations 

The amount of radiation received per m
2
 in the current latitudinal belt (daily 

average) is the total amount of radiation divided by the surface area of latitudinal 

belt: I=Flux/Sbelt.  

The radiation flux through the surface can be calculated as the product of the 

radiation vector ( a ) and the outward unit normal vector ( n ) to the surface (S) 

integrated over the chosen side of the surface (see Figure 2):  

)1()( 
S

dSnaFlux

This can also be written in coordinate form. In order to calculate the flux, the 

integral was separated into an integral over the positively-oriented surface and an 

integral over the negatively-oriented surface.    
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For the positively-oriented surface (  ) and for the negatively-oriented surface 

(  ) a surface integral was calculated as a double integral over the illumination 

area. The equation of the sphere (x1
2
+y1

2
+z1

2
=R

2
) was used as the equation of the 

surface. 

 

 

 

 

 

 

 

 

 

 

 

Here z1α, y1α and z1β, y1β are the lower and upper limits of integration, 

respectively. These limits are derived from the equations shown in Figure 4.  

The projection of a latitudinal belt in YOZ plane and XOY plane are shown in 

Figure  8. 
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Fig.8. The projection of latitudinal belt in YOZ plane (a) and XOY plane (b). 

 

For computational simplicity the calculations were performed in the XOY plane. 

The latitudinal belt area was calculated as follows: 
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Here 
222 yxRz  ,   = √ 

2   2 and   = √ 
2  ℎ2 (see Figure 8a) are 

the radii of upper and lower limits of the belt, respectively. 

In order to determine the amount of radiation per square metre (I), the surfaces of 

the belt and the double integrals were calculated for each latitudinal belt of a 

width of 10° for the Northern and Southern Hemisphere using the Maple software. 

The time step for α was chosen to be 10° (~10 days).  

The calculations were performed for the period of time from the winter solstice to 

the spring equinox. This corresponds to the first quadrant of the circle starting 

from the winter solstice (α=0°) and going anticlockwise (see Figure 1) to the 

vernal equinox (α=90°).  

Thus a set of nine radiation values has been obtained for both Hemispheres, 

further referred to as N (0°-90°) and S (0°-90°). The amount of radiation per 

square metre (I) for the rest of the year was obtained as shown in Table 1 by 

combining these sets and rearranging the data in them. 

Table 1. Calculations of the insolation for the whole year period for Northern 

Hemisphere and Southern Hemisphere 

Quadrant of circle and 

the corresponding 

period of time 

Radiation values 

Northern 

Hemisphere 

Southern 

Hemisphere 

 

I (winter solstice-

vernal equinox) 

N (0°-90°) S (90°-0°) 

II (vernal equinox- 

summer solstice) 

S (0°-90°) N (90°-0°) 

III (summer solstice- 

autumnal equinox) 

S (0°-90°) N (0°-90°) 

IV (autumnal equinox- 

winter solstice) 

N (90°-0°) S (90°-0°) 

 

Note also that it is easy to modify the procedure for thinner belts for more 

accuracy.  
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3. Results 

The amount of insolation for a complete year cycle for the Northern and Southern 

Hemisphere are shown in Figures 9-10. 

 

Fig.9. The amount of radiation received for different latitudinal belts in the 

Northern Hemisphere. 

 

Fig.10. The amount of radiation received for different latitudinal belts in the 

Southern Hemisphere. 

Note that smoother curves would result from using a smaller step size for α. 
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In Table 2, we also calculate the annual average value for each latitudinal belt and 

compare it with satellite data [12]. These data were obtained from the NASA 

Langley Research Center Atmospheric Science Data Center Surface 

meteorological and Solar Energy (SSE) web portal supported by the NASA LaRC 

POWER Project. Note that the data from [12] is given in terms of 1° resolution. In 

Table 2, we have averaged this over the 10° latitudinal belts. 

Table 2. Comparison of the obtained results with satellite data  

Latitudinal 

belt 

Satellite 

data 

  (Wt/m
2
) 

Proposed model 

(Wt/m
2
) 

Accuracy 

0 -10  415.00 410.00 0.99 

10 -20  398.45 387.50 0.97 

20 -30  378.29 376.20 0.99 

30 -40  359.76 346.50 0.99 

40 -50  304.33 300.83 0.99 

50 -60  257.78 251.33 0.97 

60 -70  220.00 213.22 0.97 

70 -80  182.02 172.50 0.95 

80 -90  169.89 159.17 0.94 

Average  0.97 

 

The obtained results indicate a very good agreement in modelling the annual 

distribution of insolation for the equatorial and middle latitude regions (average 

accuracy of 98%). Slightly less agreement can be observed for the polar regions 

(94.5%). The average accuracy of the model is 97%. 

 

4. Discussion and Conclusions 

In the current project the amount of insolation reaching the outer boundary of the 

atmosphere for any latitude at any particular time has been modelled. This has 

yielded excellent results with an average accuracy of the model being 97%.  

We should note the Earth was assumed to be exactly spherical. In addition, small 

variations in the distance between the Sun and the Earth while it travels on it orbit 

have not been considered in our proposed model so far. However, this effect is 

very small and can be easily incorporated in the future. 
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In the current paper a new approach for modelling the process of receiving 

radiation by Earth has been introduced. This time this process has been modelled 

from the space perspective, while all the existing models use the Earth’s point of 

view. This new approach provides an opportunity to incorporate the influence of 

space activity, which can have a significant impact on the Earth’s climate.   

In addition, since the proposed model is fully-analytic, it gives the opportunities to 

capture possible variations in all of the input parameters (such as obliquity, solar       

constant) and to investigate their impact on climate.  
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