
©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195652751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Novel Spatial TDMA Scheduler for Concurrent
Transmit/Receive Wireless Mesh Networks

Kwan-Wu Chin
University of Wollongong

Northfields Ave,
Wollongong, NSW, Australia

kwanwu@uow.edu.au

Sieteng Soh
Dept. of Computing,

Curtin University of Technology,
Perth, WA, Australia
S.Soh@curtin.edu.au

Chen Meng
University of Wollongong

Northfields Ave,
Wollongong, NSW, Australia

cm488@uow.edu.au

Abstract—The success of wireless mesh networks hinges on
their ability to support bandwidth intensive, multi-media appli-
cations. A key approach to increasing network capacity is to equip
wireless routers with smart antennas. These routers, therefore,
are capable of focusing their transmission on specific neighbors
whilst causing little interference to other nodes. This, however,
assumes there is a link scheduling algorithm that activates links in
a way that maximizes network capacity. To this end, we propose a
novel link activation algorithm that maximally creates a bipartite
graph, which is then used to derive the link activation schedule of
each router. We have verified the proposed algorithm on various
topologies with increasing node degrees as well as node numbers.
From extensive simulation studies, we find that our algorithm
outperforms existing algorithms in terms of the number of links
activated per slot, superframe length, computation time, route
length and end-to-end delay.

Index Terms—Wireless Mesh Networks, Scheduling, Concur-
rent Transmit/Receive

I. INTRODUCTION

Wireless mesh networks (WMNs) consist of an ad-hoc
collection of routers that have the ability to self-organize
and self-configure. Specifically, they are able to dynamically
establish mesh connectivities to nearby routers to form a wire-
less backbone capable of carrying traffic to/from clients over
multiple hops. Moreover, given their low cost, good reliability
and easy maintenance, they have found many applications.
For example, in [15], Raman et al. implemented a concurrent
transmit/receive WMN using off the shelf IEEE 802.11 hard-
ware. Each access point (AP) is equipped with multiple radios
connected to a high gain, directional antenna. The resulting
network is then used to interconnect rural villages in India.
Other applications of WMNs include traffic control [11], and
smart grids [18].

A fundamental problem in WMNs is the lack of capacity.
Specifically, Gupta et al. [10] showed that for a given node
density n, the total end-to-end capacity is approximately
O(n√

n
), and the available throughput of each node is O(1√

n
).

This means as the number of nodes increases, the throughput
of each node decreases to zero. These theoretical results have
also been verified via simulation and experimental studies. For
example, Das et al. [7] and Li et al. [12] have shown that the
throughput achieved by nodes are in the order of kilobits per
second, despite having a transceiver capable of transmitting
several megabits per second.

To this end, researchers have devised various solutions to
increase the capacity of WMNs. One of which is to equip
routers with smart or directional antennas [15][17][2][9][13].
As a result, routers have the ability to focus their transmission
energy or electromagnetic beam on a given geographical
region. In theory, a router equipped with a k-element array
is able to provide k spatial channels or null out k−1 interfer-
ing nodes [6]. The former allows one-to-many connections,
whereas the latter enables neighboring devices to transmit
simultaneously; as opposed to being blocked when routers use
an omni-directional antenna. Moreover, the nulling and beam
steering capabilities of such antennas mean that a router has a
longer range and causes little interference, thereby, improving
gains and lowering bit error rates during packet reception.

Figure 1 illustrates the key advantage of smart antennas.
Assume nodes use time division multiple access (TDMA) to
access the wireless channel. We first consider the case in which
each router is equipped with an omni-directional antenna. The
sets of links that do not interfere with one another, and thus
can transmit concurrently in a given time slot include {L1,
L10}, {L4, L9} and {L4, L7}. On the other hand, with smart
antennas, router Nc, Ne and Nf can transmit on links {L1, L3,
L6 L7, L9} simultaneously in a given time slot. These routers
then prepare to receive in the next time slot; i.e., by activating
links {L2, L4, L5, L8, L1}. Therefore, a WMN that uses
omni-directional and smart antennas is able to concurrently
activate two and five links respectively. In other words, smart
antennas increased the capacity of the network by 250%.

Henceforth, any proposed scheduler or Medium Access
Control (MAC) protocol must maximize the number of links
scheduled within each time slot. This problem, however, is NP-
hard as link scheduling amounts to computing the chromatic
number of a graph. For example, for Figure 1 or a tree topol-
ogy, only two slots or colors are required to ensure all links
receive at least one transmission and reception opportunity.
A possible approach to this problem is to ensure all routers
self-organize into a tree topology [15]. Unfortunately, this is
often impractical as WMN operators need to ensure adequate
coverage, and may be constrained by a given environment.
Moreover, a tree topology has poor fault tolerance, is not ideal
for traffic headed to other parts of a tree, and parent nodes
are often bottlenecks. Hence, it is critical that we develop an

2010 24th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/10 $26.00 © 2010 IEEE

DOI 10.1109/AINA.2010.13

481

Fig. 1. An example wireless mesh network.

efficient scheduler for arbitrary WMN topologies.
To this end, this paper proposes a novel algorithm that

recursively forms a bipartite graph to derive a schedule that
maximizes the number of links activated in a given slot for
a given topology/graph. Our algorithm has a complexity of
O(|V |2), where V is the set of nodes/routers. From our ex-
tensive simulation studies involving topologies with increasing
node degree and node numbers, we find that our algorithm is
able to generate shorter superframe lengths when compared to
existing approaches. As a result, nodes experience lower end-
to-end path delays as packets are able to traverse a network
quicker. Moreover, unlike the approach presented in [3], our
algorithm does not result in bottlenecks or elongated paths,
and is several orders of magnitude faster.

This paper is structured as follows. We first formulate
the problem in Section II, followed by a review of existing
solutions in Section III. In Section IV, we present our algo-
rithms, and show how they derive the schedule of an example
topology. After that, we list some of its key properties in
Section V. Section VI outlines the simulation methodology
used to obtain the results presented in Section VII. Finally,
our conclusions are presented in Section VIII.

II. THE PROBLEM

Let G(V,E) be a directed graph that represents a WMN. Let
vi ∈ V represents node i that is equipped with a smart antenna
capable of forming up to bi ≥ 1 beams, thereby allowing vi

to simultaneously transmit or receive from its bi neighbors.
Let Ni denote a set containing vi’s neighbors. Let eij ∈ E
denotes a directional link from node i to j. We assume each
vi has the same in- and out-degree. A node is not allowed to
transmit on one or more of its links whilst receiving packets
from other links, and vice-versa.

Figure 2(a) shows an example WMN, aka “2boxes”, with six
nodes, each capable of forming up to bi = 5 links to transmit
or receive simultaneously. Notice that each transmission slot is
followed by a reception slot. This allows transmissions to be
acknowledged promptly, and more importantly, enables WMN
operators to employ 2P [15] – a concurrent transmit/receive
MAC explained in Section III. The problem is, therefore,
to maximize the number of links that are simultaneously

transmitting or receiving in each time slot, or alternatively,
minimize the superframe length, such that each link is acti-
vated at least once. Here, we assume only one packet can be
transmitted or received in each time slot.

One solution is to apply a graph coloring algorithm. For
the 2boxes topology, the number of colors required or its
chromatic number is four; as indicated by the label C ∈
{1, 2, 3, 4}. Each color then corresponds to two slots: transmit
(TX) and receive (RX). Hence, setting the superframe to
4 × 2 slots ensures all links are activated at least once in a
superframe; see Figure 2(b). For example, in slot-1, node A
and C transmit to their respective neighbors synchronously,
and in slot-2, they become receiver. As we shall see, the
optimal schedule for the 2boxes topology requires only four
slots.

Fig. 2. (a) “2boxes” topology, (b) Example schedule.

In the aforementioned problem, we assume vi has bi neigh-
bors. However, in practice, a node may not have sufficient
antenna elements to establish |Ni| links. One example is
when some antenna elements are used to null interference.
To this end, in Section IV, we show how our algorithm can
be modified easily to consider bi < |Ni|.

III. RELATED WORKS

To date, very little works have considered the problem of
scheduling links in concurrent transmit/receive WMNs. In fact,
only [3] and [15] are directly relevant to our work. In [3],
Chin presented an algorithm that sacrifices path length for
higher network capacity. Specifically, the algorithm disables
links in cliques, and causes nodes that were part of a clique to
route their packets via an intermediate node. Despite the slight
increase in path length, nodes observe lower end-to-end delays.

482

This is because removing cliques from a topology increases
a WMN’s network capacity or reduces its chromatic number.
Hence, packets are able to traverse a WMN much quicker.
Unfortunately, Chin’s algorithm creates bottleneck links, and
is not ideal for local traffic; i.e., those between nodes that were
part of a clique.

As we mentioned earlier, Raman et al. [15] implemented a
WMN to interconnect rural villages. Their WMN runs a MAC
called 2P, which requires APs to either be in transmit or receive
mode – as defined by the problem definition in Section II. This
constraint means 2P requires a bipartite topology. To this end,
Raman et al. propose an algorithm to construct a tree topology
that meets the following criteria: transmission range, angle
between neighbors, and hop count or tree depth. In contrast,
we present an algorithm that derives bipartite graphs from any
topologies, which can then be scheduled using 2P. Thereby,
giving network operators more flexibility when deploying a
WMN capable of concurrent transmit/receive. In other words,
routers need not be organized into a tree.

Another approach to building a concurrent transmit/receive
WMN is to equip routers with digital adaptive arrays (DAAs)–
commonly referred to as Multiple Input and Multiple Output
(MIMO) [6][17] or smart antennas. Recall that these routers
have the ability to form up to k independent channels in
order to obtain spatial multiplexing gain. Here k refers to
the number of antenna elements. Hence, in a concurrent
transmit/receive WMN, these routers can transmit or receive
to/from k neighbors simultaneously. A router can also use a
subset of its k antennas to null out interfering transmissions,
or use these antennas to transmit the same data to improve the
signal-to-noise ratio of its communication.

To date, research into using smart antennas in wireless ad-
hoc networks has focused on maximizing the number of packet
transmissions whilst minimizing the number of antennas used
for nulling. This is a marked departure from works that
use omni-directional antenna, as routers are now capable
of transmitting or receiving even when there are interfering
routers. For example, Sundaresan et al. [17] exploit the nulling
capability of smart antennas to maximize the number of
concurrent transmissions in a given time. The authors outline
an algorithm that schedules transmissions according to the
number of cliques in a contention graph a node belongs to,
and show how nodes are able to maximize their k antennas
for packet transmissions as opposed to using them to null
interfering neighbors. The problem considered in existing
research, however, is different from ours because they do
not consider a node transmitting or receiving from multiple
neighboring nodes concurrently. In other words, existing works
aim to maximize the number of communicating node pairs
whereas we try to maximize the number of point to multi-
point, and vice-versa, connections.

Spatial TDMA is a well studied research area. In 1985,
Nelson et al. [14] first defined the problem and provided a
solution. Since then, many researchers have developed central-
ized [4] and distributed algorithms [8][5] that maximize spatial
reuse. In other words, they sought to increase the number

of transmitting links in a given slot; see [1] and references
therein for more information. These early works, however,
consider nodes with omni-directional antenna. Hence, the
resulting WMN is interference limited. To this end, researchers
have considered directional antennas. For example, Bao et
al. [2] present a distributed algorithm that makes use of
two hops neighbor information to activate links according
to their priority. When a link is activated for transmission,
the algorithm determines whether there are other links in its
two hops range that can be activated simultaneously. Another
example is [9], where the authors aim to maximize the number
of node pairs or non interfering links at a given point in time.
Fundamentally, these link scheduling works differ from ours
in the following manner. First, they assume nodes are only
able to transmit or receive from a given neighbor at any point
in time. In other words, each node only has a single link.
We, on the other hand, consider a WMN where nodes are
capable of transmitting or receiving to/from all of its neighbor
synchronously. Secondly, nodes in our WMNs are able to
selectively transmit or receive from a given set of neighbors.
These fundamental differences, therefore, preclude the use of
existing “single-link” scheduling algorithms.

IV. PROPOSED ALGORITHMS

We first propose an algorithm, called Algo-1, that considers
the case when vi have sufficient beams, i.e., bi ≥ |Ni|, to
establish a link to all of its neighbors before showing how
Algo-1 is revised to address the case when bi < |Ni|.

A. Case: bi ≥ |Ni|
Algo-1 recursively partitions a graph V into maximally

connected bipartite graphs. Note that, in practice, given that
nodes in WMNs are generally static, we expect Algo-1 to
be run infrequently. Algo-1 partitions nodes into two disjoint
sets, i.e., Set1 and Set2, such that these nodes are maximally
connected. The nodes in Set1 are then scheduled to transmit
in slot i, and conversely, to receive in slot i + 1. Algo-1 is
then applied to nodes in each set to derive the next schedule;
i.e., active links in slot i + 2 and i + 3, and so forth.

The function GSelect() plays a crucial role during the
construction of Set1 and Set2 to greedily produce bipartite
graph with maximal edges. Specifically, GSelect(vi) is a
greedy function that returns true if it can select a node vi ∈ V
with the largest (conn2(vi)−conn1(vi)) > 0 value. It returns
false otherwise. In other words, GSelect() greedily selects a
node with the maximum number of edges that have yet to be
considered in the bipartite graph.

We will now show how Algo-1 determines the schedule for
the 2boxes topology shown in Figure 2. First, we derive the
links to be activated in slot 1 and 2 followed by those in slot
3 and 4.

• Line 1 – 5: Initially, V = {A, B, C, D, E, F}, and
Set1 = Set2 = {}. For ease of exposition, we represent
the value of conn1 and conn2 for each node vi as
vi(conn1, conn2). Therefore, we have, A(0, 3), B(0,5),

483

input : G(V, E) represented as an adjacency list
output: Schedule represented as (Set1, Set2)

if |V | ≤ 1 return;1

/* The following represents the two
disjoint sets of a bipartite graph.

*/
Set1 = {};2

Set2 = {};3

/* conn1(vi) refers to the total
number of nodes in Set1 that are
connected to vi */

conn1(vi) = 0;4

/* conn2(vi) denotes the total number
of nodes in V that are connected to
vi. Recall that id(vi) denotes the
in-degree of node vi in V. */

conn2(vi) = id(vi);5

while (V �= {} AND GSelect(vi ∈ V) == TRUE) do6

Set1 = Set1 + {vi};7

Set2 = Set2 − {vi};8

foreach vj ∈ V AND vj �= vi do9

/* If vi and vj are connected */
if EDGE(vi, vj) then10

Set2 = Set2 + {vj};11

conn1(vj)++;12

conn2(vj)--;13

if conn2(vj) == 0 then14

V = V − {vj};15

end16

end17

end18

V = V − {vi};19

end20

/* Recursively call Algo-1 again on
each set. */

Algo-1(Set1);21

Algo-1(Set2);22

Algorithm 1: Proposed algorithm. The output is a sched-
ule where all nodes in Set1 transmit to those in Set2, and
vice-versa, in time slot i and i + 1 respectively.

C(0,3), D(0,3), E(0,5), F(0,3). For example, node A
currently has three links connected to it in V.

• Line 6 – 9: The function GSelect() then selects a node
with the biggest (conn2 - conn1) value. In this case, there
are two nodes: B and E. In this case, Algo-1 simply
selects node B over E arbitrarily. Node B is then added
to Set1.

• Line 10 – 17: Algo-1 then visits each neighbor (child) of
node B and adds them to Set2. Moreover, it updates conn1
to reflect an additional connection from each child to node
B, who is now in Set1. Also, conn2 is decremented by
one for a given child as it now has one less connection
in V.

• Line 19: Node B is then removed from V.

At this stage, Set1 = {B} and Set2 = {A, C, D, E, F}, and
the value of conn1 and conn2 for each node is A(1,2), C(1,2),
D(1,2), E(1,4) and F(1,2). Lastly, V = {A, C, D, E, F}. Algo-
1 then repeats lines 6 – 9 as follows:

• Line 6 – 9: GSelect() picks node E because (conn2(E)−
conn1(E)) has the largest value; i.e., 3. Node E is then
added to Set1 and removed from Set2 as per line 7 and
8 respectively.

• Line 10 – 17: Algo-1 then visits nodes in V that are
adjacent to node E, and adjusts their conn1 and conn2
accordingly.

• Line 19: Algo-1 then removes node E from V.

At this point, Set1 = {B, E}, Set2 = {A, C, D, F}, and
conn1 and conn2 have the following value for each node:
A(2,1), C(2,1), D(2,1), F(2,1). Lastly, V = {A, C, D, F}. No-
tice that the (conn2(vi)− conn1(vi)) value for all remaining
nodes vi in V is -1. Hence, the while loop encompassing line 6
– 20 finishes. As a result, we have a bipartite graph represented
by Set1 = {B, E}, Set2 = {A, C, D, F}, and also the links
to be scheduled in slot 1 and 2; see Figure 3.

To determine the links for slot 3 and 4, we apply Algo-1
on Set1 = {B, E} and Set2 = {A, C, D, F}; line 21 and 22.
Notice that both sets are independent. Thus, the links chosen
for both sets can be activated simultaneously.

We first show the steps carried out by Algo-1 on Set1 =
{B, E}.

• Line 1 – 5: V = {B, E}, Set1 = Set2 = {} and B(0,1),
E(0,1).

• Line 6 – 9: GSelect() selects vi = B arbitrarily given
that both node B and E have the same (conn2− conn1)
value.

• Line 10 – 16: Algo-1 adds node E to Set2, and updates
conn1(E) and conn2(E) accordingly.

At this stage, Set1 = {B}, Set2 = {E} and V = {}.
Therefore, the first link to be activated in slot 3 is eBE . Algo-
1 is then recursively applied on Set1 = {B} and Set2 = {E}
to discover links to be activated in slot 5 and 6. In both cases,
Algo-1 returns immediately as |V | ≤ 1. Hence, there are no
links to be activated in slot 5 and 6.

Next, Algo-1 operates on Set2 = {A, C, D, F}, where it
will look for links to be activated in slot 3 and 4. Repeating
lines 1 to 16 on this set yield the links eAD, eCF . As before,
Algo-1 is applied recursively to the sets Set1 = {A}, Set2 =
{D}, Set1 = {C}, and Set2 = {F}. All of which do not
produce any additional links. Hence, there are no links to be
activated in slot 5 and 6. Therefore, the 2boxes topology only
requires four slots. Figure 3 shows the links that are activated
in slot 1 and 4.

B. Case: bi < |Ni|
To address this case, we remove line 21 and 22 from Algo-

1. In other words, it is no longer applied recursively to Set1
and Set2. From hereon, we denote the revised algorithm as
Algo-1b.

484

Fig. 3. Schedule for the 2boxes topology.

The links activated in each slot si for a graph G(V,E) are
then computed according to the following steps:

1) si = {}.
2) (Set1, Set2) = Algo-1b(G(V,E)).
3) Select up to bi links from Set1 and Set2, and add them

to si. The selection of node in Set2 is such that the
remaining degree of the node is as maximal as possible.

4) Remove all bi links in si from G(V,E).
5) Exit if |E| is zero. Otherwise, go back to Step-1 for

links in slot si+2.

We now illustrate how the above steps determine the links
in each slot for the 2boxes topology when bi = 2.

1) Slot 0. Running Algo-1 yields Set1 = {B, E} and
Set2 = {A, C, D, F}. For each node in Set1, select up
to bi links to nodes in Set2. We arbitrary select nodes in
Set2 given that all nodes in Set2 have the same degree.
Without loss of generality, assume that the links to be
activated in s0 are {eBA, eBC , eED, eEF}. Hence, in s1

we have {eAB, eCB, eDE , eFE}. These links are then
removed from G(V,E).

2) Slot 2. Applying Algo-1 on G(V,E) yields Set1 =
{B, E} and Set2 = {A, C, D, F} again. As be-
fore, we seek to establish up to bi links from
node B and E respectively to nodes in Set2. So
we have s2 = {eBD, eBF , eEA, eEC}, and s3 =
{eDB, eFB, eAE , eCE}. As before, these links are then
removed from G(V,E).

3) Slot 4. At this point, only the following links remain
in G(V,E): eAD, eBE , and eCF . Given that G(V,E)
is bipartite and the number of links to be activated
is less than bi, we have s4 = {eAD, eBE , eCF}, and
s5 = {eDA, eEB, eFC}.

Therefore, six slots are sufficient when bi = 2. We can
repeat the example above to find bi = 3 and bi = 4 only

require four slots.

V. ANALYSIS

We will start by comparing the schedule generated by Algo-
1 and graph coloring (GC), see Figure, 2(a), for the 2boxes
topology. We see that GC requires eight slots, and Algo-1 only
needs four slots. Moreover, from Figure 2(b), we see that GC
schedules 44 links in eight slots, i.e., an average of 5.5 links
per slot. On the other hand, in Figure 3, Algo-1 only manages
to activate 22 links in four slots. Notice, however, in slot 3,
node A can also activate its link to node E. Similarly, node B
and C could activate their link to node D and E respectively.
Then in slot 4, the following links are activated: eEA, eDB ,
eEC , and eFB . Thus, in slots 3 and 4, Algo-1 could schedule
eight additional links, for a total of 6 + 8 = 14 links. In other
words, Algo-1 can schedule up to 30 links in four slots, or on
average, 7.5 links per slot, which is much better than GC.

We now outline several properties of Algo-1.

Theorem V.1. Algo-1 produces a schedule with time frame
�log2n� for a fully connected graph with n nodes.

Proof: Without loss of generality, consider n is a power
of 2. At time frame 1, Algo-1 produces |Set1| = |Set2| = n

2 ,
each containing n

2 nodes. Notice that Set1 and Set2 are each
a fully connected graph with n

2 nodes. The algorithm will
repeatedly produce Set1 and Set2 for the subsequent time
frame, until |Set1| = |Set2| = 1. It is obvious that the
algorithm repeats the step log2n times.

Corollary V.2. Algo-1 produces a schedule with time frame
at most log2n for a graph with n nodes.

Proof: We first consider the graph as a fully connected
graph. From Theorem V.1, Algo-1 will produce a schedule
with time frame log2n.

We compute the time complexity of Algo-1 for the two
possible constraints: bi ≥ |Ni| and bi < |Ni|. Each line in
Algo-1 takes O(1), except for lines 6 and 9. The Gselect()
function takes O(|V |) times, and line 9 considers |V | possible
nodes. Therefore, for constraint bi ≥ |Ni|, the time complexity
of Algo-1 can be expressed by a recurrent function T (|V |) =
T (|Set1|) + T (|V | − |Set1|) + O(|V |). In the worst case,
|Set1| = 1, which gives T (|V |) = T (1) + T (|V | − 1) +
O(|V |). Thus, Algo-1 has time complexity O(|V |2) in the
worst case for constraint bi ≥ |Ni|. For constraint bi < |Ni|,
function Algo-1b has time complexity O(|V |). In the worst
case, the function is repeated |E| times, and thus Algo-1 has
time complexity O(|E||V |) for this constraint.

VI. SIMULATION

We used MatGraph [16], a Matlab toolkit for working with
simple graphs, to verify the performance of Algo-1. The toolkit
comes with five graph coloring algorithms. We, however, only
employ the “optimal” algorithm as it can reliably determine
the chromatic number or schedule of a graph. We compare
Algo-1 with two existing schemes: the clique removal algo-
rithm proposed by Chin [3], hereafter referred to as “Link
Relaxation”, and graph coloring (see Figure 2).

485

Our experiments involve graphs with varying node degree
and node density. In the former, we vary the degree of 20
nodes from two to nine, whereas in the latter, the number of
nodes ranges from 10 to 100. For each graph, we record the
resulting chromatic number before and after applying Algo-1.
Note that our implementation also employs the opportunistic
link activation extension described in Section V. This means
in each iteration, Algo-1 maximally activates links that may
or may not have been activated in earlier iterations, provided
that the resulting graph remains bipartite.

For each experiment, after deriving the schedule of a given
topology, we computed the number of links activated, the su-
perframe length and the end-to-end packet delay. To compute
the packet delay, we set each node to transmit one packet to
another random node and record the delay incurred by the
packet. Hence, in a 100 nodes network, there will be 100
packets. Note, the speed in which packets traverse the shortest
path for a given node pair is determined by the superframe
length, and the time in which packets have to wait at each node
before their outgoing link becomes active. We also calculate
the shortest end-to-end path length for a given source and
destination node. Finally, we measure the computation time
of each algorithm using Matlab’s stopwatch timer.

VII. RESULTS

We first investigate the impact of node degree before focus-
ing our attention on node density.

A. Node Degree

1) Average Links Activated: Figure 4 shows the average
number of links activated in each slot for Algo-1 and graph
coloring with increasing node degree. We can see that Algo-1
is particularly advantageous when nodes have a high degree.
For example, when nodes’ degree exceeds seven, Algo-1
manages to activate 28% to 30% more links than graph
coloring. This is because with increasing links, Algo-1 has
more opportunities to activate previously scheduled links.
Note, we did not consider Link Relaxation because links are
intentionally disabled, meaning its performance with respect
to the number of links activated is inevitably much poorer than
graph coloring and Algo-1.

2) Superframe Length: Figure 5 shows the superframe
length for each algorithm. We see that Algo-1 yields shorter
superframes as compared to all other algorithms, especially
when nodes have a high degree. In particular, Algo-1 has
shorter superframe lengths than Link-Relaxation. This means
network operators do not have to intentionally disable links to
increase capacity. In other words, it is not necessary to trade-
off path length for capacity. Moreover, as shown in Figure 6,
packets do not need to traverse an artificially elongated path.
Note that Algo-1 has the same path length as graph coloring
because the same set of links is used to compute the shortest
path between nodes.

3) Average Path Delay: Figure 7 shows the average path
delay for each algorithm. The key reasons for the lower
delay when Algo-1 is used are shorter superframe and path

10 20 30 40 50 60 70 80 90 100
0

50

100

150

A
ct

iv
at

ed
 L

in
ks

 p
er

 s
lo

ts

Number of Nodes

Graph coloring
Algo−1

Fig. 4. The average number of links activated in each slot.

2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

Node Degree (20 Nodes)

N
um

be
r

of
 S

lo
ts

Graph coloring
Link relaxation
Algo−1

Fig. 5. Superframe length.

length. Although Algo-1 and graph coloring result in similar
path lengths, they produce different superframe lengths, which
is critical in ensuring packets traverse their respective path
quickly. This is the key reason that causes graph coloring to
have a high end-to-end delays, see Figure 7, as packets have
to wait longer at each node before their respective out-going
link becomes active.

B. Node Density

1) Average Links Activated: Figure 8 shows the number of
links activated with increasing node numbers. Again, Algo-
1 outperforms graph coloring because it maximally activates
links in each time slot. Hence, with increasing node counts, the
chances of finding links to schedule becomes higher. This is
evident from Figure 8. For example, when there are 90 to 100
nodes, Algo-1 managed to find 30% more links to activate.

2) Superframe Length: Figure 9 shows that in general
Algo-1 and Link-Relaxation have comparable superframe
length. This is because Link-Relaxation is a clique removal
algorithm. Hence, it is particularly beneficial when a WMN
has many cliques – as we demonstrated in Section VII-A.

486

2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

Node Degree (20 Nodes)

A
ve

ra
ge

 P
at

h
Le

ng
th

Graph coloring
Link relaxation
Algo−1

Fig. 6. End-to-end path length.

2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

E
nd

 to
 E

nd
 d

el
ay

 (
sl

ot
s)

Node Degree (20 Nodes)

Graph coloring
Link relaxation
Algo−1

Fig. 7. Average end-to-end delay.

However, in this experiment, there are not many cliques.
As result, Algo-1 has no significant advantage over Link-
Relaxation in terms of superframe length. Nevertheless, Algo-
1 manages to yield similar or shorter superframe lengths for
most tested topologies. This is especially true if a WMN has
many odd cycles. For example, an odd cycle with five nodes
requires six slots if we use Link-Relaxation but requires only
four slots using Algo-1.

3) Average Path Delay: Figure 10 shows the end-to-end
delay incurred by packets for all three algorithms. Both Algo-
1 and Link-Relaxation perform better than graph coloring as
they have much shorter superframe lengths; see Figure 9. As a
result, packets are able to traverse their respective path quicker.

C. Computation Time

Lastly, we measure the computation time taken by Algo-1
and Link-Relaxation on a laptop with a 2.2 gigahertz Intel
processor, and one gigabyte of memory. Note, we do not
measure the time it takes to color a graph. This allows us to
only compare the key parts of Algo-1 and Link-Relaxation

10 20 30 40 50 60 70 80 90 100
0

50

100

150

A
ct

iv
at

ed
 L

in
ks

 p
er

 s
lo

ts

Number of Nodes

Graph coloring
Algo−1

Fig. 8. The average number of links activated in each slot.

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

Number of Nodes

N
um

be
r

of
 s

lo
ts

Graph coloring
Link relaxation
Algo−1

Fig. 9. Superframe length.

as opposed to Matgraph’s graph coloring algorithm. From
Figure 12, we see that Algo-1 has orders of magnitude faster
computation time as compared to Link-Relaxation. This is
because Link-Relaxation needs to visit each node and its chil-
dren to ascertain whether they form a clique. Unfortunately,
this operation becomes computationally very expensive with
increasing node numbers.

VIII. CONCLUSION

We have outlined a simple link scheduling algorithm that
outperforms existing schedulers. Unlike prior approaches, our
algorithm does not need to trade-off path length in order to
increase capacity. In addition, we do not require the topology
to be bipartite. This is advantageous to network operators as
it provides much needed flexibility when deploying wireless
routers.

A key future work is to develop a joint routing and link
scheduling approach to take advantage of links that are acti-
vated more often than others. Apart from that, we intend to
develop a scheduler that is cognizant of traffic load. In other
words, activate links according to their load. Hence, some

487

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

Number of Nodes

E
nd

 to
 E

nd
 D

el
ay

 (
sl

ot
s)

Graph coloring
Link relaxation
Algo−1

Fig. 10. Average end-to-end delay.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Nodes

A
ve

ra
ge

 P
at

h
le

ng
th

 (
ho

ps
)

Graph coloring
Link relaxation
Algo−1

Fig. 11. End-to-end path length.

links will be given multiple opportunities to transmit in each
superframe.

REFERENCES

[1] L. Bao and J. Garcia-Luna-Acceves. Algorithms and Protocols for
Wireless and Mobile Networks, chapter 4: Distributed Channel Access
Scheduling for Ad Hoc Networks. Chapman and Hall, CRC, 2004.

[2] L. Bao and J. Garcia-Luna-Aceves. Transmission scheduling in ad hoc
networks with directional antennas. In Proceedings of the 7th ACM/IEEE
Internation Conference on Mobile Computing and Networking (MOBI-
COM’2001), Atlanta, USA, Sept. 2002.

[3] K.-W. Chin. A new link scheduling algorithm for concurrent Tx/Rx
wireless mesh networks. In IEEE ICC 2008, Beijing, China, May 2008.

[4] I. Chlamtac and A. Farago. Making transmission schedules immune
to topology changes in multi-hop packet radio networks. IEEE/ACM
Transactions on Networking, 2(1):23–33, Feb. 1994.

[5] I. Cidon and M. Sidi. Distributed assignment algorithms for multi-
hop packet radio networks. IEEE/ACM Transactions on Networking,
38(10):1353–1361, Oct. 1989.

[6] M. Cooper and M. Goldburg. Intelligent antennas: Spatial division
multiple access. Annual Review of Communication, 1996.

[7] S. R. Das, C. Perkins, and E. M. Royer. Performance comparison of
two on-demand routing protocols for ad-hoc networks. In Proceedings
of IEEE INFOCOM’2000, Tel-Aviv, Israel, 2000.

[8] A. Ephremedis and T. Truong. Distributed algorithm for efficient and
interfere-free broadcasting radio networks. In IEEE INFOCOM’1988,
San Francisco, CA, USA, 1988.

0 100 200 300 400 500
10

−2

10
−1

10
0

10
1

10
2

10
3

Number of Nodes

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Link relaxation
Algo−1

Fig. 12. Computation.

[9] J. Groönkvist. Assigning strategies for spatial reuse TDMA. Master
Thesis, Mar. 2002. Sweden Royal Institute of Technology, TRITA-S3-
RST-0202, ISSN 1400-9137.

[10] P. Gupta and P. Kumar. The capacity of wireless networks. IEEE
Transactions on Information Theory, 46(2):388–404, Mar. 2000.

[11] K.-C. Lan, Z. Wang, M. Hassan, T. Moors, R. Berriman, and L. Libman.
Experiences in deploying a wireless mesh network testbed for traffic
control. ACM SIGCOMM Computer Communications Review, 37(5),
Oct. 2007.

[12] J. Li, C. Blake, D. S. J. D. Couto, H. I. Lee, and R. Morris. Capacity
of ad hoc wireless networks. In ACM MOBICOM 2001, Rome, Italy,
July 2001.

[13] X. Liu, A. Sheth, M. Kaminsky, K. Papagiannaki, S. Seshan, and
P. Steenkiste. DIRC: Increasing indoor wireless capacity using direc-
tional antennas. In ACM SIGCOMM’09, Barcelona, Spain, Aug. 2009.

[14] R. Nelson and L. Kleinrock. Spatial TDMA: A collision-free multi-
hop channel access protocol. IEEE Transactions on Communications,
COM-33(9):934–945, Sept. 1985.

[15] B. Raman and K. Chebrolu. Design and evaluation of a new MAC for
long-distance 802.11 mesh networks. In The 11th Intl. Conference on
Mobile Computing and Networking (MOBICOM), Cologne, Germany,
Aug. 2005.

[16] E. R. Scheinerman. Matgraph 1.7.
http://www.ams.jhu.edu/ ers/matgraph.

[17] K. Sundaresan, R. Sivakumar, M. A. Ingram, and T.-Y. Chang. A
fair MAC protocol for ad-hoc networks with MIMO links. In IEEE
INFOCOM, Hong Kong, China, 2004.

[18] Tropos Inc. Tropos - helping communities build
america’s smart grid. White Paper, Jan. 2009.
http://www.tropos.com/pdf/solutions/Constructing-Smart-Grid-
021909.pdf.

488

