
Fundamenta Informaticae XXI (2001) 1001–1010 1001

IOS Press

Faster Algorithms for Computing Maximal Multirepeats in Multiple
Sequences

Costas S. Iliopoulos∗

Algorithm Design Group, Department of Computer Science, King’s College London

The Strand, London WC2R 2LS, England, csi@dcs.kcl.ac.uk

Digital Ecosystems & Business Intelligence Institute, Curtin University

GPO Box U1987, Perth WA 6845, Australia

W. F. Smyth†∗

Algorithms Research Group, Department of Computing & Software, McMaster University

Hamilton, Ontario, Canada L8S 4K1, smyth@mcmaster.ca

Digital Ecosystems & Business Intelligence Institute, Curtin University

GPO Box U1987, Perth WA 6845, Australia

Munina Yusufu †∗

Algorithms Research Group, Department of Computing & Software, McMaster University

Hamilton, Ontario, Canada L8S 4K1, yusufum@mcmaster.ca

Digital Ecosystems & Business Intelligence Institute, Curtin University

GPO Box U1987, Perth WA 6845, Australia

Abstract. A repeatin a string is a substring that occurs more than once. A repeat isextendibleif
every occurrence of the repeat has an identical letter either on the left or on the right; otherwise, it is
maximal. A multirepeatis a repeat that occurs at leastmmin times (mmin ≥ 2) in each of at least
q ≥ 1 strings in a given set of strings. In this paper, we describe a family of efficient algorithms
based on suffix arrays to compute maximal multirepeats under various constraints. Our algorithms
are faster, more flexible and much more space-efficient than algorithms recently proposed for this

Address for correspondence: Munina Yusufu, Algorithms Research Group, Department of Computing & Software, McMaster
University, Hamilton, Ontario, Canada L8S 4K1, yusufum@mcmaster.ca
∗The author wish to acknowledge the contribution of anonymous referees, whose suggestions materially improved this paper.
†The work of the author was supported in part by the Natural Sciences & Engineering Research Council of Canada.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195652714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1002 C. S. Iliopoulos, W. F. Smyth, M. Yusufu / Computing Maximal Multirepeats

problem. The results extend recent work by two of the authors computing all maximal repeats in a
single string.

Keywords: maximal multirepeats, repeats, gaps, biological sequences, suffix arrays

1. Introduction

In this paper, we propose efficient algorithms for finding the maximal multirepeats in a set of strings
under various constraints. The problem of finding common regularities among a set of strings is very
important [4]. In biological sequences (DNA, RNA, or protein) the problem of locating repeats in a set
of strings (multirepeats) arises in many contexts, such as database searching and sequence alignment [1].
It is also important in data mining [8, 3].

A repeatin a string is a substring that occurs more than once. The distance (number of intermediate
letters) between the occurrences of the same substring is called agap. A repeat isleft-maximal, if not all
occurrences have the same letter on the left,right-maximal, if not all occurrences have the same letter
on the right — thusmaximalif both left- and right-maximal. Reporting only maximal repeats avoids
redundant reporting of repeats that are embedded in other repeats.

In [10], several fast algorithms for computing different kinds of maximal repeats under some restric-
tions were proposed, but only for a single string. To compute repeats in a set of strings (multiple repeats),
there exists only one algorithm [1]. This algorithm is not space-efficient since it uses suffix trees, one for
each string in the set plus a “generalized” suffix tree for all of them. Thus it is not easy to implement. In
addition, it has high time complexity. If gaps are unrestricted, the algorithm of [1] requiresO(σN2n+α)
time; if gaps are required to fall in a range of lengthc, it requiresO

(
(c2 +σ2)mN2n log(Nn)+α

)
time. Hereσ is the alphabet size,N the number of strings,n the average length of theN strings,m
themultiplicity (number of occurrences) of the multirepeat, andα the total number of occurrences of all
reported repeats. Whilen may be quite large (millions), in applicationsN is generally a small integer
(at most two digits). Similarly, we may suppose that the numberR of reported repeats iso(n). Further,
in keeping with the application, we suppose throughout that alphabet sizeσ ≤ 256, so that an individual
letter requires at most one byte for storage.

Here we extend previous work [10] to the problems considered in [1], proposing algorithms that
are more time-efficient, as well as being easier to implement and using much less space. We describe
algorithms to find complete maximal multirepeats that occur at leastmmin times in each of at leastq
strings in a given setS of N strings, first with no restriction on gap length, then with bounded gaps. For
the first problem, we propose two algorithms with worst-case time complexitiesO(Nn+α log2 N) and
O(Nn+α) that use9Nn and10Nn bytes of space, respectively. For the second problem, we describe an
algorithm with worst-case time complexityO(RNn) that requires approximately10Nn bytes. Note that
all times are independent of alphabet size. Extending the algorithms of [1], our three algorithms output
only repeats whose occurrences are substrings of length at leastpmin (user-specified), thus eliminating
trivial outputs.

The remainder of the paper is organized as follows. In Section 2, we give definitions and formulate
the problems. In Section 3, we give details of the three algorithms noted above. Finally, in Section 4 we
give conclusions and thoughts on further research.

C. S. Iliopoulos, W. F. Smyth, M. Yusufu / Computing Maximal Multirepeats 1003

2. Preliminaries

Basic string terminology in this paper follows [12].

2.1. Repeats & Data Structures

A repeatin x is a tupleMx,u = (p; i1, i2, ..., im), wherem ≥ 2, 1 ≤ i1 < i2 < ... < im ≤ n, and
u = x[i1..i1+p−1] = x[i2..i2+p−1] = ... = x[im..im+p−1]. We callu thegenerator, p theperiod
andm themultiplicity of Mx,u. If u occurs at two positionsi andj in x, then the distanceg = |i−j|−p
is called agap. Note thatg may be negative (overlappingoccurrences) or zero (tandemoccurrences).

Our second problem considers restrictions on the gaps as follows: if fori ∈ 1..µ−1, whereµ = mmin,
gi is the gap between theith and(i + 1)th occurrences ofu, then we requiredmini ≤ gi ≤ dmaxi , lower
and upper bounds ongi. Collectively, these restrictions are represented by a(µ−1)-tuple

d =
(
(dmin1 , dmax1), (dmin2 , dmax2), . . . , (dminµ−1 , dmaxµ−1)

)
. (1)

As remarked above, our PSY1 algorithm [10] outputs maximal repeats of periodp ≥ pmin. For this,
certain well-known data structures are required.

Given a strings = s[1..`] of length`, the arraysa = sa[1..`] is asuffix arrayof s iff its entries are a
permutation of1..` such that forj ∈ 1..`, sa[j] = i whenever suffixs[i..`] is thejth in lexicographical
order among all the suffixes ofs. For brevity, we sometimes refer tos = s[i..`] simply assuffix i. Often
the suffix array is used in combination with thelongest common prefix (lcp)array which gives the length
of the longest common prefix between consecutive suffixes ofsa; that is,lcp[j] is the length of the longest
common prefix ofs[sa[j]..n] ands[sa[j − 1]..n]. Also required is the Burrows-Wheeler transform [2],
an arraybwt = bwt[1..`], most simply defined as follows: forsa[j] > 1, bwt[j] = s

[
sa[j]−1

]
, while

for j such thatsa[j] = 1, bwt[j] = $, a sentinel letter less than any other letter in the alphabet.

2.2. Formulation of Problems

We define two problems:

Unconstrained Multirepeats (abbreviatedMultiRep): Given a setS = {s1, s2, ..., sN} of strings,
where each stringsk, 1 ≤ k ≤ N , has lengthn (if the lengths of the strings vary,n represents their
average length), and a tuple of positive integersD = (pmin, q,mmin), wherepmin ≥ 1, q ∈ 1..N ,
mmin ≥ 2, we output all maximal multirepeats of period at leastpmin that occur at leastmmin times in
each of at leastq strings ofS. Following [1], we callq thequorumandmmin theminimum multiplicity.

Example 1: Given a set of three stringsS ={s1, s2, s3}, with D = (3, 2, 2), we find a maximal repeat
ACG of lengthpmin = 3 that occurs at leastmmin = 2 times in all3 ≥ q = 2 of the strings. Thus the
repeat would be output. However, forD = (3, 3, 3), s3 would not satisfym ≥ 3 and so only2 < q = 3
of the strings would have the minimum number of occurrences; in this case no output would occur.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
s1 = A C G T A C G A C G T G C A C G A C T A A
s2 = A C T A C G T G A C G C C T C A A C G T G
s3 = G A C C G A C G G C T C G T A C G C C T A

1004 C. S. Iliopoulos, W. F. Smyth, M. Yusufu / Computing Maximal Multirepeats

Multirepeats with Constrained Gaps (abbreviatedMultiRepG): In addition toS andD, we are
given a tuple of gap constraints (1). We compute all the repeats that satisfy (1) at leastq times as well as
the constraintsD. More precisely, in each individual stringsk ∈ S that containsm ≥ mmin occurrences
of the repeating substring, we look for a sequence ofµ = mmin consecutive occurrences that satisfies
(1); if such a sequence exists in at leastq strings, we output allm occurrences in everysk for which (1)
is satisfied.

Example 2: Given the same setS andD = (3, 2, 2) as in Example 1, we introduce the constraint
(dmini , dmaxi) = (0, 5) for everyi ∈ 1..µ−1. Because the gap betweens3[6..8] ands3[15..17] exceeds
5, ACG does not satisfy the gap constraints ins3, but continues to do so ins1 ands2, thus at leastq = 2
times. Thus occurrences of ACG only ins1 ands2 are output.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
s1 = A C G T A C G A C G T G C A C G A C T A A
s2 = A C T A C G T G A C G C C T C A A C G T G
s3 = G A C C G A C G G C T C G T A C G C C T A

3. Description of the Algorithms

The overall strategy for both problems MultiRep and MultiRepG is the same:

∗ form a single strings from the given setS of N strings;

∗ in a preprocessing phase, compute the suffix arraysa, the longest common prefix arraylcp and the
Burrows-Wheeler transformbwt for s;

∗ use Algorithm PSY1 [10] to compute all maximal repeats of periodp ≥ pmin in s;

∗ output the repeats that satisfyD (MultiRep) or bothD andd (MultiRepG).

3.1. No Constraints on Gaps

3.1.1. Algorithm MultiRep-1

 n1 n2 n3 nN

 s1 $1 s2 $2 s3 $3 sN $

Figure 1. Form a new string using end-of-string sentinels

From the setS = {s1, s2, . . . , sN} of strings, forms = s1$1s2$2s3$3...$N−1sN$, as shown in
Figure 1, where the end-of-string sentinels$j , 1 ≤ j ≤ N − 1, and$ are distinct symbols less in
lexicographic order than any of the letters in thesk, 1 ≤ k ≤ N , and that moreover satisfy$ < $1 <
$2 < ... < $N−1. Let sk = sk[1..nk].

C. S. Iliopoulos, W. F. Smyth, M. Yusufu / Computing Maximal Multirepeats 1005

The preprocessing computes thesa, lcp andbwt arrays fors using standard algorithms as described
in [10]: in these algorithms the$j are treated as normal letters, while$ just marks the end ofs and is not
included in calculations.

Example 3: Given S = {s1, s2, s3}, wheres1 = AAGTCAG, s2 = AGAG, s3 = CAGTAGC, we
form s = s1$1s2$2s3$ and preprocess.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
s A A G T C A G $1 A G A G $2 C A G T A G C $
sa 8 13 1 6 11 9 18 15 2 20 5 14 7 12 10 19 16 3 17 4
lcp -1 0 0 1 2 2 2 2 3 0 1 3 0 1 1 1 1 2 0 1 -1
bwt G G $ C G $1 T C A G T $2 A A A A A A G G $

PSY1 makes use of the preprocessed arrays to compute maximal repeats, each one a triple(p; i, j)
specifying a periodp ≥ pmin and a rangei..j in sa such that for everyh ∈ i..j, suffix sa[h] has an
identical prefix of lengthp, while suffixessa[i − 1] and sa[j + 1] (if they exist) do not. If we are
givenpmin = 2 in Example 3, PSY1 would output only one maximal repeat foru = AG in the form
(p; i, j) = (2; 4, 9) with periodp = 2, where the range4..9 identifiessa[4] = 6, sa[5] = 11, sa[6] =
9, sa[7] = 18, sa[8] = 15, sa[9] = 2. Thus the maximal repeat occurs in positions6, 11, 9, 18, 15, 2 of s
as shown by the shading in Example 3.

Given an output(p; i, j) from PSY1, we need to determine if the conditions specified by the tuple
D are satisfied. Our first task is to use the suffix arraysa to convert this output into the formM =(
p; sa[i], sa[i+1], . . . , sa[j]

)
keyed to positions ins rather thansa: over all repeats found by PSY1, this

will require O(α) time. We then make use of two arrays,divptsandcount. Array divpts specifies the
starting points of each substringsk of s — this permits a binary search to be done to determine in which
substringsk the current repeating substring is located. More precisely:

divpts[1..N+1] = [1, n1+2, n1+n2+3, . . . ,

N−1∑
k=1

(nk+1)+1,

N∑
k=1

(nk+1)+1].

The arraycount = count[1..N] just maintains a count of the number of repeating substrings that have
so far been found to lie within each of theN stringssk.

Using these arrays, it is straightforward to determine in timeO
(
(j− i) log N

)
whether the repeat

(p; i, j) occurs at leastmmin times in each of at leastq substrings ofs, as shown in Figure 2. Note
that if j−i+1 < mminq, this condition cannot be satisfied and so no tests are required. The function
BinarySearch called in MultiRep-1 (see Figure 2) returns the indexk indicating that positionsa[h] in s
occurs in substringsk.

In Example 3,divpts will be [1, 9, 14, 22] and the output repeat will be(2; 6, 11, 9, 18, 15, 2). After
binary search we find thatcount[1] = 2 (positions 6 and 2),count[2] = 2 (11 and 9), andcount[3] = 2
(18 and 15): the repeat occurs at least twice in each of the three substrings. Thus formmin = 2, q = 3,
the repeat satisfies the constraints specified byD.

Now we analyze the time and space complexity of the algorithm. For construction ofsa there are
algorithms linear in string length̀[7, 5], though in practice algorithms with worst-caseO(`2 log `) time
requirement are several times faster [11]. To computelcp from sa there are two linear-time algorithms

1006 C. S. Iliopoulos, W. F. Smyth, M. Yusufu / Computing Maximal Multirepeats

Input: a maximal multirepeatM =
(
p; sa[i], sa[i + 1], . . . , sa[j]

)
of s,

together with integersmmin ≥ 2, q ≥ 1.
Output: M if and only if its repeating substring occurs

at leastmmin times in each of at leastq substrings ofs.
— Preprocessing: compute divpts[1..N+1].

r ← j − i + 1
if r ≥ qmmin then

count[1..N]← 0N ; qtotal← 0
for h← i to j

k ← BinarySearch(divpts, sa[h])
count[k]← count[k] + 1
if count[k] = mmin then

qtotal← qtotal + 1
if qtotal ≥ q then

output(M)

Figure 2. Algorithm MultiRep-1: Check Multiplicity & Quorum

[6, 9], and the easy calculation ofbwt from sa is also linear. Givenlcp andbwt, PSY1 executes in linear
time [10]. In our casè = N(n+1), and so all the repeats(p; i, j) in s can be computed in timeO(Nn).
For each ofO(R) repeats, the arraycount must be cleared at a cost ofO(N) time. In addition, for each
of at mostα occurrences of repeating substrings ins, the time required is at mostO(log2 N) for the
binary search. Thus to compute all the repeats satisfying constraintD, the worst-case time complexity
of the algorithm shown in Figure 2 isO(Nn+RN+α log2 N).

However, the asymptotic time complexity of MultiRep-1, though not perhaps the expected running
time in practice, can be slightly reduced, as we now explain. Instead of performingcount← 0N as part
of the algorithm, execute it only once as preprocessing over all invocations of MultiRep-1. Introduce
into MultiRep-1 a listL, initially empty, to which each valuek computed by BinarySearch is added;
then at the end of MultiRep-1 introduce a new loop that removes fromL each entryk and performs
count[k]← 0. The resulting algorithm executes in timeO(Nn+α log2 N), independent ofR.

Preprocessing for a string of length` requires as few as5` bytes forsa [11], 9` for lcp [9] and6` for
bwt, thus at most9N(n+1) bytes for` = N(n+1). PSY1 itself requires only5` bytes for its execution
[10], plus a further4` for storage ofsa (since each rangei, j in sa needs to be converted into a sequence
sa[i], sa[i + 1], . . . , sa[j] in s). Sincedivpts and count are arrays1..N of integer, their total space
requirement is8N bytes, and so the total isN(9n+17) bytes, in simple terms9Nn.

The algorithm shown in Figure 2 outputs all of the repeatsM . It may instead be required to output
only those positions inM that occur in thesk for which m ≥ mmin. One way to accomplish this is to
introduce a Boolean arraymok = mok[1..N] (similar in its role to the arraygapsok described below for
MultiRepG) —mok records for eachk ∈ 1..N whether or notsk contains at leastmmin occurrences of
M . Then a straightforward processing ofM , again using BinarySearch, produces the required output,
using the same asymptotic time and space.

C. S. Iliopoulos, W. F. Smyth, M. Yusufu / Computing Maximal Multirepeats 1007

3.1.2. Algorithm MultiRep-2

We briefly describe a strategy to avoid the binary search of MultiRep-1, at a cost of an additionalN(n+1)
bytes of storage (based on the assumption thatN is small — less than 256). In the preprocessing stage
we introduce an arraypos of byte such that, for eachi ∈ 1..N(n+1), pos[i] = k iff i is a position
in sk, while otherwisepos[i] = 0 (s[i] is a sentinel). Thus for everyi, pos[i] ∈ 0..N . Usingdivpts,
pos can easily be computed inΘ(Nn) time. Then, in order to determine, for each positionh in sa
which substringsk the positionsa[h] occurs in, it is necessary only to computek ← pos

[
sa[h]

]
. This

O(1) computation replaces BinarySearch in MultiRep-1, reducing processing time toO(Nn+α), thus
asymptotically optimal.

3.2. Restricted Gaps (MultiRepG)

In this section, we introduce the algorithm MultiRepG, for which the input is a maximal multirepeat
(p; i, j) of s satisfying constraintsD = (pmin, q,mmin) and the output consists of the elements of
(p; i, j) that satisfy the gap constraintsd in at leastq substringssk of s.

In order to satisfy constraintsd in addition to those specified byD, we need to introduce a bit
vector loc = loc[1..N(n + 1)]. In a single preprocessing stage every position inloc is setFALSE in
time O(Nn/w), wherew is the computer word length, and the preconditionloc[h] = FALSE for all
h is maintained thereafter. Then foreachmaximal repeat(p; i, j) of periodp ≥ pmin, the positions
loc

[
sa[h]

]
, h = i, i+1, . . . , j, are setTRUE, so that a left-to-right scan ofloc will yield in increasing

order the positions of the repeating substrings ins. Such a scan is shown in Figure 3, used to determine
which of the substringssk in s satisfy the gap constraints. A Boolean arraygapsok = gapsok[1..N] is
used to record the valuesk ∈ 1..N for which sk satisfiesd (see the corresponding arraymok described
earlier for MultiRep-1). Algorithm MultiRepG executes in two phases, a checking phase and an output
phase.

In the checking phase,divpts is used to compute for eachsk an arrayocc of candidate positions. The
functioncheck, described below, actually applies the constraintsd to occ — its total time usage over all
invocations isO(r), wherer = j−i+1 < Nn; also, the positions inspected indivpts andgapsok for
each repeat are at mostN . Thus for each candidate repeat, the time required to evaluate the constraintsd
is O(Nn). ForR such repeats, the overall time requirement of the checking phase is thereforeO(RNn).
We note that sinceα ≤ RNn (the total numberα of occurrences of repeats cannot exceed the number
R of repeats times the overall string lengthNn), thereforeO(RNn) in fact represents the total time
required both for MultiRep-2 and the checking phase. For cases that arise in practice, a corresponding
statement holds also for MultiRep-1.

In the output phase, there is no action if less thanq substrings ofs contain repeats satisfying the
constraintsd. Otherwise,occ is recomputed for eachsk that satisfiesd and the repeat is then output.
For the strings and gap constraints of Example 2, described above, the output of the algorithm given in
Figure 3 would be(p, k, occ) = (3, 1; 1, 5, 8, 14) and(3, 2; 4, 9, 17). The overall time requirement of the
output phase is againO(RNn).

The Boolean functioncheck, shown in Figure 4, slides a window of widthmmin over them ≥
mmin entries inocc, corresponding to the substringsk, shifting right by one position at each step. For
each window,check determines whether its entries satisfy the constraintsd; if so, check returnsTRUE,
causing them repeating substrings ofocc that occur insk to be output. If no window ofocc satisfies

1008 C. S. Iliopoulos, W. F. Smyth, M. Yusufu / Computing Maximal Multirepeats

— Precondition: loc = FALSEN(n+1).
for h← i to j do loc

[
sa[h]

]
← TRUE

— First Phase: Checking
q′ ← 0; gapsok[1..N]← FALSEN

k ← 1; m← 0; r ← j−i+1; r′ ← 0; h← 1
while r′ < r do

if loc[h] then
r′ ← r′+1
if h < divpts[k+1] then m← m+1; occ[m]← h
else

if m ≥ mmin and check(p, occ,m, d, mmin) then
q′ ← q′+1; gapsok[k]← TRUE

m← 1; occ[1]← h
repeatk ← k+1 until h < divpts[k+1]

h← h+1
if m ≥ mmin and check(p, occ,m, d, mmin) then

q′ ← q′+1; gapsok[k]← TRUE
— Second Phase: Output

if q′ ≥ q then
for k ← 1 to N do

if gapsok[k] then
m← 0
for h← divpts[k] to divpts[k+1]−1 do

m← m+1; occ[m]← h
output(p, k, occ)

for h← i to j do loc
[
sa[h]

]
← FALSE

Figure 3. Algorithm MultiRepG: for each substringsk of s, if occ contains a sequence of lengthµ = mmin that
satisfies (1), then outputocc

d, check returnsFALSE. The constraintsd are accessed as a two-dimensional arrayd[1..mmin−1, 1..2].
The outerwhile loop of check is executed(m − mmin + 1) times in the worst case, and the inner
while loop is executed at mostmmin times; thus the execution time ofcheck at each invocation is
O(mmin(m −mmin + 1)) = O(m). Here we assume that the specified input valuemmin is constant
over the execution of the algorithm. Over all invocations, therefore, the execution time ofcheck is O(r).

We note that the corresponding algorithm described in [1] requires that the differences between
the maximum and minimum gaps specified in (1) should all be bounded by a small constantc. The
methodology described here requires no such bound, and its effectiveness does not depend on such
differences. Note also that MultiRepG can easily be modified, with the same asymptotic complexity and
usage of space, to output only those ranges ofocc that satisfyd, omitting those entries that do not.

The additional storage required for MultiRepG consists of the4Nn/w bytes forloc plus up to4n
bytes for the integer arrayocc, a total of4n(N/w+1). Forw = 32, this amounts ton(N/8+4), perhaps
as much as an additionalNn bytes on top of the9Nn used by MultiRep-1.

C. S. Iliopoulos, W. F. Smyth, M. Yusufu / Computing Maximal Multirepeats 1009

function check(p, occ,m, d, mmin) : boolean
I0 ← I ← 1
while m−I ≥ mmin−1 do

J ← 1
while J < mmin and d[J, 1] ≤ occ[I + 1]− occ[I]− p ≤ d[J, 2] do

I ← I + 1; J ← J + 1
if J = mmin then

return TRUE
else

I0 ← I ← I0 + 1
return FALSE

Figure 4. Functioncheck: given an arrayocc of m occurrences of a repeating substring insk, determine whether
occ contains a subarray of lengthµ = mmin that satisfies the constraintsd

Table 1 compares the algorithms described here with those proposed in [1]. Note that even though

Problem Algorithm Time Space

MultiRep [1] O(σN2n + α) linear but large

MultiRep-1 O(Nn+α log2 N) 9Nn bytes

MultiRep-2 O(Nn+α) 10Nn bytes

MultiRepG [1] O((c2 + σ2)mN2n log(Nn)) + α) O(c2Nnm)
MultiRepG O(RNn) 10Nn bytes

Table 1. Comparison of Algorithms.

the suffix tree storage is linear, the large amount of information in each edge and node makes the suffix
tree very expensive, consuming about ten to twenty times the memory size of the input text in good
implementations. In [1], the algorithm MultiRep uses suffix trees, one for each string in the set plus a
“generalized” suffix tree for all of them, therefore the memory usage would be very large.

4. Discussion

We have formulated two problems related to multirepeats in sets of strings with various restrictions and
presented efficient algorithms with lower time complexity and less memory consumption compared to
previously proposed algorithms. We remark that if in Algorithm MultiRepG we set themin andmax
constraints on gaps equal to zero, we can find all tandem repeats (repetitions) in arbitrary subsets ofS.
Future work includes the detection of degenerate (approximate) multirepeats and weighted multirepeats.

1010 C. S. Iliopoulos, W. F. Smyth, M. Yusufu / Computing Maximal Multirepeats

References

[1] A. Bakalis, Costas S. Iliopoulos, Christos Makris, Spyros Sioutas, Evangelos Theodoridis, Athanasios K.
Tsakalidis, Kostas Tsichlas: Locating maximal multirepeats in multiple strings under various constraints,
The Computer Journal 50–2, 2007, 178–185.

[2] Michael Burrows, David J. Wheeler:A Block-Sorting Lossless Data Compression Algorithm, Technical Re-
port 124, Digital Equipment Corporation, 1994.

[3] Johannes Fischer, Volker Heun, Stefan Kramer: Optimal string mining under frequency constraints,Proc.
10th European Conf. on Principles and Practice of Knowledge Discovery in Databases, LNCS 4213,
Springer-Verlag, 2006, 139–150.

[4] Dan Gusfield:Algorithms on Strings, Trees and Sequences, Cambridge University Press, 1997.

[5] Juha K̈arkkäinen, Peter Sanders: Simple linear work suffix array construction,Proc. 30th Internat. Colloq.
Automata, Languages & Programming, LNCS 2971, Springer-Verlag, 2003, 943–955.

[6] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, Kunsoo Park: Linear-time longest-common-prefix
computation in suffix arrays and its applications,Proc. 12th Annual Symp. Combinatorial Pattern Matching,
LNCS 2089, Springer-Verlag, 2001, 181–192.

[7] Pang Ko, Srinivas Aluru: Space efficient linear time construction of suffix arrays,Proc. 14th Annual Symp.
Combinatorial Pattern Matching, R. Baeza-Yates, E. Chávez & M. Crochemore (eds.), LNCS 2676, Springer-
Verlag, 2003, 200–210.

[8] Sau Dan Lee, Luc De Raedt: An efficient algorithm for mining string databases under constraints,Proc.
KDID, LNCS 3377, Springer-Verlag, 2005, 108–129.

[9] Giovanni Manzini: Two space saving tricks for linear time LCP computation,Proc. 9th Scandinavian Work-
shop on Algorithm Theory, LNCS 3111, Springer-Verlag, 2004, 372–383.

[10] Simon J. Puglisi, W. F. Smyth, Munina Yusufu: Fast optimal algorithms for computing all the repeats in a
string,Prague Stringology Conference, Jan Holub & JaňZd’árek (eds.), 2008, 161–169.

[11] Simon J. Puglisi, W. F. Smyth, Andrew Turpin: A taxonomy of suffix array construction algorithms,ACM
Computing Surveys 39–2, Article 4, 2007.

[12] Bill Smyth: Computing Patterns in Strings, Pearson Addison-Wesley, 2003.

