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Abstract

A symmetry class of an elasticity tensor, c, is determined by the invariance of
this tensor with respect to a subgroup of the special orthogonal group, SO(3). Using
the double covering of SO(3) by the special unitary group, SU(2), we determine the
subgroups of SU(2) that correspond to each of the eight symmetry classes. A family
of maps between C2 and R3 that preserve the action of the two groups is constructed.
Using one of these maps and three associated polynomials, we derive new methods for
characterizing the symmetry classes of elasticity tensors.

1 Introduction

Several studies, notably, Chadwick et al. [5], Forte and Vianello [9], Ting [14], as well
as Bóna et al. [3], show that there are eight symmetry classes of an elasticity tensor.
These classes are characterized by eight subgroups of the orthogonal group O(3). Since all
of the symmetry groups of an elasticity tensor contain −I3, the negative identity in R3,
the symmetry classes are completely determined by eight corresponding subgroups of the
special orthogonal group SO(3). Herein, we use the special unitary group SU(2) to study
these classes.

In Section 2, we introduce the elasticity tensor as a fourth-rank tensor possessing certain
intrinsic symmetries and consider two associated second-rank tensors. These second-rank
tensors were also used to study symmetries of elasticity tensors by Baerheim [2], by Chad-
wick et al [5], as well as by Cowin and Mehrabadi [7].

In Section 3, using the symmetry groups for each symmetry class, we use the double
covering of SO(3) by the special unitary group SU(2) to determine the subgroups of SU(2)
that correspond to each symmetry class of an elasticity tensor.

In Section 4, we construct a family of maps between C2, and R3, that preserve the
action of SO(3) and SU(2) on these two vector spaces. The symmetry class of an elasticity
tensor is determined by the invariance of three associated polynomials under the action
of SO(3). Among the family of maps that preserve the action of the two groups SO(3)
and SU(2), we select a map that also preserves the homogeneity of the polynomials. This
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map has been used also by Backus [1], Baerheim [2], and Zou and Zheng [16] to determine
the Maxwell multipoles of an elasticity tensor. In Section 5, using this map, we consider
the pull back of the three polynomials. Only the first polynomial and its pull back are
the same as those derived by Backus [1] and by Baerheim [2]. These authors, however, do
not use the elasticity tensor directly, as we do in this paper. Instead, they work with an
associated fourth-rank harmonic tensor.

In Section 6, we prove that the eight subgroups of SU(2) we derived in Section 3
completely determine all symmetry classes of elasticity tensors. In order to do this, we
study the invariance of the polynomials obtained in Section 5 under the action of the
eight subgroups of SU(2). Then, unlike Backus [1] and Baerheim [2] who determine only
the necessary conditons, we determine both the necessary and sufficient conditions for an
elasticity tensor to belong to one of the symmetry classes. These conditions are concisely
presented in a table in Section 7. One can use this table to discuss all possible routes of
increasing symmetries for elasticity tensors, as we do in the last section.

Studying the symmetries of an elasticity tensor in the context of SU (2) gives us a
simpler way to characterize the symmetry classes than the standard approach in the context
of SO (3). As expected, in either case, the symmetry classes are the same.

2 Elasticity tensors

In this section, we introduce the elasticity tensor and two associated second-rank ten-
sors. Throughout this paper, we deal with tensors defined on R3 – the Euclidean three-
dimensional space.

An Elasticity tensor c is a fourth-rank tensor, namely a four-linear map c : R3 × R3 ×
R3 × R3 −→ R that satisfies the following intrinsic symmetries:

c(u, v, z, w) = c(v, u, z, w) = c(z, w, u, v),∀u, v, z, w ∈ R3. (1)

An orthonormal basis {e1, e2, e3} in R3 allows us to express the components of the
elasticity tensor with respect to this basis as

cijkl = c(ei, ej , ek, el), i, j, k, l ∈ {1, 2, 3}.

Thus, c has 34 = 81 components, cijkl. With respect to these components, we can write
tensor c as

c(u, v, z, w) = cijklu
ivjzkwl,

where u = uiei, v = viei, z = ziei and w = wiei.
1 Using this coordinate expression,

conditions (1) can also be written as

cijkl = cjikl = cklij , (2)

1Throughout this paper, we use the summation convention of repeated indices.
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for all i, j, k, l ∈ {1, 2, 3}.
Due to the intrinsic symmetries of the elasticity tensor, stated by conditions (2), we

conclude that c has only twenty-one independent components. We choose to represent
these components by

1c1111,1c2222,1c3333,
4c2323,2c2233,4c1212,2c1122,4c1313,2c1133,
4c1123,8c1213,4c1233,8c1323,4c2213,8c1223,
4c1222,4c1112,4c2223,4c1113,4c2333,4c1333.

(3)

In this list, the number in front of each term corresponds to the number of components
of c that the particular term represents; in other words, the number of times that a given
component occurs in c. We will use this representation to study nonintrinsic symmetries
of the elasticity tensor, which result from material properties.

Two symmetric second-rank tensors can be associated with an elasticity tensor, as
discussed in several papers, for instance by Cowin and Mehrabadi [8] or Forte and Vianello
[9]. Their components with respect to an orthonormal basis {e1, e2, e3} are

Vij = ci1j1 + ci2j2 + ci3j3,

Dij = c11ij + c22ij + c33ij .
(4)

Tensor V is called the Voigt tensor, while tensor D is called the dilatation tensor.

3 Subgroups of SU(2) and symmetry classes

Forte and Vianello [9] discuss two different ways of defining symmetries for an elasticity
tensor. One way of defining the symmetry classes of an elasticity tensor has been introduced
by Huo and del Piero [12]; according to their definition there are ten symmetry classes.
In this paper we follow the definition used by Forte and Vianello [10] and Chadwick et al.
[5]. According to this definition, there are eight symmetry classes for an elasticity tensor.
Each of these classes corresponds to a subgroup of O(3) that leaves the elasticity tensor
invariant.

An elasticity tensor c is invariant under an orthogonal transformation A if

c(Au,Av,Aw,Az) = c(u, v, w, z),∀u, v, z, w ∈ R3.

The set of all orthogonal transformations Gc that leaves an elasticity tensor invariant is
a subgroup of O(3), the orhogonal group that is generated by rotations and reflections.
For an elasticity tensor, its symmetry group Gc always contains −I3. Consequently the
elasticity tensor is invariant under an orthogonal transformation A if and only if it is
invariant under −A. Since only one of A and −A is a rotation, the symmetry class to
which an elasticity tensor belongs is determined only by rotations. This means that a
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symmetry class is completely determined by a subgroup of SO(3), which consists only of
rotations. We refer to such a subgroup by G̃c. We note that the order of group Gc is twice
the order of group G̃c. The relations between these two groups are given by

G̃c = Gc ∩ SO(3) and Gc = −G̃c ∪ G̃c. (5)

Using the double covering of SO(3) by SU(2), we determine the subgroups of SU(2) that
correspond to each symmetry class. The double covering of SO(3) by SU(2) is a group
morphism ψ : SU(2) −→ SO(3) that for each rotation A ∈ SO(3) assigns exactly two
special unitary transformations ±B ∈ SU(2) such that ψ(±B) = A.

Now, we define ψ for particular unitary transformations, which we can extend to all
transformations using the fact that ψ preserves the group multiplication. With respect to
an orthonormal basis in R3 and C2, we can define ψ as

ψ : ±
(

cos θ/2 ι sin θ/2
ι sin θ/2 cos θ/2

)
7→

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,

ψ : ±
(

cos θ/2 sin θ/2
− sin θ/2 cos θ/2

)
7→

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 ,

ψ : ±
(
eιθ/2 0

0 e−ιθ/2

)
7→

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,

(6)

where ι =
√
−1.

For each of the eight symmetry classes of elasticity tensors, the corresponding symmetry
groups are explicitely written in Bóna et al. [3]. Using these groups and morphism ψ, we
will determine the subgroup of SU(2) that corresponds to each symmetry class. We refer
to this subgroup by Hc, which means that ψ(Hc) = G̃c. Group Hc has the same order as
group Gc and twice the order of G̃c.

1) Generally anisotropic: An elasticity tensor is said to be generally anisotropic if
its symmetry group is Gc = {±I3}. This means that G̃c = {I3} and Hc = {±I2}. With
respect to an orthonormal basis of R3, this tensor has twenty-one independent components
given by expression (3).

2) Monoclinic: An elasticity tensor has monoclinic symmetry if its symmetry group
is Gc = {±I3,±Re3}, where Re3 is a reflection about a plane that is orthogonal to e3. The
corresponding subgroup of rotations is G̃c = {I3,−Re3}, while the corresponding subgroup
of SU(2) is

Hc =

{
±I2,±

(
ι 0
0 −ι

)}
. (7)
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With respect to an orthonormal basis {e1, e2, e3} of R3 – where e3 is the unitary vec-
tor orthogonal to the reflection plane and {e1, e2} is an arbitrary orthonormal basis for
the reflection plane – this elasticity tensor has thirteen independent components. These
components are

c1111, c2222, c3333,
c1122, c1133, c2233,
c1212, c1313, c2323,
c1112, c1222, c1233, c1323.

(8)

3) Orthotropic: An elasticity tensor has orthotropic symmetry if its symmetry group
is Gc = {±I3,±Rei , i ∈ {1, 2, 3}}. The corresponding subgroup of rotations is G̃c =
{I3,−Rei , i ∈ {1, 2, 3}}, while the corresponding subgroup of SU(2) is

Hc =

{
±I2,±

(
0 ι
ι 0

)
,±
(

0 1
−1 0

)
,±
(
ι 0
0 −ι

)}
. (9)

With respect to the orthonormal basis {e1, e2, e3} of R3 – where e1, e2, e3 are unitary
vectors orthogonal to the three reflection planes – this elasticity tensor has nine independent
components. These components are

c1111, c2222, c3333,
c1122, c1133, c2233,
c1212, c1313, c2323.

(10)

4) Trigonal: An elasticity tensor has trigonal symmetry if its symmetry group is Gc =
{±I3, ±Ruα ,±R±2π/3,e3 , α ∈ {1, 2, 3}}, where Ruα , α ∈ {1, 2, 3}, are reflections about three
planes that contain e3. The angle between any two planes of reflection is 2π/3. Since vectors
uα are orthogonal to the reflection planes, it follows that they are orthogonal to e3. One
can choose e2 to be one of these vectors, uα. Then, uα = sin(θα/2)e1− cos(θα/2)e2, where
θα ∈ {0,±2π/3}. The corresponding subgroup of rotations is G̃c = {I,−Ruα , R±2π/3,e3 , α ∈
{1, 2, 3}}, while the corresponding subgroup of SU(2) is

Hc =

{
±I2,±

(
0 1
−1 0

)
,±
(

0 e±ιπ/3

−e∓ιπ/3 0

)
,±
(
e±ιπ/3 0

0 e∓ιπ/3

)}
. (11)

With respect to the orthonormal basis {e1, e2, e3} of R3, the elasticity tensor has six inde-
pendent components. These components are

c1111 = c2222, c3333,
c1122, c1133 = c2233,
c1212 = 1

2(c1111 − c1122), c1313 = c2323,
c1123 = −c2223 = c1213.

(12)

We note that if a trigonal elasticity tensor is also invariant under Re3 , then it is invariant
under any rotation around e3. Consequently, the components c1123 = −c2223 = c1213 vanish
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and the tensor has only five independent components. We shall see below that such a case
corresponds to a transversely isotropic tensor whose components are given by expression
(17).

5) Tetragonal: An elasticity tensor has tetragonal symmetry if its symmetry group
is Gc = {±I3,±R±π/2,e3 ,±Rπ,e3 ,±Ruα , α ∈ {1, 2, 3, 4}}, where Ruα , α ∈ {1, 2, 3, 4}, are
reflections about four planes that contain e3. The angle between the planes of reflec-
tion is π/4 and, since vectors uα are orthogonal to the reflection planes, it follows that
they are orthogonal to e3. One can choose e1 and e2 to be two of these vectors. Then
uα = sin(θα/2)e1 − cos(θα/2)e2, where θα ∈ {0,±π/2, π}. The corresponding subgroup
of rotations is G̃c = {I3, R±π/2,e3 , Rπ,e3 ,−Ruα , α ∈ {1, 2, 3, 4}}, while the corresponding
subgroup of SU(2) is

Hc =

{
±I2,±

(
e±ιπ/4 0

0 e∓ιπ/4

)
,±
(
ι 0
0 −ι

)
,±
(

0 ι
ι 0

)
,

±
(

0 1
−1 0

)
,±
(

0 ιe±ιπ/4

−e∓ιπ/4 0

)}
.

(13)

With respect to the orthonormal basis {e1, e2, e3} of R3, this elasticity tensor has six
independent components. These components are

c1111 = c2222, c3333,
c1122, c1133 = c2233,
c1212, c1313 = c2323.

(14)

6) Transversely isotropic: An elasticity tensor has transversely isotropic symmetry
if its symmetry group is

Gg =

±
 cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 ,±

 cos θ sin θ 0
sin θ − cos θ 0
0 0 1

 , θ ∈ (−π, π]

 . (15)

The first elements of the symmetry group are ±Rθ,e3 , namely the rotations by angle θ
about vector e3. The last elements are ±Ru, namely, the reflections about the plane that
is orthogonal to u(θ) = sin(θ/2)e1 − cos(θ/2)e2.

Consequently, the symmetry group contains all rotations around e3 and all reflections
about the planes that contain e3 – the symmetry group coincides with O(2), as a subgroup
of O(3).

The corresponding subgroup of rotations is G̃c = {Rθ,e3 ,−Ru(θ), θ ∈ (−π, π]}, while the
corresponding subgroup of SU(2) is

Hc =

{
±
(
eιθ/2 0

0 e−ιθ/2

)
,±
(

0 eιθ/2

−e−ιθ/2 0

)
, θ ∈ (−π, π]

}
. (16)
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With respect to an orthonormal basis {e1, e2, e3} of R3, where e3 is the unitary axis of
rotation, this elasticity tensor has five independent components. These components are

c1111 = c2222, c3333,
c1122, c1133 = c2233,
c1212 = 1

2(c1111 − c1122), c1313 = c2323.
(17)

7) Cubic: An elasticity tensor has cubic symmetry if its symmetry group is Gc = {A ∈
O(3), A(ei) = ±ej , i, j ∈ {1, 2, 3}}. The corresponding subgroup of rotations is G̃c = {A ∈
SO(3), A(ei) = ±ej , i, j ∈ {1, 2, 3}}, while the corresponding subgroup of SU(2) is

Hc =

{
±I2,±

(
0 ι
ι 0

)
,±
(

0 1
−1 0

)
,±
(
ι 0
0 −ι

)
,

±
(
e±ιπ/4 0

0 e∓ιπ/4

)
,±
(

0 e±ιπ/4

−e∓ιπ/4 0

)
,

±
(

cosπ/4 ±ι sinπ/4
±ι sinπ/4 cosπ/4

)
,±
(

cosπ/4 ∓ sinπ/4
± sinπ/4 cosπ/4

)
,

±
(
∓ sinπ/4 ι cosπ/4
ι cosπ/4 ∓ sinπ/4

)
,±
(
±ι sinπ/4 cosπ/4
− cosπ/4 ∓ι sinπ/4

)
,

±
(
ι cosπ/4 ∓ sinπ/4
± sinπ/4 −ι cosπ/4

)
,±
(
±ι sinπ/4 ι cosπ/4
ι cosπ/4 ∓ι sinπ/4

)
,

±
(
± sinπ/4 cosπ/4
− cosπ/4 ± sinπ/4

)
,±
(
ι cosπ/4 ∓ι sinπ/4
∓ι sinπ/4 −ι cosπ/4

)}
.

(18)

With respect to the orthonormal basis {e1, e2, e3} of R3, where e1, e2, e3 are determined by
the unitary planes of reflections, the elasticity tensor has three independent components.
These components are

c1111 = c2222 = c3333,
c1122 = c1133 = c2233,
c1212 = c1313 = c2323.

(19)

8) Isotropic: An elasticity tensor has isotropic symmetry if its symmetry group is
Gc = O(3). The corresponding group of rotations is G̃c = SO(3), while the corresponding
unitary group is Hc = SU(2).

With respect to an arbitrary orthonormal basis {e1, e2, e3} of R3, the elasticity tensor
has two independent components. These components are

c1111 = c2222 = c3333 = 2c1212 + c1122,
c1122 = c1133 = c2233,
c1212 = c1313 = c2323.

(20)
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In order to simplify the study of the invariance of an elasticity tensor we will investigate
the invariance of related quantities in C2 under the action of SU (2).

4 Maps between C2and R3

We would like to construct a map φ : C2 → R3 such that it intertwines the action of
SO (3) in R3 with the action of its double cover SU (2) in C2. In other words, we want the
following diagram to commute.

C2 −→ R3

φ
↓ g̃A ↓ gψ(A)

φ
C2 −→ R3

,

where g̃A and gψ(A) are linear isomorphisms of C2 and R3 induced by the action of A
from SU(2) and ψ(A) from SO(3) which are related by the double-covering projection
ψ : SU (2)→ SO (3). The fact that the diagram commutes means that

gψ(A) (φ) = φ (g̃A) .

To construct such a map, we consider two fixed points, (0, R) ∈ C2 and
(
r1, r2, r3

)
∈ R3,

such that (r1)2 + (r2)2 + (r3)2 = R2 and R ∈ R, together with the orbits of SU (2) and
SO (3) acting on these points by their natural actions in C2 and R3. We can map point(
z1, z2

)
≡
(
p1 + ιq1, p2 + ιq2

)
from the orbit of SU (2) to point

(
ξ1, ξ2, ξ3

)
from the orbit

of SO (3) by associating with
(
z1, z2

)
the unique element of SU (2) that maps the fixed

point (0, R) ∈ C2 to the point
(
z1, z2

)
, and then using the corresponding element of SO (3)

to map the fixed point
(
r1, r2, r3

)
∈ R3 to the desired image

(
ξ1, ξ2, ξ3

)
of the original

point
(
z1, z2

)
.

Since all the elements of SU (2) are matrices of the form(
a b

−b a

)
,

where |a|2 + |b|2 = 1, the orbit of SU (2) through (0, R) ∈ C2 is{
(Rb,Ra) ∈ C2, |a|2 + |b|2 = 1

}
.

The bar denotes complex conjugation. Hence, we can associate with any element
(
z1, z2

)
of the orbit the unique element  z2

R
z1

R

− z1

R
z2

R


8



of SU (2) that maps (0, R) to
(
z1, z2

)
.

This element of SU (2) projects under the standard projection, e.g. Crampin and Pirani
[6, p. 205], to the following element of SO (3).

1

R

(
z2 z1

−z1 z2

)
7→ 1

R2


Re
(
(z2)2 − (z1)2

)
Im
(
(z2)2 − (z1)2

)
2Re

(
z1z2

)
Re
(
ι
(
(z2)2 + (z1)2

))
Im
(
ι
(
(z2)2 + (z1)2

))
2Im

(
z1z2

)
−2Re

(
z1z2

)
−2Im

(
z1z2

) ∣∣z2∣∣2 − ∣∣z1∣∣2

 .

Hence, the fixed point
(
r1, r2, r3

)
∈ R3 maps to

1

R2


Re
(
(z2)2 − (z1)2

)
Im
(
(z2)2 − (z1)2

)
2Re

(
z1z2

)
Re
(
ι
(
(z2)2 + (z1)2

))
Im
(
ι
(
(z2)2 + (z1)2

))
2Im

(
z1z2

)
−2Re

(
z1z2

)
−2Im

(
z1z2

) ∣∣z2∣∣2 − ∣∣z1∣∣2




r1

r2

r3

 .

We can see that this map can be written in exactly the same way for any R and, hence,
for any orbit. This way, we have found a map φ that intertwines the actions of SU (2) and
SO (3). This map is

φ :

(
z1

z2

)
7→ 1

R2


Re
(
(z2)2 − (z1)2

)
Im
(
(z2)2 − (z1)2

)
2Re

(
z1z2

)
Re
(
ι
(
(z2)2 + (z1)2

))
Im
(
ι
(
(z2)2 + (z1)2

))
2Im

(
z1z2

)
−2Re

(
z1z2

)
−2Im

(
z1z2

) ∣∣z2∣∣2 − ∣∣z1∣∣2




r1

r2

r3

 .

We note that this map is not linear and hence we cannot use it to pull back the elasticity
tensor to form a tensor. However, if we use a function of ξ1, ξ2, ξ3 that is associated with
the elasticity tensor, then we can use this map to pull back this function to C2 and study
the resulting function.

5 Polynomials associated with elasticity tensor

A symmetry class of an elasticity tensor is determined by the invariance of associated
polynomials under the action of the rotation group SO(3). If we pull back these polynomials
to C2, then their invariance under the action of SU(2) will provide new characterizations
for the standard symmetry classes of an elasticity tensor.

Consider a coordinate representation of an elasticity tensor, cijkl, with respect to some
orthonormal basis {e1, e2, e3} in R3. Then

P (ξ1, ξ2, ξ3) = cijklξ
iξjξkξl (21)
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is a homogeneous fourth-degree polynomial induced by the elasticity tensor. Also

PV(ξ1, ξ2, ξ3) = Vijξiξj ,

PD(ξ1, ξ2, ξ3) = Dijξiξj ,
(22)

are two homogeneous second-degree polynomials induced by the Voigt tensor, V, and the
dilatation tensor, D, respectively.

Note 5.1 Symmetry group G̃c of an elasticity tensor coincides with the group of special
orthogonal transformations that preserve the three polynomials. In other words,

G̃c = {A ∈ SO(3), P (AX) = P (X), PV(AX) = PV(X), PD(AX) = P (X),∀X ∈ R3}.

We want to pull back these three polynomials to C2 and study their invariance under the
subgroups of SU(2) that we studied in Section 3. In order to do this, we consider the family
of maps discussed in the previous section. To narrow down this family to a single map,
one can require an additional property of the map. Since we want to study polynomials,
it is natural to consider a map that is homogeneous of some degree. For this purpose, we
consider the following theorem.

Theorem 5.1 A map parameterized by
(
r1, r2, r3

)
from the family of maps given by

φ :

(
z1

z2

)
7→ 1

R2


Re
(
(z2)2 − (z1)2

)
Im
(
(z2)2 − (z1)2

)
2Re

(
z1z2

)
Re
(
ι
(
(z2)2 + (z1)2

))
Im
(
ι
(
(z2)2 + (z1)2

))
2Im

(
z1z2

)
−2Re

(
z1z2

)
−2Im

(
z1z2

) ∣∣z2∣∣2 − ∣∣z1∣∣2




r1

r2

r3


is homogeneous in

(
z1, z2

)
if and only if

(
r1, r2, r3

)
= a (−1,−ι, 0) for some complex a.

Note 5.2 We are considering the complexification of the real space R3 in order to have
polynomials in

(
z1, z2

)
that are complex homogeneous.

Hence, we consider the following map from Theorem 5.1 given by a = R2/2.

ϕ : (z1, z2) 7→ (ξ1(z1, z2) = (z1)2 − (z2)2, ξ2(z1, z2) = −ι((z1)2 + (z2)2), ξ3(z1, z2) = 2z1z2)
(23)

The pull backs of the three homogeneous polynomials, P, PV and PD by the homogeneous
map ϕ of degree two are

P (z1, z2) = P ((z1)2 − (z2)2,−ι((z1)2 + (z2)2), 2z1z2),
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which is an eighth-degree homogeneous polynomial with complex coefficients in z1 and z2,

PV(z1, z2) = PV((z1)2 − (z2)2,−ι((z1)2 + (z2)2), 2z1z2)

and
PD(z1, z2) = PD((z1)2 − (z2)2,−ι((z1)2 + (z2)2), 2z1z2),

which are fourth-degree polynomials with complex coefficients in z1 and z2.
Since map ϕ preserves the action of SO(3) and SU(2), we can restate Note 5.1 as

follows.

Note 5.3 Symmetry group Hc of an elasticity tensor coincides with the group of special
unitary transformations that preserves the three complex polynomials. In other words,

Hc = {U ∈ SU(2), P (UZ) = P (Z), PV(UZ) = PV(Z), PD(UZ) = P (Z),∀Z ∈ C2}.

Using these three polynomials, we consider three related polynomials

P (8)(t) = P (z1/z2, 1),

P
(4)
V (t) = PV(z1/z2, 1),

P
(4)
D (t) = PD(z1/z2, 1),

(24)

of eighth-degree and fourth-degree in a single variable t = z1/z2. If a map takes
(
z1, z2

)
to
(
z̃1, z̃2

)
, then the invariance of any of polynomials P

(
z1, z2

)
under this map translates

to the following properties of corresponding polynomials in t = z1/z2:

(
z2
)q
P (q)

(
z1

z2

)
=
(
z̃2
)q
P (q)

(
z̃1

z̃2

)
, (25)

where q is 4 or 8.
By a straightforward calculation, one can check that the eighth-degree polynomial,

P (8), has the following form.

P (8)(t) = a8t
8 + a7t

7 + a6t
6 + a5t

5 + a4t
4 − a5t3 + a6t

2 − a7t+ a8, (26)

where the bar denotes a complex conjugation. The coefficients of this polynomial are

a8 = c1111 + c2222 − 4c1212 − 2c1122 + 4ι(−c1112 + c1222),

a7 = 8[c1113 − c1322 − 2c1223 + ι(−c1123 + c2223 − 2c1213)],

a6 = 4[−c1111 + c2222 − 4c2323 + 4c1313 − 2c2233 + 2c1133 + 2ι(c1112 + c1222 − 2c1233 − 4c1323)],

a5 = 8[−3c1113 − c1322 + 4c1333 − 2c1223 + ι(c1123 + 3c2223 − 4c2333 + 2c1213)],

a4 = 2(3c1111 + 3c2222 + 8c3333 − 16c2323 − 16c1313 + 4c1212 + 2c1122 − 8c1133 − 8c2233).
(27)

11



Polynomial P (8) with coefficients (27) is the same as the one derived by Backus [1] and
Baerheim [2]. However, in these two papers, polynomial P (8) is not derived directly from
elasticity tensor c, but from a fourth-rank, totally symmetric, harmonic tensor induced by
c.

Fourth-degree polynomial P
(4)
V is given by

P
(4)
V (t) = aV4 t

4 + aV3 t
3 + aV2 t

2 − aV3 t+ aV4 . (28)

The coefficients of this polynomial are

aV4 = c1111 − c2222 + c1313 − c2323 − 2ι(c1112 + c1222 + c1323),

aV3 = 4[c1113 + c1223 + c1333 − ι(c1213 + c2223 + c2333)],

aV2 = 2(−c1111 − c2222 + 2c3333 − 2c1212 + c1313 + c2323).

(29)

Fourth-degree polynomial P
(4)
D is given by

P
(4)
D (t) = aD4 t

4 + aD3 t
3 + aD2 t

2 − aD3 t+ aD4 . (30)

The coefficients of this polynomial are

aD4 = c1111 − c2222 + c1133 − c2233 − 2ι(c1112 + c1222 + c1233),

aD3 = 4[c1113 + c1322 + c1333 − ι(c1123 + c2223 + c2333)],

aD2 = 2(−c1111 − c2222 + 2c3333 − 2c1122 + c1133 + c2233).

(31)

Two polynomials P
(4)
V and P

(4)
D with coefficients given by (29) and (31) are different from

the fourth-degree polynomials derived by Backus [1] and Baerheim [2]. The coefficients of
the polynomials used in the present paper, given by expressions (29) and (31), are simpler.

6 Characterizations of symmetry classes

In Section 3, we have seen that to each of the eight symmetry classes of an elasticity
tensor corresponds a subgroup Hc of SU(2). In this section, we shall prove that these
eight subgroups of SU(2) completely determine all symmetry classes of elasticity tensors.

In order to do this, we will study the invariance of polynomials P (8), P
(4)
V and P

(4)
D under

Hc and derive necessary and sufficient conditions for an elasticity tensor to belong to one
of the eight symmetry classes.

Theorem 6.1 An elasticity tensor has monoclinic symmetry if and only if the three poly-

nomials P (8), P
(4)
V and P

(4)
D satisfy the following conditions:

P (2q)(t) = εqP (2q)(t/ε), q ∈ {2, 4}, (32)

where ε2 = 1, and P (4) refers to both polynomials P
(4)
V and P

(4)
D .

12



Proof. An elasticity tensor has monoclinic symmetry if and only if P (z1, z2), PV(z1, z2)
and PD(z1, z2) are invariant under the action of the group given by expression (7), which
implies invariance under the following maps:

(z1, z2) 7→
{
±(z1, z2)
±(ιz1,−ιz2). (33)

The invariance of P (z1, z2), PV(z1, z2) and PD(z1, z2) under maps (33) is equivalent to the

transformation of P (8)(t), P
(4)
V (t) and P

(4)
D (t) given by (25), which results in condition (32),

where
t = z1/z2 7→ ±t = ±z1/z2. (34)

Next, we shall prove that condition (32) is equivalent to the fact that an elasticity
tensor has – with respect to an orthonormal basis – thirteen independent components
given by expression (8). Condition (32) is equivalent to the fact that all three polynomials
are even since all coefficients of odd order are zero. This means that an elasticity tensor
has monoclinic symmetry if and only if

a7 = a5 = aV3 = aD3 = 0.

The vanishing of these four complex coefficients is equivalent – using conditions (27), (29)
and (31) – to a system of eight equations with eight unknowns. The solution of this system
is

c1113 = c1223 = c1333 = c1213 = c2223 = c2333 = c1322 = c1123 = 0. (35)

Thus, an elasticity tensor has a monoclinic symmetry if and only if it has – with respect
to an orthonormal basis – thirteen independent components given by expression (8).

Theorem 6.2 An elasticity tensor has orthotropic symmetry if and only if the three poly-

nomials P (8), P
(4)
V and P

(4)
D satisfy the following conditions:

P (2q)(t) = εqP (2q)(t/ε), q ∈ {2, 4},

P (2q)(t) = εqt2qP (2q)(−ε/t), q ∈ {2, 4},
(36)

where ε2 = 1, and P (4) refers to both polynomials P
(4)
V and P

(4)
D .

Proof. An elasticity tensor has orthotropic symmetry if and only if P (z1, z2), PV(z1, z2)
and PD(z1, z2) are invariant under the action of the group given by expression (9), which
implies invariance under the following maps:

(z1, z2) 7→


±(z1, z2)
±(ιz2, ιz1)
±(z2,−z1)
±(ιz1,−ιz2).

(37)
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The invariance of P (z1, z2), PV(z1, z2) and PD(z1, z2) under maps (37) is equivalent to the

transformation of P (8)(t), P
(4)
V (t) and P

(4)
D (t) given by expression (25), which results in

condition (36), where

t = z1/z2 7→
{
±t = εt
±1/t = −ε/t. (38)

Next, we shall prove that conditions (36) are equivalent to the fact that an elasticity
tensor has – with respect to an orthonormal basis – nine independent components given by
expression (10). The first condition in expression (36) is the same as condition (32), which
is equivalent to the fact that all three polynomials are even. As we have seen in the proof
of Theorem 6.1, this implies conditions (35). The second condition in expression (36) is
equivalent to the fact that the remaining nonzero coefficients of all three polynomials are
real. This is equivalent to

Im(a8) = Im(a6) = Im(aV4 ) = Im(aD4 ) = 0.

These four equations combined with conditions (35) imply that

c1112 = c1222 = c1233 = c1323 = 0. (39)

From conditions (35) and (39) we see that an elasticity tensor has orthotropic symmetry if
and only if it has – with respect to an orthonormal basis – nine independent components,
given by expression (10).

Theorem 6.3 An elasticity tensor has trigonal symmetry if and only if the three polyno-

mials P (8), P
(4)
V and P

(4)
D satisfy the following conditions:

P (2q)(t) = ωqP (2q)(t/ω), q ∈ {2, 4},

P (2q)(t) = ωqt2qP (2q)(−ω/t), q ∈ {2, 4},
(40)

where ω3 = 1, and P (4) refers to both polynomials P
(4)
V and P

(4)
D .

Proof. An elasticity tensor has trigonal symmetry if and only if P (z1, z2), PV(z1, z2)
and PD(z1, z2) are invariant under transformations given by expression (11), which means
invariance under the following maps:

(z1, z2) 7→


±(z1, z2)
±(z2,−z1)
±(e±ιπ/3z2,−e∓ιπ/3z1)
±(e±ιπ/3z1, e∓ιπ/3z2).

(41)

The invariance of P (z1, z2), PV(z1, z2) and PD(z1, z2) under maps (41) is equivalent to the

transformation of P (8)(t), P
(4)
V (t) and P

(4)
D (t) given by expression (25), which results in

condition (40), where

t = z1/z2 7→
{

ωt
−ω/t . (42)
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The first condition in expression (40) is equivalent to

P (8)(ωt) = ωP (8)(t),

P
(4)
V (ωt) = ω2P

(4)
V (t),

P
(4)
D (ωt) = ω2P

(4)
D (t).

(43)

We can check directly that the first condition in expression (43) results in

P (8)(t) = a7t
7 + a4t

4 − a7t = t(a7t
6 + a4t

3 − a7). (44)

Similarly, we can see that the last two conditions in expression (43) result in

P (4)(t) = a2t
2. (45)

From expression (44) for P (8) and expression (45) for both P
(4)
V and P

(4)
D , we see that an

elasticity tensor satisfies the first condition in expression (40) if and only if – with respect
to an orthonormal basis – the following coefficients vanish:

a8 = a6 = a5 = aV4 = aV3 = aD4 = aD3 = 0. (46)

If we consider the second condition of expression (40) with ω = e2πι/3 and q = 4, the only
new equation we get is Re(a7) = 0.

Since all the seven coefficients in expression (46) are complex, their vanishing gives us
fourteen independent equations. If we add Re(a7) = 0, we have fifteen equations. By
solving these equations we see that an elasticity tensor has trigonal symmetry if and only
if – with respect to an orthonormal basis – it has six independent components given by
expression (12).

Theorem 6.4 An elasticity tensor has tetragonal symmetry if and only if the three poly-

nomials P (8), P
(4)
V and P

(4)
D satisfy the following conditions:

P (2q)(t) = αqP (2q)(t/α), q ∈ {2, 4},
P (2q)(t) = αqt2qP (2q)(−α/t), q ∈ {2, 4}, (47)

where α4 = 1, and P (4) refers to both polynomials P
(4)
V and P

(4)
D .

Proof. An elasticity tensor has tetragonal symmetry if and only if P (z1, z2), PV(z1, z2)
and PD(z1, z2) are invariant under transformations (13), which implies invariance under
the following maps:

(z1, z2) 7→



±(z1, z2)

±(e±ιπ/4z1, e∓ιπ/4z2)
±(ιz1,−ιz2)
±(ιz2, ιz1)
±(z2,−z1)
±(ιe±ιπ/4z2,−ιe∓ιπ/4z1).

(48)
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The invariance of P (z1, z2), PV(z1, z2) and PD(z1, z2) under maps (48) is equivalent to

polynomials P (4)(t), P
(4)
V (t) and P

(4)
D (t) satisfying conditions (47) under the following trans-

formation:

t = z1/z2 7→
{

αt
−α/t . (49)

The first condition in expression (47) is equivalent to

P (8)(αt) = P (8)(t),

P
(4)
V (αt) = α2P

(4)
V (t),

P
(4)
D (αt) = α2P

(4)
D (t).

(50)

One can check directly that the first condition in expression (50) is equivalent to

P (8)(t) = a8t
8 + a4t

4 + a8. (51)

Similarly, the last two conditions in expression (50) are equivalent to

P (4)(t) = a2t
2. (52)

The last condition in expression (47), where α = 1 and q = 4, implies that Im(a8) = 0.

From conditions (51) for P (8) and (52) for both P
(4)
V and P

(4)
D , we conclude that an elasticity

tensor has tetragonal symmetry if and only if – with respect to an orthonormal basis – the
following coefficients vanish:

Im(a8) = a7 = a6 = a5 = aV4 = aV3 = aD4 = aD3 = 0. (53)

Since the above coefficients are complex, condition (53) gives us fifteen independent equa-
tions. By solving these equations, we see that an elasticity tensor has tetragonal symmetry
if and only if it has – with respect to an orthonormal basis – six independent components
given by expression (14).

Note 6.1 For the trigonal and tetragonal symmetries, we have a common set of the fol-
lowing fourteen equations:

Im(a8) = Re(a7) = a6 = a5 = aV4 = aV3 = aD4 = aD3 = 0.

Each symmetry case has one specific equation; namely, Re(a8) = 0 for trigonal, and
Im(a7) = 0 for tetragonal.

Theorem 6.5 An elasticity tensor has transversely isotropic symmetry if and only if the

three polynomials P (8), P
(4)
V and P

(4)
D satisfy the following conditions:

P (2q)(t) = zqP (2q)(t/z), q ∈ {2, 4},
P (2q)(t) = zqt2qP (2q)(−z/t), q ∈ {2, 4}, (54)
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where z = eιθ is any complex number of modulus one, and P (4) refers to both polynomials

P
(4)
V and P

(4)
D .

Proof. An elasticity tensor has transversely isotropic symmetry if and only if P (z1, z2),
PV(z1, z2) and PD(z1, z2) are invariant under transformations given by expression (16),
which implies invariance under the following maps:

(z1, z2) 7→
{
±(eιθ/2z1, e−ιθ/2z2)

±(eιθ/2z2,−e−ιθ/2z1) . (55)

The invariance of P (z1, z2), PV(z1, z2) and PD(z1, z2) under maps (55) is equivalent to

polynomials P (4)(t), P
(4)
V (t) and P

(4)
D (t) satisfying condition (54) under the following trans-

formation:

t = z1/z2 7→
{
eιθt
−eιθ/t . (56)

For P
(4)
V and P

(4)
D , the first condition in expression (54) is the same as for the trigonal and

tetragonal cases, namely, P
(4)
V (t) = a

(V)
2 t2 and P

(4)
D (t) = a

(D)
2 t2. This implies the following

eight equations:
aV4 = aV3 = aD4 = aD3 = 0. (57)

For P (8), the first condition in expression (54) is equivalent to P (8)(t) = a4t
4, which implies

eight more equations, namely,

a8 = a7 = a6 = a5 = 0. (58)

The second condition in expression (54) does not imply any new restriction. Using equa-
tions (57) and (58), we see that an elasticity tensor has transversely isotropic symmetry if
and only if it has – with respect to an orthonormal basis – five independent components
given by expression (17).

Note 6.2 We see that the sixteen equations that define a transversely isotropic symmetry
are the combined equations for the trigonal and tetragonal symmetries.

Theorem 6.6 An elasticity tensor has cubic symmetry if and only if the two polynomials

P
(4)
V and P

(4)
D vanish, while the polynomial P (8) satisfies the following conditions:

P (2q)(t) = αqP (2q)(t/α),

P (2q)(t) = αqt2qP (2q)(−α/t),
2qP (2q)(t) = (t− α)2qP (2q)(βa

t+α
t−α),

(59)

where α4 = 1 and β2 = 1.
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Proof. An elasticity tensor has cubic symmetry if and only if 2qP (2q)(t) = (P (z1, z2),
PV(z1, z2) and PD(z1, z2) are invariant under transformation (18), which implies the in-
variance under the following maps:

(z1, z2) 7→



±(z1, z2)
±(ιz2, ιz1)
±(z2,−z1)
±(ιz1,−ιz2)
±(e±ιπ/4z1, e∓ιπ/4z2)

±(e±ιπ/4z2,−e∓ιπ/4z1)
±(cos(π/4)z1 ± ι sin(π/4)z2,±ι sin(π/4)z1 + cos(π/4)z2)
±(cos(π/4)z1 ∓ sin(π/4)z2,± sin(π/4)z1 + cos(π/4)z2)
±(∓ sin(π/4)z1 + ι cos(π/4)z2, ι cos(π/4)z1 ∓ sin(π/4)z2)
±(±ι sin(π/4)z1 + cos(π/4)z2,− cos(π/4)z1 ∓ ι sin(π/4)z2)
±(ι cos(π/4)z1 ∓ sin(π/4)z2,± sin(π/4)z1 − ι cos(π/4)z2)
±(±ι sin(π/4)z1 + ι cos(π/4)z2, ι cos(π/4)z1 ∓ ι sin(π/4)z2)
±(± sin(π/4)z1 + cos(π/4)z2,− cos(π/4)z1 ± sin(π/4)z2)
±(ι cos(π/4)z1 ∓ ι sin(π/4)z2,∓ι sin(π/4)z1 − ι cos(π/4)z2).

(60)

The invariance of PV(z1, z2) and PD(z1, z2) under maps (60) implies that the two polyno-
mials vanish. The invariance of P (z1, z2) under maps (60) is equivalent to the fact that

polynomial P (8)(t) satisfies conditions (59). The two polynomials P
(4)
V and P

(4)
D vanish if

and only if
aV4 = aV3 = aV2 = aD4 = aD3 = aD2 = 0. (61)

The first two conditions in expression (59) are the same as conditions (47). In view of
expression (53), this is equivalent to

Im(a8) = a7 = a6 = a5 = 0. (62)

We can infer, from the last condition in expression (59) – for instance by setting t = 1
and α = −1 – that

a4 = 14a8. (63)

The ten equations (61), the seven equations (62) and equation (63) bring the number
of independent coefficients to three, as given by expression (19).

Theorem 6.7 An elasticity tensor has isotropic symmetry if and only if the three polyno-

mials P (8), P
(4)
V and P

(4)
D vanish.

Proof. An elasticity tensor has isotropic symmetry if and only if P (z1, z2), PV(z1, z2) and
PD(z1, z2) are invariant under any special unitary transformation. This invariance implies

that polynomials P (8), P
(4)
V and P

(4)
D vanish.
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The three polynomials P (8), P
(4)
V and P

(4)
D vanish if and only if all coefficients vanish,

namely,
a8 = a7 = a6 = a5 = a4 = aV4 = aV3 = aV2 = aD4 = aD3 = aD2 = 0.

These are nineteen equations that bring the number of independent components for an
isotropic tensor to two, as given by expression (20).

7 Summary

The elasticity tensor that possesses given symmetries must satisfy the following equations
with the indicated parameters.

P (2q)(t) = εqP (2q)(t/ε) ωqt2qP (2q)(−ω/t) 2−q(t− α)2qP (2q)(βa
t+α
t−α)

Monoclinic ε2 = 1
Orthotropic ε2 = 1 ω2 = 1
Trigonal ε3 = 1 ω3 = 1
Tetragonal ε4 = 1 ω4 = 1
Trans. isotropic |ε| = 1 |ω| = 1
Cubic ε4 = 1 ω4 = 1 α4 = 1, β2 = 1
Isotropic |ε| = 1 |ω| = 1 |α| = 1 |β| = 1

The equations in the first column correspond to rotations about e3. The equations
in the second column correspond to reflections about the planes that contain e3. The
equations in the last column correspond to rotations about e1 and e2 by π/2.

If polynomial P (2q) (t) is of the form

P (2q) (t) = a0 + a1t+ · · ·+ a2qt
2q,

then the first equation translates to

a0 = εqa0

a1 = εq−1a1
...

an = εq−nan

and the second equation translates to

a0 = ω−qa2q

a1 = −ω1−qa2q−1
...

an = (−1)nωn−qa2q−n.
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From these expressions for the coefficients, we can see the following statements.2

For a monoclinic medium, only the first equation has to be satisfied with ε2 = 1. Since
q is an even number, we see that all odd coefficients have to be zero.

For an orthotropic medium, the first equation has to be satisfied with ε2 = 1 and the
second equation has to be satisfied with ω2 = 1. From the first equation we see that only
the even coefficients are nonzero. From the second equation we see that a2k = a2q−2k.

For a trigonal medium, the first equation has to be satisfied with ε3 = 1 and the second
equation has to be satisfied with ω3 = 1. From the first equation we see that the only
nonzero coefficients ak are those for which q − k is divisible by three. From the second
equation we see that for these nonzero coefficients ak = (−1)kωk−qa2q−n.

For a tetragonal medium, the first equation has to be satisfied with ε4 = 1 and the
second equation has to be satisfied with ω4 = 1. We see that the only nonzero coefficients
ak are those for which q − k is divisible by four. From the second equation we see that for
these nonzero coefficients ak = (−1)kωk−qa2q−n.

For a transversely isotropic medium, the first equation has to be satisfied with |ε| = 1.
We see that a nonzero coefficient is possible only if n = q, when εn−q = 1.

For a cubic medium, the first equation has to be satisfied with ε4 = 1 and the second
equation has to be satisfied with ω4 = 1. Also the third equation has to be satisfied with
α4 = 1 and β2 = 1. We see that the only nonzero coefficients ak are those for which q − k
is divisible by four. From the second equation we see that for these nonzero coefficients
ak = (−1)kωk−qa2q−n and these coefficients must also satisfy the third equation, which can
be easily checked by choosing, for instance, t = 1 and α = −1.

8 Discussions

Using the summary of results in Section 7 and the proofs in Section 6, we can state all
possible routes of increasing symmetries for an elasticity tensor, as shown in the following
diagram. The two numbers that follow the names of given symmetries are the number of
the independent components of the corresponding elasticity tensor and the number of the
elements in the corresponding symmetry group.

2Note that the first equation does not yield any restriction on the coefficient an for which n = q, since
in that case εn−q = 1.
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Tr. Isotropic 5, 8

Isotropic 2, 8

Orthotropic 9,8

Cubic 3,48

Monoclinic 13,4

Trigonal 6,12

Anisotropic 21,2

Tetragonal 6,16

The method described in this paper can also be used for another proof of the fact that
an elasticity tensor cannot have discrete symmetry that is greater than four-fold. It is
easily extendible for higher-rank tensors to obtain the result that was proved in 1945 by
Hermann [11] in a different way.

The work presented in this paper is expressed in an arbitrary coordinate system exept
Section 6. The transformations in Section 6 are expressed in coordinates that are natural
for the given symmetry class. This does not mean, however, that we would not obtain
the same characterization using different coordinates. We would obtain expressions that
characterize each class, but they would be more difficult to work with.
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