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Abstract 

This paper attempts to explore the determinants of CO2 emissions using the STIRPAT model 

and data from 1980 to 2011 for OECD countries. The empirical results show that non-

renewable energy consumption increases CO2 emissions, whereas renewable energy 

consumption decreases CO2 emissions. Further, the results support the existence of an 

Environmental Kuznets Curve between urbanisation and CO2 emissions, implying that at 

higher levels of urbanisation, the environmental impact decreases. Therefore, the overall 

evidence suggests that policy makers should focus on urban planning as well as clean energy 

development to make substantial contributions to both reducing non-renewable energy use 

and mitigating climate change. 

Keywords: Renewable energy consumption, Non-renewable energy consumption, 

CO2 emissions, Urbanisation, STIRPAT model 

JEL classification: C23, C33, Q21, Q43, Q48 

 

 

*Corresponding author: Associate Professor Ruhul Salim, School of Economics & Finance, Curtin 

Business School, Curtin University, Perth, WA 6102. Phone: +61 8 9266 4577, Fax: +61 8 9266 3026, 

E-mail: Ruhul.Salim@cbs.curtin.edu.au 

 

mailto:Ruhul.Salim@cbs.curtin.edu.au


2 
 

NON-RENEWABLE AND RENEWABLE ENERGY CONSUMPTION AND 

CO2 EMISSIONS IN OECD COUNTRIES: A COMPARATIVE ANALYSIS 

1. Introduction 

The OECD countries enjoy energy-led growth and remain the largest energy 

consuming countries with 41% of the total global energy consumption (Duffour, 

2012). Major portion of this energy supply comes from conventional non-renewable 

sources such as coal, oil and natural gas. As a result, there is a sharp increase in 

carbon dioxide (CO2) emission in the atmosphere which is considered to be the main 

source of greenhouse gas (GHG) effect that led to environmental degradation. Thus, 

the climate change intimidation and the increasing threat of global warming raise 

worldwide concerns and impose serious social and political pressure to curb 

emissions. Most OECD countries signed Kyoto Protocol to reduce their overall 

greenhouse gas emissions by an average of at least 5.2 % below their 1990 levels in 

the five years after 2008. Therefore, to combat climate change and to secure & 

diversify the supply of energy mix there has been heightened interest in renewable 

energy sources in OECD countries in recent years. This growing interest has been 

supported by various government incentive policies such as feed-in tariff, subsidies 

for renewable technologies, tax rebate and so on. As a result, the share of renewables 

in total power generation exceeds 20 per cent in OECD countries in 2011 (Duffour, 

2012). Hence, identifying the relationship between renewable and non-renewable 

energy consumption and pollutant emission is worth academic investigation. 

Human activities involving the combustion of fossil fuels and the burning of 

biomass, produce GHGs that affect the composition of the atmosphere and the global 

climate (IPCC 2001). These activities constantly increase with the rapid pace of 

industrialisation and urbanisation in recent decades, which ultimately cause serious 

damage to environment through energy consumption. In addition, expansion in 

service industries, which is the result of economic development, can increase energy 

demand and consequently leads to pollutant emissions. Therefore, the aim of this 

article is to identify the determinants of pollutant emission by using a statistical 

model, namely STIRPAT (Stochastic Impacts by Regression on Population, 

Affluence, and Technology) using data over the period of 1980-2011 from the OECD 

countries. 
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Numerous studies have dealt with the relationship between energy 

consumption and pollutant emissions. These studies have been performed in different 

countries and with various modelling methods, approaches and findings. However, 

only a few studies have investigated the relationship between disaggregated energy 

consumption and CO2 emissions. No consensus has emerged from these studies. 

Therefore, the focus of this article is to contribute further to this literature by using 

disaggregated energy consumption (renewable and non-renewable) and comparing the 

effects of renewable and non-renewable energy consumption on CO2 emissions. To 

the best of authors’ knowledge, this is one of the first studies to simultaneously 

investigate the effects of renewable and non-renewable energy consumption on CO2 

emissions using the STIRPAT model. Additionally, this article also investigates the 

relationship between urbanisation and CO2 emissions by emphasising the 

Environmental Kuznets Curve (EKC) hypothesis. 

The rest of the article is organised as follows: Section 2 provides a critical review 

of the existing literature. Section 3 presents the research methodology, including 

model specification and the estimation strategy. The empirical results are reported in 

Section 4. Finally, Section 5 concludes the article. 

2. A Critical Review of the Literature 

2.1 Renewable Energy Consumption, Economic Growth and CO2 Emissions 

The relationships between economic growth and pollutant emissions and between 

economic growth and energy consumption, in addition to the combination of these 

two nexuses in a single framework, have been investigated extensively. However, 

limited research has been conducted on the nexus between renewable energy sources, 

economic growth and pollutant emissions. 

Sadorsky (2009) finds that in the long run, real GDP per capita and the CO2 

emissions per capita had positive effects on renewable energy consumption in the G7 

countries from 1980 to 2005. Apergis et al. (2010) demonstrate that in the short run, 

nuclear energy consumption reduces CO2 emissions, whereas renewable energy 

consumption does not contribute to reductions in emissions. These authors note that 

the latter result may be due to the limited proportion of renewable energy in total 

energy consumption. In the case of the US, Menyah and Wolde-Rufael (2010) find 

that although there was no causality from renewable energy consumption to CO2 

emissions, there was unidirectional causality from CO2 emissions to renewable energy 
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consumption over the period from 1960 to 2007. Salim and Rafiq (2012) investigate 

the relationship between CO2 emissions and renewable energy consumption, 

controlling for income and oil prices. The long-run results obtained using the dynamic 

OLS and fully modified OLS methods show that CO2 and income are the major 

determinants of renewable energy consumption in Brazil, China, India and Indonesia. 

For these countries, a bidirectional causal relationship is also found between 

renewable energy consumption and CO2 emissions in the short run. The results also 

indicate that there is bidirectional relationship between income and CO2 emissions in 

Brazil, China and Turkey. Using the Toda-Yamamoto procedure over the period from 

1949 to 2009 for the US, Payne (2012) reveals that real GDP and CO2 emissions do 

not have causal effects on renewable energy consumption. However, unexpected 

shocks to real GDP and CO2 emissions positively affect renewable energy 

consumption over time. 

2.2 Review of Empirical Works Based on the STIRPAT Model 

The STIRPAT method has been applied by several scientists to investigate the effects 

of driving forces on pollutant emissions. For instance, York et al. (2003a) study a 

non-linear relationship between emissions and factors such as population, 

urbanisation and economic growth for 142 nations and find a positive relationship 

between emissions and the independent variables. In a similar study, York et al. 

(2003b) conclude that the elasticity of CO2 emissions with respect to population is 

close to unity. Shi (2003) finds a direct relationship between population changes and 

emissions in 93 countries over the period from 1975 to 1996. Using a sample of 86 

countries during the period from 1971 to 1998, Cole and Neumayer (2004) study the 

effects of population size and several other demographic factors, including age 

composition, the urbanisation rate and the average household size, on CO2 and 

sulphur dioxide (SO2) emissions. The results indicate that there is a U-shaped 

association between population size and SO2 and a positive association between the 

urbanisation rate and CO2 emissions. Moreover, a higher average household size is 

found to decrease emissions. In contrast, a negative relationship between urbanisation 

and CO2 emissions is found by Fan et al. (2006) for developed countries over the 

period 1975 to 2000. The same result is obtained by Martínez-Zarzoso et al. (2007). 

These authors analyse the determinants of CO2 emissions during the period of 1975 to 
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2003 and demonstrate that although the elasticity of emission-urbanisation is positive 

in low-income countries, it is negative in middle upper and high income countries. 

Lin et al. (2009) add urbanisation and industrialisation factors to the basic model 

and name the new model STIRPUrlnAT. These authors use this revised model to 

analyse environmental impacts in China from 1978 to 2006 and find that the 

population had the largest potential effect on environmental impact, followed by the 

urbanisation level, the industrialisation level, GDP per capita and the energy intensity. 

Similar to the study of Fan et al. (2006), a study by Poumanyvong and Kaneko (2010) 

considers different development stages and provides evidence of positive effects of 

population, affluence and urbanisation on CO2 emissions for all income groups, low, 

middle and high. Considering aggregate CO2 emissions and CO2 emissions from 

transport for 17 developed countries covering the period from 1960 to 2005, Liddle 

and Lung (2010) reveal that the total population and economic growth positively 

influence these two types of emissions. However, urbanisation has a positive and 

significant impact on only CO2 emissions from transport. When improving this study 

by performing unit root and cointegration tests, Liddle (2011) finds positive 

associations between GDP per capita and CO2 emissions from transport and between 

the total population and CO2 from transport. Using a panel of 29 provinces in China 

from 1995 to 2010, Zhang and Lin (2012) show that population, affluence, 

industrialisation and energy intensity increase CO2 emissions for the whole sample, 

whereas the results are different across the different regions. 

2.3 CO2 Emissions, Urbanisation and Income: The Environmental Kuznets Curve 

(EKC) Hypothesis 

Empirical studies related to the link between environmental degradation and 

economic activities usually refer to the Environmental Kuznets Curve (EKC) 

hypothesis, which suggests that there is an inverted U-shaped relationship between 

pollutant emissions and income per capita. A large number of studies have tested the 

economic growth and environmental pollution nexus (Selden and Song 1994; 

Grossman and Krueger 1995; Galeotti and Lanza 1999; Halicioglu 2009; Kearsley 

and Riddel 2010 and so on). Some of these studies have focused on developed 

countries. For instance, Dijkgraaf and Vollebergh (2001) find a statistically significant 

turning point and confirm the inverted U EKC pattern for 11 out of 24 OECD 

countries. Martínez-Zarzoso and Bengochea-Morancho (2004) analyse 22 OECD 
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countries using a pooled mean group estimator and provide evidence of an N-shaped 

relationship for the majority of these countries. In contrast, Liu (2005) studies 24 

OECD nations using panel data and finds that the EKC exists for CO2 emissions. 

Similarly, the evidence supporting the EKC is found by Galeotti et al. (2006) for the 

OECD countries from 1950 to 1998. Canas et al. (2003) also find an inverted U-

shaped EKC relationship for 16 industrialised countries for the period from 1960 to 

1998. 

Considering nuclear power generation, Richmond and Kaufman (2006) 

investigate the EKC for CO2 using panel data for OECD countries and note that there 

is limited support for the EKC in the case of OECD countries. Iwata et al. (2010) also 

take into account nuclear energy and find poor evidence in support of the EKC 

hypothesis in the cases of 11 OECD countries.  

Recently, a few studies have examined the EKC hypothesis in terms of the 

relationship between pollutant emissions and urbanisation. For instance, York et al. 

(2003b) find that there is no evidence of the EKC for total CO2 emissions and 

urbanisation in 142 nations in the year 1996. For developing countries during the 

period from 1975 to 2003, Martínez-Zarzoso and Maruotti (2011) confirm the 

existence of an inverted U-shaped relationship between CO2 emissions and 

urbanisation, indicating that urbanisation at higher levels contributes to reductions in 

environmental damage. Using a semi-parametric model, Zhu et al. (2012) find little 

evidence in support of an inverted U-shaped relationship between CO2 emissions and 

urbanisation in a sample of 20 emerging countries over the period from 1992 to 2008.  

The general observation from the literature is that although the relationships 

between energy consumption, emissions and economic growth are widely discussed, 

the results are still inconclusive. Most studies are criticised regarding the validity of 

the estimated coefficients and their elasticities because the tests used are not based on 

an appropriate quantitative framework. For example, studies fail to take into account 

the diagnostic statistics and specification tests that are necessary to obtain unbiased 

and consistent regression results.  

This article differs from the existing studies in a number of ways. First, it 

estimates the long-run and short-run impacts of both renewable and non-renewable 

energy consumption on CO2 emissions simultaneously. Second, it investigates the 

relationship between CO2 emissions and urbanisation using the EKC hypothesis, an 

analysis that has not been previously performed for the OECD countries. Third, this 
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study controls for the results of the diagnostic and specification tests, which have been 

seldom considered in previous works. Finally, it makes use of recent panel data 

techniques that allow the analysis of heterogeneous unobserved parameters and cross-

sectional dependence.  

3.  Research Method 

3.1 Model Specification 

The IPAT identity is a widely recognised formula for analysing the effects of human 

activities on the environment (Stern et al. 1992; Harrison and Pearce 2000). Ehrlich 

and Holdren (1971) and Holdren and Ehrlich (1974) introduced the IPAT identity 

based on the principal driving forces of anthropogenic environmental impacts in the 

early 1970s. It has been widely utilised as a framework for analysing the driving 

forces of environmental change (Raskin 1995; York et al. 2002). The IPAT identity 

specifies that environmental impacts (I) are the multiplicative product of three key 

driving forces: population (P), affluence (A) (per capita consumption or production) 

and technology (T) (impact per unit of consumption or production); hence, I = PAT 

(Ehrlich and Holdren 1971; Ehrlich and Ehrlich 1990; Raskin 1995; York et al. 

2003b). The strengths of the IPAT identity are that it specifies key driving forces 

behind environmental change with parsimony, and further, it defines mathematically 

the relationship between the driving forces and impacts (Dietz and Rosa 1997, York et 

al. 2003b).  

Waggoner and Ausubel (2002) introduce another approach based on the IPAT 

identity, namely ImPACT. In the ImPACT model, T is disaggregated into 

consumption per unit of GDP (C) and impact per unit of consumption (T) so that I = 

PACT. Another extension of IPAT has been suggested by Schulze (2002), who added 

the factor behaviour (B) to this identity, giving I = PBAT. However, Diesendorf 

(2002) and Roca (2002) note that behaviour is already included in each factor in the 

right-hand side of the equation of I = PAT. In addition, behaviour is not an easily 

measurable quantity.  

Despite the fact that IPAT and ImPACT are parsimonious and flexible and 

easily indicate the effects of driving forces on environmental conditions, they suffer 

from several limitations. IPAT and ImPACT assume proportionality between the key 

determinant factors, meaning that when changing one factor, the others should be held 
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constant. Furthermore, these models do not allow for non-monotonic or non-

proportional effects of the driving forces (York et al. 2003b).  

To overcome these limitations, Dietz and Rosa (1994, 1997) present a new model, 

STIRPAT (STochastic Impacts by Regression on Population, Affluence, and 

Technology). This model is no longer an accounting equation, and therefore, it can be 

used to test hypotheses empirically. STIRPAT has the following basic form:  

i

d

i

c

i

b

ii eTAPI         (1) 

Taking the natural logarithm of both sides: 

      ititititit eTdAcPbI lnlnlnlnlnln     (2) 

where α represents a constant; b, c and d are the exponents of P, A and T, which 

indicate, respectively, the effects of population elasticity, affluence elasticity and 

technology elasticity; e is the error term; and t denotes the year. The subscript i 

illustrates the differences between the quantities I, P, A, T and e across observational 

units. 

In this paper, three different models are used to estimate the effects of 

different variables on CO2 emissions. In the first model (Model I), the relationship 

between CO2 emissions and renewable and non-renewable energy consumption is 

investigated. According to York et al. (2003b), additional factors can be entered into 

the basic STIRPAT model as components of the technology term (T). Because T is 

basically considered to be the environmental impact per unit of economic activity, in 

this study, T is disaggregated into two factors that denote the difference in the 

economic structure of each country in terms of the type of energy used: renewable 

energy and non-renewable energy. Therefore, T represents renewable energy use and 

non-renewable energy use as follows: 

          itititititit eNRAPCO 1432102 lnlnlnlnlnlnln    (3) 

where P, A, R and N denote the total population size, GDP per capita, renewable 

energy consumption and non-renewable energy consumption, respectively. e is the 

error term. The subscript i refers to countries, and t denotes the year.  
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In the second model (Model II), the effects of the total population, GDP per 

capita, industrialisation, the contribution of the service sector to GDP, population 

density and urbanisation are examined. Thus, the second model is given by: 

         

    ititit

ititititit

ePDbUb

SbINDbAbPbbCO

265

432102

lnlnln

lnlnlnlnlnln




  (4) 

In this equation, P is the total population size, A is GDP per capita, IND is the 

contribution of the industry sector to GDP (industrialisation), S is the contribution of 

the service sector to GDP, PD is the population density and U is urbanisation. 

The purpose of the third model (Model III) is to examine the relationship 

between CO2 emissions, urbanisation and income using the EKC hypothesis. 

Following Martínez-Zarzoso and Maruotti (2011), the squared terms of affluence and 

urbanisation are added to the basic STIRPAT model, and energy intensity is used as a 

proxy for technology (T). The model is as follows: 

         

    ititit

ititititit

eEIcUc

UcAcAcPccCO

36

2

5

4

2

32102

lnlnln

lnlnlnlnlnln




 (5) 

In the above equation, P is the total population size, A is GDP per capita, A
2 

denotes the squared term of GDP per capita, U is urbanisation, U
2 

denotes the squared 

term of urbanisation and EI is the energy intensity. 

3.2 Causality Analysis 

Next, the Generalised Method of Moments (GMM) method is employed to examine 

the long-run and short-run Granger causalities between CO2 emissions total 

population, population density, GDP per capita, urbanisation, industrialisation, the 

contribution of services to GDP and renewable and non-renewable energy 

consumption. The residuals, obtained using the long-run estimates in Model I and 

Model II, are used as dynamic error correction terms. The causality relationship 

between the variables is tested based on the following equations, considering each 

variable in turn as a dependent variable for each model. 
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 (7) 

In the above equations, CO2 is total carbon dioxide, N is non-renewable energy 

consumption, R is renewable energy consumption, P is the total population size, A is 

GDP per capita, IND is the contribution of the industry sector to GDP, S is the 

contribution of the service sector to GDP, PD is the population density and U is 

urbanisation. The next section presents the estimation of the long-run panel elasticities 

of CO2 emissions and identifies dynamic causal relationships between the variables. 

For this purpose, the results of the unit root and cointegration tests are provided. 

3.3 Data Description 

Annual data for a set of 29 OECD countries 
1
 covering the period from 1980 to 2011 

are collected for CO2 emissions, renewable energy consumption, non-renewable 

energy consumption, GDP per capita, urbanisation, total population size, 

industrialisation, the contribution of the service sector to GDP and population density. 

CO2 refers to total carbon dioxide emissions that come from the consumption of 

energy in millions of metric tons. Energy intensity is measured as the total primary 

energy consumption in quadrillion Btu divided by GDP (year 2005 U.S. Dollars, 

Purchasing Power Parities). According to the Energy Information Administration 

(EIA), non-renewable energy sources include coal and coal products, oil and natural 

gas. Therefore, in this study, non-renewable energy consumption is measured as the 

aggregate of the consumption of all these sources in quadrillion Btu. Renewable 

energy consumption, in quadrillion Btu, includes the consumption of energy from 

wood, waste, geothermal sources, wind, photovoltaic cells and solar thermal sources. 

                                                           
1
 The 29 sample countries are Australia, Austria, Belgium, Canada, Chile, Denmark, Finland, France, 

Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, South Korea, Luxembourg, Mexico, the 

Netherlands, New Zealand, Norway, Poland, Portugal, Spain, Sweden, Switzerland, Turkey, the United 

Kingdom and the United States. 



11 
 

The data for CO2 emissions, energy intensity and renewable and non-renewable 

energy are sourced from the U.S. Energy Information Administration. 

The total population is taken to be the midyear population size, and GDP per capita 

(US$ in PPP, year 2000 prices) is the gross domestic product divided by the midyear 

population. Urbanisation is generally measured as the percentage of the population 

living in urban areas. Therefore, the urban population (% of the total) is applied as a 

reliable proxy for urbanisation. The measure of industrialisation is constructed as the 

value of the gross domestic production created in the industrial sector, that is, 

industrial value added as % of GDP is considered here as a proxy for industrialisation. 

Industrial value added comprises value added by mining, manufacturing (also 

reported as a separate subgroup), construction, electricity, water and gas. Service 

sector value added, as a percentage of GDP, is considered a proxy for the contribution 

of the service sector to GDP. Services include wholesale and retail trade (including 

hotels and restaurants), transport and government, financial, professional and personal 

services such as education, health care and real estate services. Also included are 

imputed bank service charges, import duties and any statistical discrepancies noted by 

national compilers as well as discrepancies arising from rescaling. According to 

World Development Indicators, the population density is defined as the number of 

people living per square kilometre of land area. All the data are sourced from the 

World Bank’s World Development Indicators. All variables are converted into natural 

logarithms prior to conducting the analysis. 

3.4 Estimation Strategy 

To explore the dynamics of the relationships between both energy and demographic 

and economic factors and CO2 emissions, the following steps are performed. First, the 

existence of a unit root in each variable is tested. Then, if the variables contain unit 

roots, the long-run cointegration relationship between the variables in each model is 

examined. If the variables are cointegrated, the final step is to detect the direction of 

causality between the variables by applying the panel vector error correction model. 

Before selecting an appropriate estimator to examine the long-run estimates of 

CO2 emissions, it is important to perform diagnostic tests, including the cross-

sectional dependence, heteroskedasticity and serial correlation tests. The results for all 

three models indicate the existence of cross-sectional dependence, heteroskedasticity 
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and serial correlation among the variables in the three models.
 2

 To address this issue, 

a recently developed approach, the Augmented Mean Group (AMG) estimator 

developed by Eberhardt and Teal (2011), is applied. This estimator accounts for the 

effects of common shocks by including a “common dynamic process”. 

4. Empirical Analysis and Results 

4.1 Panel Unit Root and Cointegration Tests 

The results of the unit root test without structural breaks for the variables are reported 

in Table 1. The results of the unit root tests (without structural breaks), including the 

tests of Dickey and Fuller (1979) (ADF), Phillips and Perron (1988) (PP), Breitung 

(2000), Levin et al. (2002) (LLC) and Im et al. (2003) (IPS), for CO2 emissions, 

energy intensity and the quadratic terms of GDP per capita and urbanisation show that 

the variables contain unit roots at their levels, implying that the variables are not 

stationary. There is an exception for the variable representing CO2 emissions in the 

Breitung test, indicating that this variable is significant at the 5% level. All the 

coefficients for the first differences of the variables are significant at the 1% level, 

implying that all the variables are stationary at their first difference (Table 1). The 

results of the panel unit root tests with structural breaks following Carrion-i-Silvestre 

et al. (2005) (Table 2) show that the statistics reject the null hypothesis of stationarity 

for the variables when using both the homogeneous and heterogeneous long-run 

versions of the test. 
3
 

Overall, the results of the panel unit root tests with and without structural 

breaks for all the variables confirm that the level values of all the series are non-

stationary and that all the variables are stationary at the first difference; that is, all 

variables are integrated of order one. Consequently, panel cointegration tests can be 

employed to study the long-run equilibrium process. 

The panel cointegration tests of Westerlund (2007) and Johansen Fisher 

proposed by Maddala and Wu (1999) are applied to the three models. The results of 

the Johansen Fisher panel cointegration test from both a trace test and a maximum 

                                                           
2
 The results of all these tests are not provided here to conserve space, but they can be obtained from 

the authors upon request. 

3
 The country-by-country tests with multiple breaks, allowing for a maximum of five breaks, are also 

calculated using Monte Carlo simulations based on 20,000 replications. The results are not provided 

here to save space, but they can be obtained from the authors upon request. 
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eigen value test indicate the existence of cointegration at the 1% significance level for 

each of the models (Table 3). The results of the Westerlund (2007) cointegration test 

are reported in Table 4. It can be observed that group-t and panel-t reject the null 

hypothesis of no cointegration in the three models. Therefore, the overall evidence 

from the Johansen Fisher and Westerlund (2007) tests for cointegration shows that 

there is a long-run relationship between the dependent and independent variables. The 

next subsection addresses this issue. 
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Table 1: Panel unit root tests without structural breaks for the variables used in Models I, II and III 

Method LR LN LCO2 LP LA LIND LS LU LPD LA
2
 LU

2
 LEI 

ADF             

Level 66.246 

(0.213) 

59.896 

(0.406) 

62.571 

(0.317) 

4.271 

(1.000) 

70.889 

(0.119) 

52.890 

(0.665) 

47.070 

(0.847) 

62.787 

(0.310) 

44.106 

(0.911) 

70.905 

(0.119) 

62.764 

(0.311) 

67.418 

(0.186) 

First 

difference 

576.129 

(0.000)*** 

476.156 

(0.000)*** 

436.893 

(0.000)*** 

-4.739 

(0.000)*** 

164.514 

(0.000)*** 

288.792 

(0.000)*** 

221.686 

(0.000)*** 

80.649 

(0.026)** 

136.584 

(0.000)*** 

164.650 

(0.000)*** 

88.125 

(0.006)*** 

220.532 

(0.000)*** 

PP             

Level 18.682 

(1.000) 

72.556 

(0.094)* 

63.448 

(0.290) 

16.738 

(1.000) 

33.266 

(0.996) 

31.542 

(0.998) 

38.933 

(0.074)* 

0.318 

(1.000) 

 31.097 

(0.998) 

33.272 

(0.996) 

46.878 

(0.851) 

70.900 

(0.119) 

First 

difference 

953.254 

(0.000)*** 

502.794 

(0.000)*** 

531.591 

(0.000)*** 

-2.542 

(0.005)*** 

178.791 

(0.000)*** 

332.740 

(0.000)*** 

384.467 

(0.000)*** 

97.195 

(0.001)*** 

78.324 

(0.038)** 

178.834 

(0.000)*** 

97.122 

(0.001)*** 

699.758 

(0.000)*** 

Breitung             

Level 6.170 

(1.000) 

-1.093 

(0.137) 

-2.287 

(0.011)** 

5.636 

(1.000) 

4.629 

(1.000) 

0.395 

(0.653) 

1.608 

(0.946) 

5.079 

(1.000) 

0.274 

(0.608) 

4.625 

(1.000) 

3.396 

(0.999) 

1.384 

(0.916) 

First 

difference 

-10.406 

(0.000)*** 

-8.048 

(0.000)*** 

-9.882 

(0.000)*** 

-1.150 

(0.024)** 

-2.740 

(0.003)*** 

-9.394 

(0.000)*** 

-8.232 

(0.000)*** 

-15.262 

(0.000)*** 

-1.586 

(0.056)* 

-2.744 

(0.003)*** 

-15.143 

(0.000)*** 

-3.505 

(0.000)*** 

LLC             

Level 2.525 

(0.994) 

-0.971 

(0.165) 

-0.010 

(0.495) 

1.005 

(0.842) 

-0.997 

(0.159) 

-0.323 

(0.373) 

-0.325 

(0.372) 

3.377 

(0.999) 

3.661 

(0.999) 

-0.998 

(0.115) 

-0.618 

(0.268) 

-0.248 

(0.401) 

First 

difference 

-22.953 

(0.000)*** 

-18.642 

(0.000)*** 

-19.183 

(0.000)*** 

5.502 

(0.000)*** 

-5.221 

(0.000)*** 

-15.189 

(0.000)*** 

-9.343 

(0.000)*** 

-3.774 

(0.000)*** 

-3.478 

(0.000)*** 

-5.230 

(0.000)*** 

-3.642 

(0.000)*** 

-4.893 

(0.000)*** 

IPS             

Level 3.187 

(0.999) 

1.288 

(0.901) 

0.160 

(0.563) 

4.355 

(1.000) 

-1.289 

(0.098)* 

1.910 

(0.971) 

1.142 

(0.873) 

0.374 

(0.646) 

6.971 

(1.000) 

-1.289 

(0.986) 

0.529 

(0.701) 

-0.098 

(0.460) 

First 

difference 

-26.069 

(0.000)*** 

-21.815 

(0.000)*** 

-20.152 

(0.000)*** 

4.735 

(0.000)*** 

-7.629 

(0.000)*** 

-14.701 

(0.000)*** 

-10.833 

(0.000)*** 

-18.540 

(0.000)*** 

-5.408 

(0.000)*** 

-7.635 

(0.000)*** 

-4.719 

(0.000)*** 

-10.764 

(0.000)*** 

Note: In the panel unit root test without structural breaks, the probabilities of the test statistics are presented in parentheses. ***, ** and * indicate that the test statistics are 

significant at the 1%, 5% and 10% levels, respectively. Individual trends and constants are included in the tests, and the Schwarz Information Criterion (SIC) is used to 

determine the optimal lag length. 
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Table 2: Panel unit root tests with structural breaks for the variables used in 

Models I, II and III 

Variables Bartlett Kernel Quadratic 

Kernel 

Bootstrap critical values 

5% 2.5% 1% 

LN      

Homogeneous 8.893** 8.897** 8.711 8.991 9.123 

Heterogeneous 9.710** 9.783** 9.512 9.703 10.111 

LR      

Homogeneous 7.734** 7.611** 6.821 7.010 7.812 

Heterogeneous 

 

6.913*** 6.742*** 5.431 5.912 6.729 

LCO2         

Homogeneous 7.928** 7.929** 7.062 7.866 8.278 

Heterogeneous 8.211 8.271 6.728 7.381 8.021 

LP      

Homogeneous 6.744*** 6.514** 6.323 6.510 6.711 

Heterogeneous 

 

6.918* 7.131* 6.891 7.452 7.859 

LA       

Homogeneous 11.428*** 11.888*** 9.781 9.979 10.163 

Heterogeneous 9.639*** 9.519*** 7.508 8.631 8.357 

 LU      

Homogeneous 10.249*** 10.021** 8.363 9.472 10.236 

Heterogeneous 

 

9.381*** 9.415*** 7.501 8.993 9.303 

LPD      

Homogeneous 5.326 5.461 5.513 5.815 6.012 

Heterogeneous 

 

4.964* 5.433* 4.959 5.572 5.630 

LIND      

Homogeneous 9.316*** 9.322*** 7.703 8.110 8.741 

Heterogeneous 

 

8.120*** 8.121*** 5.504 6.823 7.330 

LS      

Homogeneous 13.391* 13.731** 12. 831 13.555 13.789 

Heterogeneous 12.097 12.280 13.561 13.829 13.995 

LA
2
      

Homogeneous 15.351* 16.281*** 15.348 15.692 16.093 

Heterogeneous 16.211* 16.836* 16.203 16.897 17.356 

LU
2
      

Homogeneous 13.612** 14.549*** 12.462 13.112 13.899 

Heterogeneous 15.721* 16.723** 15.564 16.714 17.231 

LEI      

Homogeneous 18.715*** 19.291*** 17.348 17.702 18.367 

Heterogeneous 20.248*** 20.711*** 18.826 20.210 21.245 

Note: The number of structural breaks is limited to 5. ***, ** and * indicate that the test statistics are 

significant at the 1%, 2.5%, and 5% levels, respectively. The long-run variance is estimated using both 

the Bartlett and the Quadratic spectral kernels with automatic spectral window bandwidth selection as 

described in Sul et al. (2005). Furthermore, all bootstrap critical values allow for cross-sectional 

dependence. 
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Table 3: Johansen Fisher Cointegration Test for Models I, II and III 

Model Fisher statistic 

(from the trace test) 

Fisher statistic 

(from the max eigen value test) 

 

Model I    

None 626.8 

(0.000)*** 

373.6 

(0.000)*** 
 

At most 1 333.3 

(0.000)*** 

202.0 

(0.000)*** 
 

At most 2 182.1 

(0.000)*** 

105.7 

(0.000)*** 
 

At most 3 124.7 

(0.000)*** 

99.24 

(0.000)*** 
 

At most 4 105.2 

(0.000)*** 

105.2 

(0.000)*** 
 

Model II    

None 1543.0 

(0.000)*** 

587.2 

(0.000)*** 
 

At most 1 1161.0 

(0.000)*** 

351.4 

(0.000)*** 
 

At most 2 800.0 

(0.000)*** 

217.8 

(0.000)*** 
 

At most 3 519.9 

(0.000)*** 

138.7 

(0.000)*** 
 

At most 4 296.7 

(0.000)*** 

121.4 

(0.000)*** 
 

At most 5 180.7 

(0.000)*** 

106.7 

(0.000)*** 
 

At most 6 106.1 

(0.000)*** 

106.1 

(0.000)*** 
 

Model III   

None 1297.0 

(0.000)*** 

729.4 

(0.000)*** 

At most 1 861.1 

(0.000)*** 

422.9 

(0.000)*** 

At most 2 507.6 

(0.000)*** 

234.0 

(0.000)*** 

At most 3 315.6 

(0.000)*** 

166.4 

(0.000)*** 

At most 4 190.1 

(0.000)*** 

124.3 

(0.000)*** 

At most 5 117.5 

(0.000)*** 

96.27 

(0.001)*** 

At most 6 102.9 

(0.000)*** 

102.9 

(0.000)*** 

Note: The Schwarz Information Criterion (SIC) is used to determine the optimal lag length. *** 

indicates that the test statistics are significant at the 1% level. 
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Table 4: Westerlund Cointegration Test for Models I, II and III 

Statistic       Value P-value 

Model I 

Group-t -2.939 0.003*** 

Group-a -11.387 0.865 

Panel-t -14.610 0.003*** 

Panel-a -8.396 0.741 

Model II 

Group-t -3.107 0.064* 

Group-a -1.562 1.000 

Panel-t -9.055 0.000*** 

Panel-a -0.843 1.000 

Model III   

Group-t -3.122 0.054* 

Group-a -3.938 1.000 

Panel-t -12.005 0.059* 

Panel-a -4.719 1.000 

Note: *** and * indicate that the test statistics are significant at the 1% and 10% levels, respectively. 

Following Westerlund (2007), the maximum lag length is selected according to 4 . The null 

hypothesis of the test is “no cointegration”. 

4.2 Estimation of the Long-Run Elasticities of CO2 Emissions 

The results of the regression analysis of the three models, Models I, II, and III, using 

the AMG estimator are presented in Table 5. Because the variables total population 

(P) and GDP per capita (A) are used in all three models, first the direction and 

magnitude of these variables with respect to CO2 emissions in Models I and II are 

compared.
4
 The results show that the total population and GDP per capita have 

positive and significant effects on CO2 emissions, implying that increases in both the 

total population and GDP per capita lead to increases in CO2 emissions. Although 

each model gives different magnitudes for the coefficients for the total population and 

GDP per capita, the coefficient for the total population is greater than that for GDP 

per capita in all three models. This result demonstrates that in the long run, the total 

population size contributes more to increased CO2 emissions than economic growth in 

developed countries. This finding is consistent with those of Fan et al. (2006), 

Poumanyvong and Kaneko (2010) and Liddle (2011), who obtain the same results for 

developed countries. Liddle (2011) observes that environmental impact is more 

sensitive to changes in population growth than to changes in economic growth. This 

                                                           
4
 It is worth noting that in Model III, the coefficients for affluence and urbanisation cannot be 

interpreted directly as elasticity coefficients due to the inclusion of their quadratic terms. Thus, in 

Model III, the focus with respect to affluence and urbanization is only on whether the EKC hypothesis 

holds.  
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greater sensitivity occurs because population growth through the acceleration of 

energy consumption speeds up pollutant emissions. 

With respect to the renewable energy consumption in Model I (Table 5), it is 

found that this variable has a negative and significant effect on CO2 emissions, 

indicating that a 1% increase in renewable energy consumption reduces CO2 

emissions by 0.004% in the long run. Although the value is very small, the sign is as 

expected. This finding contrasts with the positive relationship between renewable 

energy consumption and CO2 emissions found by Menyah and Wolde-Rufael (2010) 

for the US and Apergis et al. (2010) for a group of 19 developed and developing 

countries. The result obtained in this study substantiates the argument that the 

increased usage of renewable energy reduces pollutant emissions in OECD countries 

in the long run. 

Non-renewable energy consumption has a positive and statistically significant 

effect on CO2 emissions. The coefficient for non-renewable energy consumption 

suggests that a 1% increase in this factor leads to an increase in CO2 emissions of 

1.038%. It is apparent from the estimated coefficients that have positive effects on 

CO2 emissions in Model I that the impact of non-renewable energy consumption on 

CO2 emissions is much stronger than the effects of population and affluence. 

The coefficients of the variables considered in Model II indicate that 

industrialisation, the contribution of services to GDP and urbanisation all are 

positively associated with CO2 emissions. However, the effect of the contribution of 

services to GDP on CO2 emissions is not significant. The coefficient for 

industrialisation is statistically significant at the 5% level, indicating that a 1% 

increase in industrialisation lead to increase CO2 emissions by 0.319 per cent. Similar 

results have been found by York et al. (2003b), Shi (2003), Lin et al. (2009) and 

Zhang and Lin (2012) for different countries. It appears that industrialisation, through 

the extraction and consumption of raw materials, the emission of industrial pollutants 

and increased energy demand, can intensify CO2 emissions. 

With respect to the relationship between urbanisation and CO2 emissions, it is 

found that a 1% increase in urbanisation increases CO2 emissions by 0.462% in 

Model II. This result is consistent with the results of Poumanyvong and Kaneko 

(2010) for high-income countries and of Zhang and Lin (2012) for China. Likewise, 

Liddle and Lung (2010) find a positive association between urbanisation and CO2 

emissions from transport in OECD countries. These authors state that this is a 
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surprising result because it is expected that greater urbanisation leads to more public 

transport use and thus to lower emissions. The direct relationship between 

urbanisation and CO2 emissions contrasts with the results of Fan et al. (2006), who 

find that urbanisation negatively affects CO2 emissions for high-income countries. In 

different studies, it can be observed that the relationship between urbanisation and 

emissions is complex, even in countries with the same levels of income and 

development. However, developed and largely urbanised countries are in a better 

position to achieve low carbon intensity by adopting new energy technologies. Hence, 

it seems that the relationship between urbanisation and emissions can be better 

explained by the EKC hypothesis in developed countries. The last variable 

investigated in Model II is population density, which has a negative but statically 

insignificant effect on CO2 emissions. 

Table 5: CO2 Emissions Coefficients for the AMG Estimator 

 Model I Model II Model III 

LP 0.543 

(4.31)*** 

2.677 

(2.49)** 

1.037 

(6.69)*** 

LA 0.119 

(13.55)*** 

0.570 

(3.53)*** 

0.466 

(8.10)*** 

LR -0.004 

(-1.81)* 

  

LN 1.038 

(16.59)*** 

  

LIND 

 

LS 

 

LU 

 

LPD 

 

LA
2 

 

LU
2 

 

LEI 

 0.319 

(2.17)** 

0.434 

(1.44) 

0.462 

(2.57)** 

-0.411 

(-.012) 

 

 

 

 

0.175 

(1.80)* 

 

 

0.237 

(10.01)*** 

-0.078 

(-1.87)* 

0.683 

(11.11)*** 

Note: Statistics are presented in parentheses. ***, ** and * indicate that the test statistics are significant 

at the 1%, 5% and 10% levels, respectively. 

Turning to Model III (Table 5), the results provide evidence supporting the 

EKC hypothesis for the association between urbanisation and CO2 emissions because 

the coefficient for urbanisation is positive and significant and the coefficient for the 

quadratic term of urbanisation is negative and significant. These results indicate that 

at a higher level of urbanisation, CO2 emissions decrease. In other words, when a 
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certain level of urbanisation is achieved, emissions tend to decline in OECD 

countries. This finding confirms the ecological modernisation theory, which argues 

that if the environment and the economy are properly managed through structural 

changes or modernisation, emissions can be curbed. Therefore, as urbanisation is a 

key indicator of modernisation (Ehrhardt-Martinez et al. 2002; York et al. 2003a, 

2003b), it is expected that at higher levels of urbanisation, the environmental impact 

decreases. In addition, Ehrhardt-Martinez (1998) explains this phenomenon by stating 

that the urbanisation process in its initial stages depends more on resource extraction. 

However, advanced urbanisation is accompanied by largely complete urban 

infrastructure as well as increased use of less-polluting fuels. Although Ehrhardt-

Martinez (1998) claims that this reasoning might be true only for the relationship 

between urbanisation and the phenomenon of deforestation, according to the results 

obtained in this study, it seems it is also true for CO2 emissions. 

This result can also be explained based on observations and experiences in 

developed countries. The economy in urban areas is primarily service based rather 

than manufacturing based. Moreover, using nuclear and hydro energy for generating 

electricity is becoming more common in such areas. In addition, today, in some 

developed countries, most industrial activities have relocated to regions far from cities 

or even to other countries. Furthermore, strong investment in infrastructure and 

policies to extend public transport systems have led to increases in the levels of public 

transport usage. All these activities help reduce CO2 emissions in urbanised areas. The 

inverted U-shaped relationship between urbanisation and CO2 emissions is also 

supported by the findings of Martínez-Zarzoso and Maruotti (2011) for developing 

countries. However, this result is in contrast with those of York et al. (2003b) and Zhu 

et al. (2012), who find little evidence supporting the EKC hypothesis in the 

urbanisation–CO2 emissions nexus.  

The estimated long-run coefficients for GDP per capita and its square do not 

satisfy the EKC hypothesis because the coefficients for both GDP per capita and its 

quadratic term are positive and significant. Unlike the previous result for the 

urbanisation–CO2 emissions nexus, the result for the affluence–CO2 emissions nexus 

contradicts the expectation of the modernisation perspective. It may be concluded that 

environmental impacts follow an EKC in association with urbanisation rather than 

economic development per se (Ehrhardt-Martínez 1998; Ehrhardt-Martinez et al. 2002 

and York et al. 2003b). Finding no evidence in support of the EKC hypothesis is in 
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line with the results of Martínez-Zarzoso and Bengochea-Morancho (2004), 

Richmond and Kaufman (2006) and Iwata et al. (2010) for OECD countries. This 

finding also supports those of York et al. (2003a) and Martínez-Zarzoso and Maruotti 

(2011), who investigate the EKC with respect to income and emissions using the 

STIRPAT model. However, the latter finding is contrary to those results indicating 

that there is an inverted U-shaped association between income and emissions, 

including the results of Dijkgraaf and Vollebergh (2001) and Liu (2005) for OECD 

countries. 

The last variable included in Model III is energy intensity, which has a positive 

and significant effect on CO2 emissions at the 1% level. The related coefficient 

demonstrates that an increase in energy intensity increases CO2 emissions by 0.683% 

in the long run. This finding is as expected and is supported by the results of Cole and 

Neumayer (2004) for 86 countries and of Poumanyvong and Kaneko (2010) for low- 

to high- income countries. 

4.3 Granger Causality  

This section provides the results of the causality test for the variables used in Model I 

and Model II.
5
 The results of the panel error correction model for Model I and Model 

II are reported in Table 6 and Table 7, respectively. The findings are interpreted only 

for the relationships between CO2 emissions and the other variables. Beginning with 

Model I and the short-run effects (Table 6), total population, GDP per capita and non-

renewable energy consumption have positive and significant effects on CO2 

emissions, implying these three variables do Granger-cause CO2 emissions in the 

short run.  

The coefficient for renewable energy consumption is negative; however, it is 

not statistically significant. This result indicates that renewable energy use does not 

Granger-cause CO2 emissions in the short run. The results also show that CO2 

emissions have a positive effect on the total population and a negative effect on GDP 

per capita in the short run. However, both the coefficients are statistically 

insignificant. Interesting results are found with respect to the effect of CO2 emissions 

on renewable and non-renewable energy consumption. The impact of CO2 emissions 

on renewable energy use is positive and statistically significant; suggesting that 

increases in CO2 emissions can stimulate the use of renewable sources. The 

                                                           
5
 All variables used in Model III except for energy intensity are included in Model II. 
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coefficient for CO2 emissions with respect to non-renewable energy use is negative 

and statistically significant, implying that increases in CO2 emissions may contribute 

to reductions in the use of non-renewable sources, even in the short term.  

Table 6: Panel Causality Test for Model I 

Dependent 

Variables 

Source of causation (independent variable) 

 
Short run Long run 

 LCO2 LP LA LR LN 
ECT 

LCO2 
_ 0.145  

(1.93)* 

0.093 

(1.66)* 

-0.006 

(-0.34) 

0.945 

(66.57)*** 

-0.684 

(-14.93)*** 

LP 
0.002 

(0.53) 

_ 0.005 

(0.13) 

-0.002 

(-0.94) 

-0.003 

(-1.76)* 

-0.002 

(-0.44) 

LA 
-0.095 

(-1.63) 

0.884 

(2.96)*** 

_ 0.008 

(1.24) 

0.099 

(1.63) 

0.037 

(0.47) 

LR 
1.079 

(2.20)** 

-6.902 

(-0.54) 

-0.450 

(-1.49) 

_ -0.339 

(-0.68) 

-0.550 

(-0.82) 

LN 
-0.737 

(-29.74)*** 

0.063 

(1.81) 

0.033 

(1.92)* 

-0.006 

(-0.23) 

_ -0.610 

(-13.29)*** 

Note: z-statistics are presented in parentheses. ***, ** and * indicate that the test statistics are 

significant at the 1%, 5% and 10% levels, respectively. The optimal lag length for the variables is two 

and is determined by the Akaike and the Schwarz Information Criteria. ECT indicates the estimated 

error correction term. 

The empirical results presented in Table 6 indicate that there is unidirectional 

causality from the total population size to CO2 emissions. Similarly, a unidirectional 

causality from GDP per capita to CO2 emissions is obtained in the short run for 

OECD countries. This result is consistent with the findings of Salim and Rafiq (2012) 

for the Philippines. However, this finding contrasts with the unidirectional causality 

from CO2 to income found by Salim and Rafiq (2012) for India. This result is also 

contrary to the findings of Apergis et al. (2010), Menyah and Rufael (2010a) and 

Salim and Rafiq (2012), who find bidirectional causality between income and 

emissions for a mix of developed and developing countries. Finding unidirectional 

causality from CO2 emissions to renewable energy consumption is in line with the 

results of Menyah and Wolde-Rufael (2010) for the US. However, this result is 

contrary to the bidirectional causality between emissions and renewable energy 

consumption found by Salim and Rafiq (2012) for Brazil, China and India. In 

addition, this finding is also in contrast to the results of Payne (2012), who finds no 

causal relationship between renewable energy use and CO2 emissions in the US. 

Finally, as shown in Table 6, there is bidirectional causality between non-renewable 

energy consumption and CO2 emissions. This finding is not directly comparable to the 
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results of previous studies because most of those studies use total energy 

consumption.  

Turning to the long-run causality relationship in Model I (Table 6), the 

coefficients for the lagged error correction terms (ECT) are negative and significant at 

the 1% level for the equations in which CO2 emissions and non-renewable energy use 

are dependent variables. This finding indicates that bidirectional causality exists 

between CO2 emissions and non-renewable energy consumption in the long run. 

Furthermore, the coefficients for the error correction terms also suggest that the 

deviations in CO2 emissions and non-renewable energy consumption from the short 

run to the long run are corrected by 68% and 61%, respectively, each year and that 

convergence towards equilibrium after a shock to CO2 emissions or non-renewable 

energy consumption takes 1.4 and 1.6 years, respectively.  

Moving to the short-run effects in Model II (Table 7), the causal relationships 

between total population and CO2 emissions and between GDP per capita and CO2 

emissions remain the same as those in Model I; that is, they are unidirectional from 

total population and GDP per capita to CO2 emissions. The coefficients for the other 

variables indicate that the effects of industrialisation, urbanisation and population 

density on CO2 emissions are negative, whereas the effect of the contribution of 

services to GDP is positive. However, only the coefficients for the contribution of 

services to GDP and population density are statistically significant. This result implies 

that although industrialisation and urbanisation do not Granger-cause CO2 emissions, 

the contribution of services to GDP and population density do Granger-cause CO2 

emissions in the short run. The effect of CO2 emissions as the independent variable on 

the other variables as the dependent variables from Table 7 shows that CO2 emissions 

have a negative and significant effect on the contribution of services to GDP in the 

short run, suggesting there is bidirectional causality between CO2 emissions and the 

contribution of services to GDP and unidirectional causality running from population 

density to CO2 emissions. A positive effect of the contribution of services to GDP on 

emissions in the short run indicates that in OECD countries, due to increases in 

services industries, more energy is required for lighting, heating and cooling, 

electronics use and transportation. 

Although the relationship between population density and CO2 emissions in 

the long run is not significant, finding a negative and significant association between 

these variables in the short run indicates that the population density contributes to 
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emissions mitigation. However, it seems that there are other stronger factors that can 

make this association insignificant in the long run. 

The results of the long-run causality presented by the ECT in Model II (Table 

7) reveal that in the equations in which CO2 emissions and industrialisation are 

dependent variables, the ECTs are -0.811 and -0.227, respectively. These values 

demonstrate that total population, GDP per capita, industrialisation, the contribution 

of services to GDP, urbanisation and population density Granger-cause CO2 

emissions in the long run. Moreover, these results indicate that CO2 emissions, total 

population, GDP per capita, the contribution of services to GDP, urbanisation and 

population density Granger-cause industrialisation in the long run. Furthermore, the 

results indicate that the variables adjust towards a long-run equilibrium level within 

1.2 and 4.4 years after a shock occurs. 
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Table 7: Panel Causality Test for Model II 

Dependent Variables   Source of causation (independent variable) 

 Short run   Long run 

 LCO2 LP LA LIND LS LU LPD 
ECT 

LCO2 
_ 0.412  

(1.72)* 

0.553 

(11.46)*** 

-0.074 

(-1.42) 

0.258 

(2.98)*** 

-0.101 

(-0.19) 

-0.869 

(-1.67)* 

-0.811 

(-12.92)*** 

LP 
0.001 

(0.68) 

_ -0.002 

(-0.91) 

-0.001 

(-0.34) 

-0.005 

(-1.50) 

-0.030 

(-1.16) 

-0.235 

(-9.99)*** 

-0.002 

(-1.05) 

LA 
-0.250 

(-1.56) 

0.998 

(2.50)** 

_ 0.162 

(4.77)*** 

0.512 

(9.32)*** 

-0.604 

(-1.06) 

-0.275 

(-0.77) 

-0.227 

(-5.92)*** 

LIND 
-0.013 

(-0.55) 

0.877 

(2.11)** 

0.139 

(3.83)*** 

_ 1.153 

(25.99)*** 

-0.215 

(-1.66)* 

-0.514 

(-2.36)** 

0.002 

(0.06) 

LS 
-0.029 

(-2.13)** 

-0.316 

(-1.36) 

0.162 

(8.07)*** 

0.400 

(27.00)*** 

_ 0.327 

(1.65) 

0.016 

(1.88)* 

0.011 

(0.49) 

LU 
0.003 

(0.62) 

-0.008 

(-0.34) 

-0.005 

(-0.62) 

0.003 

(1.80)* 

0.006 

(1.78)* 

_ -0.009 

(-0.43) 

-0.003 

(-1.55) 

LPD 
0.001 

(0.62) 

-0.297 

(-8.17)*** 

0.001 

(0.63) 

-0.006 

(-2.12)** 

-0.008 

(-1.66)* 

0.002 

(0.07) 

_ -0.002 

(-0.67) 

Note: z-statistics are presented in parentheses. ***, ** and * indicate that the test statistics are significant at the 1%, 5% and 10% levels, respectively. The optimal lag 

length for the variables is two and is determined by the Akaike and the Schwarz Information Criteria. ECT indicates the estimated error correction term.  
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5. Conclusion 

This article attempts to explore the determinants of CO2 emissions using three 

different models based on a statistical method, STIRPAT, for OECD countries over 

the period from 1980 to 2011. First, it simultaneously compares the effects of 

renewable and non-renewable energy consumption on CO2 emissions in the short- and 

long run. Second, the effects of industrialisation, the contribution of the service sector 

to GDP and population density on CO2 emissions are investigated. Finally, the 

relationship between urbanisation and CO2 emissions is examined in the context of 

the EKC hypothesis. 

The empirical results show that renewable energy consumption has a negative 

and significant effect on CO2 emissions, whereas non-renewable energy consumption 

has a positive and statistically significant effect on CO2 emissions in the long-run. The 

results also reveal that the total population size, GDP per capita, industrialisation and 

urbanisation have positive and significant effects on CO2 emissions. Finally, the 

findings provide evidence supporting the EKC hypothesis for the relationship between 

urbanisation and CO2 emissions in OECD countries in the long run. The Granger 

causality results indicate that there is unidirectional causality from CO2 emissions to 

renewable energy consumption, from total population to CO2 emissions, from GDP 

per capita to CO2 emissions and from population density to CO2 emissions. Moreover, 

bidirectional causality is found between non-renewable energy consumption and CO2 

emissions and between the contribution of services to GDP and CO2 emissions.  

The empirical evidence indicates that renewable energy consumption plays an 

important role in reducing CO2 emissions. Therefore, to achieve steady and 

sustainable growth in renewable energy use, governments should design and 

implement effective support policies to promote investment in new renewable energy 

technologies. In addition, increasing the population density seems to be another key 

strategy for reducing pollutant emissions that should be considered by policy makers. 

Generally, congestion and spatial density reduce personal vehicle use and promote 

less motorised travel. Finally, urban planners should take serious action on climate 

change through improving public transportation systems, improving the energy 

efficiency of buildings and increasing the share of renewable energy sources in energy 

supplies. 
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