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A Dual Parametrization Approach to Nyquist Filter

Design
C.Z. Wu and K.L. Teo, Senior Member

Abstract

In this paper, the optimum design of a factorable Nyquist filter with the intersymbol interference (ISI) being ex-

actly zero is formulated as a nonlinear optimization problem with continuous inequality constraints. A computational

strategy based on iterative scheme combined with an improved dual parametrization method is devised. Trade-off

between robustness to timing jitter and small stopband attenuation is achieved via an adjustment of a parameter.

Some examples are solved using the proposed method.

Index Terms

Nyquist filter, timing jitter, exact intersymbol interference, optimum design, computational strategy

I. INTRODUCTION

The impulse response of a Nyquist filter (also referred to as Mth band filter) is required to be exactly zero at

the Nyquist rate, except for one point. This is to ensure that the intersymbol interference (ISI) is exactly zero. It

has many applications in digital signal processing, such as filter banks, nonuniform sampling, interpolation filters.

As a consequence, the design of such a filter has been extensively studied in the past two decades [1-10].

In the design of a Nyquist filter, it is required to find a set of coefficients such that the corresponding Nyquist

filter will achieve the following conditions. (i) the zero ISI condition is satisfied; (ii) it is robust to timing jitter;

and (iii) it produces small energy in the stopband. In [2], a method based on the periodical nonuniform sampling

theory is developed for the design of this filter. The robustness to timing jitter is achieved through maximizing the

energy in the middle of the impulse response. However, it does not address the nonnegativity requirement of the

frequency response. This requirement is essential for achieving a spectral factorable sequence. In [3], the windowing

method combined with the Remez exchange method is used for the design of this filter, where the robustness to
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timing jitter is achieved by the windowing method. However, the exactly zero crossings cannot be maintained in the

implementation of the Remez exchange algorithm. In [4], the design of a square-root Nyquist filter is considered.

The zero crossings and the robustness to timing jitter are determined based on the ideal target impulse response and

some penalty parameters. However, there is no systematic method that can be used to choose the ideal target such

that the designed filter is robust to timing jitter. In [5], the design of a factorable FIR Nyquist filter is formulated as

a quadratic optimization problem with continuous linear inequality constraints. However, there is no consideration

on the issue relating to the robustness to timing jitter.

In this paper, we consider the design of a factorable Nyquist filter with reference to the three criteria mentioned

above. The exact zero-crossings are achieved by pre-fixing the corresponding filter coefficients to be zero. The

robustness to timing jitter is obtained through minimizing the tail energy of the impulse response while maintaining

the total energy of the impulse response as being a constant. Thus, the optimal design of such a filter can be

formulated as a nonlinear optimization problem with continuous inequality constraints. An iterative scheme is

developed to solve this optimization problem. In each iteration, a quadratic semi-infinite optimization problem

with linear inequality constraints is required to be solved. There are many methods available to solve this type

of semi-infinite optimization problem. Examples include the constraint transcription constraints method [11], the

discritization method [12]. Here, we will develop an improved dual parametrization method based on [14] and [13]

to solve this optimization problem. This approach is much superior to existing methods, such as those reported in

[11], [12] and [15].

II. PROBLEM FORMULATION

Consider the following FIR filter, where the number N of the length of the filter is odd.

H (z) =
N−1
∑

n=0

hnz−n. (1)

If H (z) is an M th band filter, then {hn}
N−1
n=0 satisfies the following conditions:

1) H (z) is a symmetric filter, i.e., hL+k = hL−k, k = 0, 1, · · · , L, where L = (N − 1) /2;

2) Nyquist criterion, i.e.

hn =



















1, n = L

0, n = L + kM, k = ±1, · · · ,±bL/Mc ,

arbitrary, otherwise

(2)

Suppose that the passband and stopband of the M th filter are [0, wp] and [ws, π], respectively. Then, wp and ws

are given by

wp =
(1 − β) π

M
, ws =

(1 + β) π

M
,
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where β, 0 ≤ β ≤ 1, is the roll-off factor. Furthermore, both the passband magnitude and phase error are decided

by the stopband error [6]. Let H
(

ejw
)

= H (w) e−jLw. Then,

H (w) = 1 +
L

∑

k=1

2hL−k cos (kw) = 1 + xT C (w) , (3)

where x = [2hL−1, · · · , 2h0]
T , C (w) = [cos w, · · · , cos (Lw)]T . The stopband energy of this filter is

Es (x) =

∫ π

ws

|H (w)|2 dw = xT T x+ 2pT x + 1, (4)

where T = (tk,l)L×L
is an L × L matrix with its elements tk,l, k, l = 0, 1, · · · , L − 1, given by

tk,l =































1, if k = 0, l = 0,

π − ws − sin ((k + l) ws) / (2 (k + l)) , if k = l,

− sin ((k + l)ws) / (2 (k + l))

− sin ((k − l)ws) / (2 (k − l)) ,
if k 6= l,

while p = [p0, p1, · · · , pL−1]
T with pk = − sin (kws) /k, k = 0, 1, · · · , L − 1. Since H (z) is an M th band filter

and x is determined by its coefficients, we have xkM = 0. We delete those zero elements in x and let the remanning

elements be denoted collectively as x̃ which has L − bL/Mc + 1 elements, where b·c is the floor function. Let

L̃ = L−bL/Mc+1, and let T̃ , C̃ (w) and p̃ be the corresponding reduced versions of T , C (w) and p, respectively.

Then, for an M th band filter, (3) and (4) can be re-written as

H (w) = 1 + x̃T C̃ (w) , (5)

Es (x̃) = x̃T T̃ x̃+ 2p̃T x̃ + 1, (6)

respectively.

Let

Etail =

L̃
∑

k=Mk

x̃2
k, Etotal = 1 + x̃T x̃, (7)

where x̃k is the kth element of x̃, Etail is the tail energy and Etotal is the total energy of the impulse response

of H(z). From [1] and [2], we see that the effect of timing jitter of this Nyquist filter can be reduced through

maximizing the main lobe energy or minimizing the tail energy of the impulse response subject to maintaining the

total energy being a constant. Since we do not know the value of the total energy in advance, the reduction of the

timing jitter effect is to be addressed by minimizing the following function

E0 (x̃) =

L̃
∑

k=M

x̃2
k

1 + x̃T x̃
=

x̃T Rx̃

Etotal

, (8)

where

R =





0M×M

I(L̃−M+1)×(L̃−M+1)



 .
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Now, the optimal design of an M th band filter such that it is robust to timing jitter can be formulated as the

following optimization problem

Problem P1

min
x̃

J (x̃) = x̃T T̃ x̃+ λ
x̃T Rx̃

Etotal

+ 2p̃T x̃ + 1, (9)

subject to the continuous linear inequality constraints

H (w) = 1 + x̃T C̃ (w) ≥ 0, for all w ∈ [ws, π] , (10)

H (w) = 1 + x̃T C̃ (w) ≤ δ (w) , for all w ∈ [ws, π] , (11)

where λ is a weighting factor.

Remark 1: (10) is to ensure that the obtained Nyquist filter H (z) is factorable. This is required, as in many

applications, such as in filterbanks [16], the Nyqusit filter is required to be factorable. (11) is the constraint on

the peak-sidelobe level, where δ (w) is the maximum allowable height of the sidelobe at each frequency in the

stopband.

III. DESIGN PROCEDURE

In Problem P1, we are seeking to optimize J(x̃) with respect to x̃. However, Etotal is not available at each

frequency in the stopband in the current iteration. In our design procedure, we estimate Etotal by using x̃ obtained in

the previous iteration. Our numerical experience shows that this design strategy is effective. The iterative procedure

can now be stated as follows. Let x̃(k) denote the x̃ obtained in the kth iteration. Then

Jk

(

x̃(k)
)

=
(

x̃(k)
)T

T̃ x̃(k) (12)

+
λ

(

x̃(k−1)
)T

x̃(k−1)

(

x̃(k)
)T

Rx̃(k) + 2p̃T x̃(k) + 1.

Since x̃(k−1) is known in the kth iteration, the cost function Jk

(

x̃(k)
)

is in a quadratic form in terms of x̃(k).

Thus, in the kth iteration, we only need to solve the following linear quadratic semi-infinite programming problem.

Problem P2

min
x̃

J (x̃) = x̃T Qx̃ + 2p̃T x̃ + 1 (13)

subject to the constraints

−x̃T C̃ (w) ≤ 1, for all w ∈ [ws, π] , (14)

x̃T C̃ (w) ≤ δ (w) − 1, for all w ∈ [ws, π] , (15)

where λ̃ = λ/
(

x̃(k−1)
)T

x̃(k−1), and Q = T̃ + λ̃R is a symmetric positive definite matrix.

Problem P2 is a linear quadratic semi-infinite optimization problem. There are many numerical methods available

for solving this class of problems, such as the constraint transcription method (see [11]), the discritization method,



5

(see [12]), and the dual parametrization techniques (see [13] and [14]). In this paper, we combine the methods in

[13] and [14], forming an improved method. Let us introduce the Dorn’s dual of Problem P2 given below.

Problem DP:

min
x̃,v

x̃T Q x̃+

∫ π

ws

[1, δ (w) − 1] d [v1 (w) , v2 (w)]T ,

s.t. 2Q x̃ + 2p̃T +

∫ π

ws

C̃ (w) d (v2 (w) − v1 (w)) = 0

v =





v1

v2



 ∈ M+ ([ws, π]) , x̃ ∈ R
L̃+1,

where M+ ([ws, π]) denotes the set of nonnegative bounded regular Borel measures on [ws, π], v = [v1, v2]
T .

A discretized version of Problem DP with k active constraints is defined as follows.

Problem DPk

min
x̃,µ,w

x̃T Q x̃+

k
∑

i=1

(µi,1 + µi,2 (δ (wi) − 1)) , (16)

s.t. 2Qx̃ + +2p̃T +

k
∑

i=1

C̃ (wi) (µi,2 − µi,1) = 0 (17)

µi =





µi,1

µi,2



 ≥ 0, i = 1, · · · , k. (18)

Let µ = (µi,1, µi,2, · · · , µk,1, µk,2) and w = (w1, w2, · · · , wk) . It has been shown [13] that if x̃∗ is the optimal

solution of Problem P2, then there exists a measure v∗ which has finite support of no more than L̃ + 1 points

such that (x̃∗,v∗) is an optimal solution of Problem DP. Based on this, an iterative procedure is proposed. In each

iteration, the points which are violating the constraints (14) and (15) with respect to the current x̃ are adaptively

chosen from [ws, π]. Let these points be referred to collectively as w. Then, Problem DPk with such an w is

just a quadratic optimization problem with L̃ equality constraints (i.e., constraints (17)). It can be solved easily.

This process is repeated. However, the number of elements in w may become very large after some iterations.

To overcome this, a novel method is developed in [14], where in each iteration, the number of the active points

is restricted to be L̃ + 2. However, this method is not efficient for cases when the number of the required active

points is far smaller than the dimension of the decision vector to be minimized. In this paper, these two methods

are combined, forming an improved method for solving Problem P2. First, we use the adaptive scheme in [13]

to solve Problem DPk. When the number of active points is increased to L̃ + 3, we then change over to use the

method in [14] to choose L̃ + 2 points from these L̃ + 3 active points such that the optimal solution x̃ of Problem

DPk with k = L̃ + 2 is the same as that of Problem DPk with k = L̃ + 3. This procedure is stated as follows.

Algorithm 1:

Step 1 Set x̃(0) as an initial point, ε > 0 as a small number, ∆i = {wi,j ∈ [ws, π] : j = 1, · · · , ki}, i = 1, · · · , as a
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sequence of parametrization sets, satisfying

max
w∈[ws,π]

min
w′∈∆i

∣

∣w − w′
∣

∣ → 0 as i → ∞.

Step 2 Let E0 = φ. Set i = 0.

Step 3 Set i = i + 1. If the number of points in Vi is less than L̃ + 3, go to Step 4. Otherwise, let Ei = Vi and go

to Step 5.

Step 4 Let

Vi =

{

w ∈ ∆i| −
(

x̃(i−1)
)T

C̃ (w) ≥ 0,

(

x̃(i−1)
)T

C̃ (w) − δ (w) ≥ 0

}

∪ Ei−1.

Solve Problem DPk with w = Vi to obtain a solution
(

x̃(i),µ(i)
)

. Check the feasibility of x̃(i) to Problem

P2. If it is feasible, go to Step 8. Otherwise, set

Ei =

{

w ∈ ∆i| −
(

x̃(i−1)
)T

C̃ (w) = 0,

(

x̃(i−1)
)T

C̃ (w) − δ (w) = 0

}

and go to Step 3.

Step 5 Set i = i + 1. Find wi ∈ ∆i such that

zi = arg max
w∈∆i

{

−
(

x̃(i−1)
)T

C̃ (w) ,

(

x̃(i−1)
)T

C̃ (w) − δ (w)

}

.

If

max
w∈∆i

{

−
(

x̃(i−1)
)T

C̃ (w) ,
(

x̃(i−1)
)T

C̃ (w) − δ (w)

}

< ε,

set

Zi = Ei−1,
(

x̃ (i) ,v(i)
)

=
(

x̃(i−1),v(i−1)
)

, Ei = Ei−1,

and repeat Step 5.

Else, set

Zi = {zi} ∪ Ei−1, Ei = {zi} ∪ Ei−1

End

Step 6 Solve Problem DPk with w = Zi to obtain a solution
(

x̃(i),µ(i)
)

. Check the feasibility of x̃(i) to Problem

P2. If it is feasible, go to Step 8. Otherwise, go to Step 7.

Step 7 Choose a set Ei ⊂ Zi with no more than L̃ + 2 points such that the solution of Problem DPi is in the form

of
(

x̃(i),µ(i)
)

. Go to Step 5.
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Step 8 Find a local minimum (x̃∗,µ∗, w∗) for Problem DPk starting from
(

x̃(i),µ(i),Ei

)

. Then, x̃∗ is taken as

the solution for Problem P2.

Remark 2: Step 7 is achieved through solving the Phase 1 of a linear program using the simplex method. For

details, see Lemma 3.1 in [14].

In Algorithm 1, ε > 0 is the tolerance. The set Zi is restricted to be a set with L̃ + 2 points through the

implementation of Step 7. Thus, a semi-infinite optimization problem P2 is solved by solving a sequence of quadratic

programming problems with L̃ linear equality constraints where their dimensions are not exceeding 3L̃ + 10. The

current version of the dual parametrization method makes use of the superior features of the dual parametrization

methods reported in [13] and [14]. The convergence of the algorithm can be proved similarly as that given for

Theorem 3.1 in [14].

Now, Problem P1 can be solved by the following iterative scheme.

Algorithm 2:

Step 1 Set ε to be a small number and k = 1. Use Algorithm 1 to solve Problem P1 with λ = 0 and denote the

obtained solution as x̃(0).

Step 2 Solve Problem P2 with λ̃ = λ/
(

x̃(k−1)
)T

x̃(k−1) by Algorithm 1 and denote the obtained solution as x̃(k).

Go to Step 3.

Step 3 If
∥

∥

∥
x̃(k) − x̃(k−1)

∥

∥

∥
≤ ε, stop and x̃(k) is regarded as the optimal solution. Otherwise, set k = k + 1 and go

to Step 2.

IV. NUMERICAL EXPERIMENTS

Let us first consider the case for which no requirement is imposed on the robustness to timing jitter, i.e., λ = 0

in (9). Since Problem P1 with λ = 0 is a semi-infinite quadratic optimization problem with linear constraints, it

can be solved by Algorithm 1. Let N = 109, M = 5, δ = 2× 10−4, β = 0.25. We use the discritization method in

[15], which is used in [5], and our method to solve this problem. All the elements of the initial point x̃(0) are set to

be 1. After 6 iterations, the optimal cost obtained by our method is −170.6404 dB with only two active constraints.

From (7), we know that the ratios of the tail energy to the total energy is 10log(Etail/Etotal) = −12.257 dB. The

simulations are implemented in a computer with Intel Core Duo CPU E6850 3.00 GHz and RAM 2 GB. The run

time for our method and that for the method in [15] are, respective, 0.063324 seconds and 1.987125 seconds. The

magnitudes and the zoom magnitudes in the stopband by our method and the method in [15] are depicted in Fig.1

and Fig. 2, respectively. From the obtained results, we observe that there is a significant improvement in the results

obtained by our method over those obtained by the method in [15].

The trade-off between the stopband energy of the designed filter and its robustness to timing jitter is achieved

by tuning λ. If λ is large, then the designed filter will posses a good robustness to timing jitter but with a larger

stopband energy. On the other hand, if λ is small, the designed filter will have a small stopband energy but will be

more sensitive to timing jitter. To see this, we use our method to design Nyquist filters with λ = 0.5 and λ = 2. In
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each case, their optimal results are obtained after 2 times of calling Algorithm 2. The ratios of their tail energy to

the total energy are −18.056 dB and −37.909 dB, respectively. The filter coefficients with λ = 0, 0.5 and λ = 2,

are depicted in Fig. 3 and Fig. 4 and their magnitudes are depicted in Fig. 5. The corresponding eye diagrams

are given in Fig. 6, Fig. 7 and Fig. 8. From the results obtained, we see that as λ is increased, the filter becomes

more robustness to timing jitter, but with larger stopband energy. Therefore, by varying λ, the proposed method

can balance the sensitivity to the timing jitter against the stopband attenuation.
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Discritization method
Our proposed method

Fig. 1. The magnitudes response obtained by our method (solid line) and method in [15] (dot line)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−170

−160

−150

−140

−130

−120

−110

−100

−90

−80

−70

 

 

Discritization method
Our proposed method

Fig. 2. The zoom magnitudes obtained by our method (solid line) and method in [15] (dot line)

Let N = 29, M = 5, β = 0.25. First, the “rcosine” function in Matlab 7.1 is used to design the raised

cosine function. The obtained ratio of the tail energy to the total energy is −17.151 dB and the obtained stopband

attenuation is more than 0.01 dB. We set δ = 0.01 and use our method to design the filter with λ = 0.01. The

obtained ratio of the tail energy to the total energy is −20.199 dB. Thus, the filter obtained by our method is more

robust to timing jitter than the raised cosine filter. All the results are depicted in Fig. 9 and Fig. 10. From Fig.

10, we observe that the stopband attenuation has a significant improvement over that of the raised cosine function

while achieving, at the same time, the improved robustness to timing jitter.
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Fig. 3. The filter coefficients with λ = 0, 0.5, and λ = 2
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Fig. 4. The zoom filter coefficients with λ = 0, 0.5, and λ = 2
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Fig. 5. The magnitude response with λ = 0, 0.5, and λ = 2 (in dB)



10

1 2 3 4 5 6 7 8 9 10 11
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 6. The eye diagram with λ = 0
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Fig. 7. The eye diagram with λ = 0.5

V. CONCLUSION

In this paper, the design of a Nyquist filter satisfying the exact ISI condition, while maximizing the robustness to

timing jitter is formulated as a nonlinear optimization problem with continuous inequality constraints. An efficient

method combining an iterative scheme and dual parametrization techniques is developed. The trade-off between the

robustness to timing jitter and the stopband attenuation is achieved by varying λ. The simulation results show that

our method is very effective.
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