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MLS-assisted validation of WorldView-2 panchromatic image for 

estimating Pinus sylvestris crown height 

High spatial resolution satellite imaging has the advantages of both fine scale and 

large coverage that indicates the potential for measuring forest morphologies. 

However, because of the aerial view, imaging has limited capacity of explicitly 

deriving the under-crown structural parameters. A possible solution is to explore 

the relationships between variables such as crown height and the feature 

parameters readily derived from the satellite images. However, field sampling of 

the training data is not a trivial task. To handle this issue, this study explored the 

state-of-the-art remote sensing technology of vehicle based mobile laser scanning 

(MLS) for collecting the sample data. Evaluation for the case of the Scots Pine 

(Pinus sylvestris) trees has preliminarily validated the plan. That is, information 

from MLS enabled, the parameter of crown height to be correctly estimated from 

WorldView-2 panchromatic images. 

Keywords: Crown height estimation; WorldView-2 panchromatic image; Mobile 

laser scanning (MLS) 
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1. Introduction 

With the advantages of both fine scale and large cover, high spatial resolution satellite 

imaging is a promising choice for measuring morphology ranging from single trees up 

to a full forest. A number of investigations have been carried out on this efficient data 

collection technique to obtain different structural parameters of trees for large areas 

(Grote, 2003; Beguet et al., 2012). For instance, multi-scale segmentation of QuickBird 

images was carried out for exploring forest structural complexity (Lamonaca et al., 

2008), and the texture parameters derived from WorldView-2 (WV-2) multispectral 

images were applied for predicting forest structural parameters such as basal area and 

stem volume (Ozdemir and Karnieli, 2011). Specifically for tree-level structure 

determination, satellite image bands with higher spatial resolutions such as WV-2 



panchromatic images (Ozdemir and Karnieli, 2011) show promise because of their 

ability to supply more structural details. 

However, , determining tree structural attributes under the crown e.g. trunk and 

branch diameter, is difficult for high spatial resolution satellite imaging because the tree 

canopy obstructs the view. Such a case is Crown Height (CH), which is defined as the 

height from the ground to the point of attachment of the lowest living branch to the 

trunk. CH as it can indicate tree growth and tree timber quality (Petersson, 1997). This 

is of ecological and economic significance and hence precise acquisition of CH is 

needed. Determining the relationships between CH and the feature parameters readily 

derived from high spatial resolution satellite images is a potential solution (Barbier et al., 

2012). 

However, field sampling of the training data proves to be a non-trivial task 

(Lamonaca et al., 2008), and it is hypothesized that the state-of-the-art 3D remote 

sensing technology:  Mobile Laser Scanning (MLS) is a potential solution. In contrast to 

manual measurement, photography (Macfarlane et al., 2007) and static Terrestrial Laser 

Scanning (TLS) (Yang et al., 2013), MLS can measure many individual trees in a more 

efficient and labour-saving way. This is because the scanning occurs while the vehicle 

is moving at a reasonable speed and covering large areas. This strength means that more 

samples can be measured within the same time span, and more samples means that 

higher accuracy and robustness can be obtained for parameter estimation. This aligns 

with the suggestions by botanists and ecologists of using diverse data sources for tree 

characterization (Heinzel and Koch, 2012). MLS has been applied to tree modeling 

(Rutzinger et al., 2010) and crown reconstruction (Lin and Hyyppä, 2012). However, 

there have been no attempts on using MLS to supply the sample data of individual trees 



as ground truth for calibrating the parameter estimations from WV-2 panchromatic 

images. 

To fill this technical gap, this study explored how to introduce MLS into the task 

of validating high spatial resolution satellite images for tree CH estimation. Here, the 

tree species of concern is Scots Pine (Pinus sylvestris), and the specific satellite images 

are the typical WV-2 panchromatic images (0.46 m ground sampling distance (GSD) 

and 16.4 km swath width at nadir). 

2. Data 

The test site is located in the north-west corner of Curtin University, Perth, Australia 

(115°1'46''E, 31°8'42''S). The study area dominantly comprises Pinus sylvestris trees, 

which grow naturally without their crowns being trimmed or pruned. The overlapping 

WV-2 panchromatic image collected on 3 December 2011 and published with its 

Ground Sample Distance (GSD) uniformly set to 0.5 m is shown in Figure 1(a). 

The 3D laser sampling was done with a MDL Dynascan S250 MLS system 

mounted on a car on the 1st May 2013. The MLS has a nominal range of 250 m, and can 

capture 36,000 points/sec at a scan-head rotation rate of 20 Hz. The relative point 

accuracy of the laser is in the range of +/- 1 cm. An aerial view of the acquired point 

clouds representing the test site is shown in Figure 1(b) (The darker the pixels, the 

higher above the ground). This is registered with the WV-2 panchromatic image, which 

has undergone geo-referencing before its commercial distribution. 

Note that the temporal interval of one and a half years between the two data 

collections only has a small influence on the parameter estimations, because the Pinus 

sylvestris trees are evergreen and there are only small changes in terms of crown height 

and crown cover. The data registration was implemented by manually extracting the 

control points from the two datasets. The individual trees were extracted from the WV-2 



panchromatic imagery by manually drawing regions-of-interest (ROIs) using the ENVI 

software environment1. For the MLS data manually isolating groups of 3D points was 

carried out using the Leica Cyclone software environment2. Table 1 shows statistical 

information for the 37 Pinus sylvestris trees extracted from the MLS-collected 3D point 

clouds that have reasonably complete representations. The statistics are possible 

because each 3D point has 3D coordinates and hence, for example, it is easy to 

determine the maximum height of a tree from the 3D point with the highest height value. 

3. Methods 

The analysis consisted of three steps: first, the CHs as references were derived from the 

MLS data; second, feature parameters were extracted from the WV-2 panchromatic 

image; and finally, the relationships between the MLS-derived CHs and the image-

derived feature parameters were explored and the image-based CH prediction formulas 

established.  

Figure 2a shows the tree form and its presentation in the WV-2 panchromatic 

image are indicated in Figure 2(a) illustrates an example of a Pinus sylvestris tree along 

with definitions of the required parameters. Figure 2(b) diagrammatically shows a side 

view approximation to a crown, modelled as a paraboloid with a circular base, with the 

dots showing the pixels at their correct heights above the ground. The lack of 

correspondence of height to pixel grey level is illustrated i.e. there is an inconsistency in 

reflectance spatial distribution for individual crowns. Figure 2(c) displays the 

irregularity of the vertical projection shapes on the ground compared with a circular 

model. The irregularity is mainly because of variations in tree shape but also slightly 
                                                

1 http://www.exelisvis.com/ProductsServices/ENVIProducts/ENVI.aspx 

2 http://hds.leica-geosystems.com/en/Leica-Cyclone_6515.htm 



because of oblique or off vertical viewing angle. Determining the correspondence 

between the various parameters is addressed in the following sections. 

3.1 Determining tree crown height from MLS data  

The MLS data was used to estimate the crown height as shown in Figure 1 from by 

finding the lowest branches guided by analysis of the tree trunk for the many trees in the 

data. It is common to quantify a tree by the diameter of the trunk 1.37 m above the 

ground so determining this position was the first step. The location of the ground is 

easily extracted from the MLS data as the lowest points in the data when there are many 

points at the same location as expected for trees.  The horizontal layer of 3D points 

covering the common variable of Diameter at Breast Height (DBH) i.e. 1.37 m in the 

MLS data is segmented out and projected onto a horizontal plane. Next the points are 

clustered and the centres of each cluster deemed as the possible locations of the trunks. 

Cluster analysis works because the distances between the points for each tree are much 

smaller than those between the trees. For each cluster, a vertically aligned cylinder is 

generated. The height of the cylinder is determined from the highest 3D point above 

each cluster hypothesized to be the top of the tree and set to 50% of the height. 3D 

points near to the cylinder are hypothesized to be on the trunk and used to determine the 

correct trunk axis using principal component analysis (PCA) (Monnier et al., 2012). 

Finally, the cylinder is aligned with the computed trunk axis and used to search upwards 

for the location of the lowest living branch identified by comparing the distance of each 

3D point to the trunk axis to a preset threshold. The first 3D point further than the 

threshold is taken to indicate the start of the lowest branch. 

PCA find the trunk axis as follows. PCA uses an orthogonal transformation to 

convert a set of observations of possibly correlated variables into a set of values of 

linearly uncorrelated variables called principal components (Monnier et al., 2012). The 



resulting first principal component has the largest possible variance, and each 

succeeding component is orthogonal to the preceding components and has decreasing 

variance (Monnier et al., 2012). For the MLS 3D points of trees, the most variance is 

along the approximately vertical axis of the trunk and the described by the first principal 

component (Bucksch et al., 2009). The two principal components with lower variances 

describe the variation across the trunk perpendicular to the trunk axis. 

3.2 Tree top location in WorldView-2 panchromatic images using ellipsoid 

fitting 

As illustrated in Figure 2(b), the high spatial resolution makes trees in the WV-2 

panchromatic image appear different to that in conventional low spatial resolution 

satellite images. In low resolution satellite images, each crown is typically characterized 

by one bright pixel or a single grouping or cluster of several bright pixels (e.g., Wang et 

al., 2004). In the WV-2 panchromatic image, there can be many isolated bright pixels or 

a number of separate clusters producing many possible crown tops for each tree. 

Thereby, the traditional local maximum seeking methods (Ke and Quackenbush, 2011) 

introduces spurious crown tops. 

However, the spatial distribution of the reflectance for each individual tree still 

follows the mountain-shaped model (Ke and Quackenbush, 2011). Hence, an ellipsoid-

fitting-based tree top location method is proposed here as indicated by the model in 

Figure 2(b). The ellipsoid-characterizing formula is 
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where x and y correspond to the location of each pixel in the image, and z is related to 

the brightness value. The coefficients are determined by least squares fitting (Bertoni, 



2010). The computed variables x0 and y0 of the best fit ellipsoid to the brightness values 

of each crown are the centre of the ellipsoid indicating the location of the tree top.  

3.3 Feature parameters extraction and regression analysis 

As shown in Figure 2(c), it is hard to directly use the crown shapes from the images to 

predict the parameter CH. Instead, some feature parameters capable of describing the 

structural specialties of crowns are extracted as the independent variables for prediction. 

The longest spread (LS) and the longest cross-spread (LCS) as marked in Figure 2(c) 

are used, since they can characterize the long, stout branches which make tree crowns 

asymmetrical, and the dominant branches respectively. Note that although crown spread 

is usually taken independent of trunk position (Blozan, 2006), LS and LCS in this study 

are defined to pass through a tree top. In this way, the outlier errors introduced by some 

branches that are sticking out can be overcome to some extent. In addition, the circle 

with an area the same as the cover of each crown is also determined, and its Equivalent 

Diameter (ED) is calculated as one feature parameter. The ED, in a statistical sense, is 

proposed to handle the issues caused by crown projection shape irregularity. 

Correlation analysis is performed between each of the image-derived feature 

parameter sets and the MLS-derived CH set. Linear regression analysis after 

transformation of the response variable is used to determine their relationships, and the 

degree of correlation assessed using the coefficient of determination R2 (Zar, 2010) and 

the Root Mean Square Error (RMSE) (in its standard deviation form). The fitted 

equations by least squares fitting can then be used as the prediction formulas for 

estimating the CH parameter. 



4. Results 

4.1 Crown heights derived from the MLS data 

The results of CH extraction in the MLS point clouds respectively using the automatic 

cylinder-based algorithm and manually are shown in Figure 3. The mutual CHs present 

certain correlations, as indicated by the output R2 of 0.59. The results show that MLS 

can serve as an efficient field sampling technique for supplying reasonably accurate tree 

attribute training data. 

4.2 Tree tops identified in the WorldView-2 panchromatic image 

The location of the tree top for each individual tree was determined in the WV-2 

panchromatic image using the ellipsoid-fitting algorithm. The reference locations are 

the centres of the corresponding trunks extracted using MLS, as the growth of Pinus 

sylvestris trees tend to be monopodial. Figure 4 shows that the determined tree tops are 

generally biased towards the north-east orientation. The average deviation is 1.96 m, but 

all of the extracted tree tops lie within the boundaries of the corresponding trees. 

4.3 Regression models between longest spread, longest cross-spread, equivalent 

diameter and crown height 

With the tree tops determined above, the parameters of LS and LCS were calculated 

using the PCA-based method. The ED for each crown was also calculated. Their 

correlations with the MLS-derived CHs are shown in Figure 5(a), Figure 5(b) and 

Figure 5(c) respectively. ED gives the best results, while LS gives the worst. LCS is 

better than LS and shows that the LS related long, stout branches which make tree 

crowns appear asymmetrical are unreliable for establishing the metrics for inferring 

other tree attributes. All of the results are low but all positive. The formulas for 



predicting CHs based on the WV-2 panchromatic image are also listed in Figure 5. 

5. Discussion and summary 

The results of automatic CH extraction from MLS data as shown in Figure 3 are 

positive but need to be improved. The reason is that the sampling density of the MLS 

system used was set too low, even though the vehicle was moving at a slow pace of 

approximately 20 kilometres/hour. The distance of 0.5m between any two adjacent scan 

profiles is not enough to represent the structures of branches in detail. This is also one 

of the possible reasons for the 2.42 m offset existing in the formula as listed in Figure 3. 

Another possible reason is that the tiny lowest living branches are easily missed in the 

process of CH automatic extraction, which is not true for manual extraction. The results  

can be improved by increasing the sampling density by making the vehicle travel more 

slowly (if practical so as not to disrupt other traffic), by combining multiple scans or 

vehicle passes, by using multiple scanners, or by carrying out the scanning in the stop-

and-go mode (Lin et al., 2013). 

For the detected tree tops, there is an obvious bias towards the north-east 

direction as shown in Figure 4. The reasons for this are that sun passes from east to west 

to the north in the southern hemisphere and the data collection occurred before noon. In 

addition the prevailing west wind from the Indian Ocean tends to make the crowns in 

Perth easily deviate to the east. Under these conditions, the elevation angle of the sun 

tends to make parts of the tree canopy facing the sun have higher reflectance than the 

real tree top moving the the whole pattern of crown reflectance away from the tree top. 

The temporal model of sunlight incidence variation can be incorporated to rectify this, 

given that the satellite and MLS systems accurately record the time and location of the 

data acquisition for each tree. 



The comparisons Figure 5 indicate that the feature parameter ED in a statistical 

sense is the best choice. This fits experience obtained from the satellite-image-based 

forest inventory studies. That is, although the WV-2 panchromatic images can show 

0.5m GSDs, it is still hard to directly extract the structural parameters of individual trees 

at high accuracies. Instead, satellite-based tree mapping in practice is generally aimed at 

determining the overall tree attributes from the perspective of many trees or large 

coverage. The variable ED acquired from WV-2 panchromatic images is more 

appropriate for CH derivation, and in particular for large areas, samples of high volumes 

can eliminate the effect of relatively-high errors for individual trees. This is promising 

for stem volume estimation (Ozdemir and Karnieli, 2011) in forest management.   

As regards the positive but far-from-perfect performances as shown in Figure 5, 

the above-mentioned discussions for improvements can help. Investigations such as 

proposed by Peper et al., 2001 need to be conducted, such as exploring more 

complicated equations capable of delineating the relationships between CH and ED. 

Tests showed that when transforming the response variable (e.g. by taking logs), R2 can 

be improved (for Figure 5(c) from 0.052 to 0.066). In addition, more refined models 

will benefit from more data acquisition i.e.  more trees to be scanned using more refined 

MLS scanning methods. Many other factors can be taken into account for CH prediction 

improvement. Feature parameters such as texture (Ozdemir and Karnieli, 2011) can be 

extracted and their individual or composite correlations with CH analyzed and 

compared to determine the more accurate CH prediction formulas. Tree competition 

(Contreras et al., 2011) is another element of interest. In fact, for several trees tightly 

clustered together, the tree with the smallest crown width has similar CH as the other 

trees. If this tree is lower than the other trees, it cannot receive enough sunlight. Its 

small size is mainly due to limited crown-expanding space rather than small crown 



height. Thereby, some competition-associated compensation coefficients need to be 

added.  

Overall, this preliminarily has shown the usefulness of the combination of MLS 

and WV-2 panchromatic imaging for tree-level CH estimation in the case of Pinus 

sylvestris trees. MLS proved to be applicable for acquiring the training data for CH, and 

WV-2 panchromatic images suggested the possibility of effective prediction of tree CH, 

or tree structural parameters in a broader sense, for large areas. 
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Table 1. The statistical characteristics of the Pinus sylvestris trees from the MLS data. 

 

 Max Min Mean Std 
Tree height (m) 28.38 17.60 23.68 1.98 

Crown basal area (m2) 23.73 16.66 21.06 1.76 
Crown height (m) 18.95 9.29 14.60 2.05 

 

Figure 1. The WorldView-2 panchromatic image (a) and the MLS-collected point cloud 

(b) of the test site. 

 (a)                                                  (b)    

     

 

Figure 2. Illustrations of (a) Pinus sylvestris tree structure with the structural parameters, 

(b) crown reflectance indicated by pixel brightness, and (c) the coverage and outline of 

a crown in the WorldView-2 image (The acronyms listed in the image are referred to in the 

text). 

 (a)                                              (b)                                        (c) 

     



 

Figure 3. The regression model between the reference crown heights acquired by both 

manual and automatic extraction from the MLS data. 

 

Figure 4. The deviations of the tree top locations inferred from the WorldView-2 image 

compared to the reference ones (reference locations transformed to (0,0)). 

 

  



Figure 5. The regression models between the crown heights (CH) and (a) the longest 

spreads (LS), (b) the longest cross-spreads (LCS), and (c) the equivalent distances (ED).  

 


