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Abstract

In this paper, we aim to study robust exponential stabilization for a large-scale uncertain impulsive system with coupling
time-delays. Furthermore, we also provide an estimation of the rate of convergence of exponential stabilization. By utilizing the
Lyapunov method and Razumikhin technique, we shall design the feedback hybrid controllers in terms of linear matrix inequalities
under which the robust exponential stability is achieved for a closed-loop large-scale uncertain impulsive system with coupling
time-delays. Moreover, we shall also use the results obtained to design impulsive controllers for a large-scale uncertain continuous
system under which the closed-loop continuous system achieves robust and exponential stability. To illustrate our results, one
example is solved.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is recognized that the theory of impulsive systems provides a natural framework for the mathematical modelling
of many real world phenomena. Significant progress has been achieved in the theory of impulsive systems in recent
years. For example, see [1–5,24–29] and references therein.

From the literature, we note that the stability property of a practical engineering system may be affected by
various factors. The main factors are: (i) uncertainties and (ii) time-delays. In order to deal with these undesirable
factors, the robust stability theory has become a promising research topic for impulsive systems. Uncertainties often
occur due to modelling mismatches, measurement errors, approximations and channel noises, etc. On the other
hand, time-delays occur commonly in practical engineering systems due to the congestion of the network traffic
and the fact that the switching and spreading speed of the hardware and circuit implementation is finite. Moreover,
time-delays presented in many real systems are difficult to know a priori and are time varying. Recently, some
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robust stability results for impulsive hybrid systems with uncertainty or with time-delays have been established in
[6–12,28–33]. Moreover, robust stability and stabilization of uncertain continuous systems have also been extensively
studied, see [19–23] and references therein. However, the corresponding theory for large-scale impulsive systems with
uncertainties and time-delays has not been fully developed. To our knowledge, no investigation has been carried out
for large-scale nonlinear impulsive systems with uncertainties and time-delays.

In this paper we aim to study the robust exponential stability of a large-scale uncertain impulsive system with
coupling time-delays. Based on these stability results, we can design feedback controllers by which the corresponding
closed-loop large-scale uncertain impulsive system with time-delays is robust and exponentially stable. By utilizing
the ideas developed in [9–12] and the Razumikhin-type stability results established for functional differential
equations [7], we shall derive several criteria, under each of which robust exponential stabilization is achieved for
a closed-loop large-scale uncertain impulsive system with coupling time-delays. These controllers are expressed in
terms of Linear Matrix Inequalities (LMIs). Thus, the solutions of the LMIs give rise to impulsive controllers for a
large-scale uncertain continuous system under which the closed-loop continuous system is robust and exponentially
stable.

The organization of this paper is as follows. In Section 2, we state the formulation of the problem and give some
preliminaries. In Section 3, robust exponential stability criteria are established. These criteria can be easily used for
the design of a feedback controller. For illustration, some representative examples are given in Section 4. Section 5
concludes the paper.

2. Preliminaries and problem formulation

Let Rn denote the n-dimensional Euclidean space. Let R+ = [0, +∞), N = {0, 1, 2, . . . , } and ‖ · ‖ stands for
the Euclidean norm in Rn . Let I be the identity matrix. The matrix M > (≥, <,≤) 0 means that M is a symmetric
positive definite (positive-semidefinite, negative definite, negative-semidefinite) matrix. Denote λmax(·) (λmin(·)) as
the maximum (minimum) eigenvalue of the matrix (·).

Consider a large-scale uncertain impulsive system consisting of N impulsive subsystems with linear coupling
time-delays:

ẋi (t) = Ai xi (t) + fi (t, xi (t)) +

N∑
j=1

Bi j x j (t − τ j (t)) + uci (t), t ∈ (tk, tk+1],

∆xi (t) = (Cik − I )xi (t) + udi (t), t = tk, k ∈ N, i = 1, 2, . . . , N ; (1)

where xi = (xi1, xi2, . . . , xin)T
∈ Rn , represents the state vector of the i th subsystem; ∆xi (tk) = x(t+k ) − x(tk);

fi : R+ × Rn
→ Rn is a smooth nonlinear vector function with fi (t, 0) ≡ 0; Ai , Cik ∈ Rn×n are the interval

matrices with Ai ∈ N [Ai1, Ai2] and Cik ∈ N [Cik1 , Cik2 ], where N [X, Y ] = {(xi j ) ∈ Rn×n
: ui j ≤ xi j ≤ vi j }

for X = (ui j )n×n and Y = (vi j )n×n ; Bi j ∈ Rn×n are the coupling coefficient matrices with Bi j ∈ N [Bi j1 , Bi j2 ];
(uci , udi ) are the control inputs with uci (t) ∈ Uc ⊆ Rn, udi ∈ Ud ⊆ Rn . Here, we assume that uci (·) and udi (·) are
restricted to the class of admissible inputs consisting of measurable functions (uci (t), udi (t)) ∈ U = (Uc, Ud) for all
t ≥ 0, where the constraint set U is given with (0, 0) ∈ U ; τ j (·) is the coupling time-delay function which represents
the delay of the signal transmitted from the j th subsystem to i th subsystem; and the sequence of impulsive instances
{tk} satisfies 0 ≤ t0 < t1 < t2 < · · ·, with limk→∞ tk = ∞.

Remark 2.1. In (1), the controllers uci and {udi (tk), k ∈ N} are said to be the continuous controller and the impulsive
controller, respectively. The combined controller (uci , udi ) is said to be the hybrid controller. If Cik1 = Cik2 = I
and uci = 0, then (1) can be regarded as an uncertain continuous large-scale system being controlled by impulsive
controllers {udi (tk), k ∈ N}.

By [9], one can rewrite the system (1) as:

ẋi = (Ai0 + ∆Ai )xi +
∂ fi (t, di )

∂xi
xi +

N∑
j=1

(Bi j0 + ∆Bi j )x j (t − τ j (t)) + uci , t ∈ (tk, tk+1],

∆xi = (Cik0 − I + ∆Cik)xi (t) + udi , t = tk, k ∈ N, i = 1, 2, . . . , N , (2)
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where fi (t, xi ) − fi (t, 0) =
∂ fi (t,di )

∂xi
xi , di = θi xi , 0 ≤ θi ≤ 1, and Ai = Ai0 + ∆Ai , Bi j = Bi j0 + ∆Bi j , Cik =

Cik0 + ∆Cik .
Again by [9], it follows that for any X ∈ N [X1, X2], X can be formulated as:

X = X0 + ∆X = X0 + EΣ F, (3)

where X0 =
1
2 (X1 + X2), H =

1
2 (X2 − X1) = (hi j )n×n ,

E · ET
= diag

{
n∑

j=1

h1 j , . . . ,

n∑
j=1

hnj

}
,

FT
· F = diag

{
n∑

j=1

h j1, . . . ,

n∑
j=1

h jn

}
,

Σ ∈ Σ ∗
= {Σ ∈ Rn2

×n2
: Σ = diag(ε11, . . . , εnn), |εi j | ≤ 1; i, j = 1, 2, . . . , n.}.

Definition 2.1. The large-scale uncertain impulsive system (1) is said to be robustly exponentially stable with decay
rate α by feedback controllers (uci , udi ) = (Kci xi , Kdi xi ), if, for any initial condition φ ∈ C[[t0 − τ, t0], RnN

], and
every Ai ∈ N [Ai1, Ai2], Bi j ∈ N [Bi j1 , Bi j2 ], Cik ∈ N [Cik1 , Cik2 ], and time-delays τ j (t) with −τ ≤ τ j (t) ≤ 0, the
trivial solution x = 0 of the closed-loop system (1) is exponentially stable, in the sense that there exist two positive
numbers α > 0, K > 0, such that

‖x(t)‖ ≤ K‖φ‖e−αt , t ≥ 0, (4)

where x(t) = (xT
1 (t), xT

2 (t), . . . , xT
N (t))T, and for s ∈ [t0 − τ, t0]: x(s) = φ(s) = (φT

1 (s), . . . , φT
N (s))T

∈

RnN , φi (s) ∈ Rn , and ‖φ‖
2

=
∑N

i=1 ‖φi‖
2, ‖φi‖ = supt0−τ≤s≤t0{‖φi (s)‖}.

The main objective of this paper is to design feedback controllers (uci , udi ) = (Kci xi , Kdi xi ) or impulsive
controllers {udi (tk) = Kdi xi (tk), k ∈ N} under which the corresponding closed-loop system (1) is robust and
exponentially stable.

Assumption 1. There exist nonnegative constants ri ≥ 0, i, j = 1, 2, . . . , N , such that for all t ∈ R+, 0 ≤ θi ≤ 1
and xi ∈ Rn ,∥∥∥∥∂ fi (t, di )

∂xi

∥∥∥∥ ≤ ri , i = 1, 2, . . . , N . (5)

Assumption 2. Assume that[
∆Ai ∆Bi j ∆Cik

]
= EΣ

[
FAi Fi j Fik

]
, i, j = 1, 2, . . . , N , k ∈ N, (6)

where E, FAi , Fi j , Fik are known matrices and Σ ∈ Σ ∗.

Lemma 2.1 ([13]). Let E ∈ Rn×n2
, F ∈ Rn2

×n and Y ∈ Rn×n a symmetric matrix. Then, for any Σ ∈ Σ ∗,

Y + EΣ F + FTΣ ET < 0 (7)

holds if and only if there exists a positive constant ε > 0 such that

Y + εE ET
+ ε−1 FT F < 0. (8)

Lemma 2.2 ([16]). Let E ∈ Rn×n2
and F ∈ Rn2

×n . Then, for any Σ ∈ Σ ∗ and any positive constant ξ > 0,

EΣ F + FTΣ ET
≤ ξ E ET

+ ξ−1 FT F. (9)
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Lemma 2.3 ([12] (Halanay Lemma)). Let m ∈ C[R, R+] be a scalar positive function such that

D+m(t) ≤ −a1m(t) + a2m̄(t), t ≥ t0, (10)

where a1 > a2 > 0 and m̄(t) = supt−τ≤s≤t {m(s)}. Then, there exists a constant α > 0 such that for all t ≥ t0,

m(t) ≤ m̄(t0)e−α(t−t0), (11)

where α > 0 satisfying α − a1 + a2eατ
= 0.

3. Robust exponential stabilization

In this section, we establish some robust exponential stability criteria for the large-scale uncertain impulsive
systems with coupling time-delays. These robust exponential stability criteria will be shown to be expressed as LMIs.
Then, we can design the robust exponentially stable feedback controllers through solving these LMIs.

Theorem 3.1. Let (uci , udi ) = (Kci xi , Kdi xi ) and Assumptions 1 and 2 be satisfied. Assume that there exist positive
definite matrices Pi ∈ Rn×n and constants γk > 0, εi j > 0, εi > 0, αi < 0, βik > 0, i, j = 1, 2, . . . , N, k ∈ N, such
that the following conditions are satisfied:

(i) there exist some positive constants νi > 0, µi > 0, i = 1, 2, . . . , N, such that

νi I ≤ Pi ≤ µi I, i = 1, 2, . . . , N ; (12)

(ii) for i = 1, 2, . . . , N, the following matrix inequalities hold:

Ψi ( Ãi0) − αi Pi Pi Bi10 · · · Pi Bi N 0 Pi E FT
Ai

BT
i10

Pi −εi1 I · · · 0 0 FT
i1

...
...

. . .
...

...
...

BT
i N 0

Pi 0 · · · −εi N I 0 FT
i N

ET Pi 0 · · · 0 −ε−1
i I 0

FAi Fi1 · · · Fi N 0 −εi I


< 0, (13)

where Ãi0 = Ai0 + Kci , Ψi ( Ãi0) = Pi Ãi0 + ÃT
i0 Pi + 2ri

√
µi
νi

Pi , and αi , εi j satisfy

− max
1≤i≤N

{αi } > max
1≤i≤N

{
1
νi

N∑
j=1

ε j i

}
; (14)

(iii) for i = 1, 2, . . . , N , k ∈ N, the following matrix inequalities hold:C̃T
ik0

Pi C̃ik0 − βik Pi C̃T
ik0

Pi E FT
ik

ET Pi C̃ik0 −γ −1
k I 0

Fik 0 −(µi‖ET E‖ + γ −1
k )I

 < 0, (15)

where C̃ik0 = Cik0 + Kdi ;
(iv) there exists a positive constant δ > 1 such that

τδ ≤ inf
k∈N

{tk+1 − tk}; (16)

and

M , sup
k∈N

{βk, eστ
} < eδτσ , (17)

where βk = max1≤i≤N {βki }, and σ satisfies equation

σ + a + beστ
= 0, (18)

where a = max1≤i≤N {αi } < 0, and b = max1≤i≤N {
1
νi

∑N
j=1 ε j i }.
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Then, the closed-loop large-scale uncertain impulsive system (2) is robustly exponentially stable with decay rate
1
2 {σ −

ln M
δτ

}.

Proof. Let the Lyapunov function be defined by

V (t) =

N∑
i=1

xT
i (t)Pi xi (t). (19)

Let Ãi = Ai + Kci . For t ∈ [tk, tk+1), taking the time Dini derivative of V (t) along (2) gives

D+V (t) =

N∑
i=1

{
2xT

i (t)Pi

(
Ãi xi (t) +

∂ fi (t, di )

∂xi
xi (t) +

N∑
j=1

Bi j x j (t − τ j (t))

)}
. (20)

By condition (i) and Assumption 1, we get

2xT
i (t)Pi

∂ fi (t, di )

∂xi
xi (t) ≤ 2‖xT

i (t)P
1
2

i ‖ ·

∥∥∥∥P
1
2

i
∂ fi (t, di )

∂xi
xi (t)

∥∥∥∥
= 2

√
xT

i (t)Pi xi (t)

√
xT

i (t)
∂ fi (t, di )

∂xi

T

Pi
∂ fi (t, di )

∂xi
xi (t)

≤ 2ri

√
λmax(Pi )

λmin(Pi )
xT

i (t)Pi xi (t) ≤ 2ri

√
µi

νi
xT

i (t)Pi xi (t). (21)

It follows from (20) and (21) that, for t ∈ [tk, tk+1),

D+V (t) ≤

N∑
i=1

{
xT

i

[
Pi Ãi + ÃT

i Pi + 2ri

√
µi

νi
Pi

]
xi +

N∑
j=1

2xT
i (t)Pi Bi j x j (t − τ j (t))

}

=

N∑
i=1


xi (t)

x1(t − τ1(t))
...

xN (t − τN (t))


T

Ψi ( Ãi ) Pi Bi1 · · · Pi Bi N

BT
i1 Pi −εi1 I · · · 0
...

...
. . .

...

BT
i N Pi 0 · · · −εi N I




xi (t)
x1(t − τ1(t))

...

xN (t − τN (t))


+

N∑
i=1

N∑
j=1

εi j xT
j (t − τ j (t))x j (t − τ j (t)) (22)

where Ψi ( Ãi ) = Pi Ãi + ÃT
i Pi + 2ri

√
µi
νi

Pi .

Let Ãi0 = Ai0 + Kci . By (6), then
Ψi ( Ãi ) Pi Bi1 · · · Pi Bi N

BT
i1 Pi −εi1 I · · · 0
...

...
. . .

...

BT
i N Pi 0 · · · −εi N I

 =


Ψi ( Ãi0) Pi Bi10 · · · Pi Bi N 0

BT
i10

Pi −εi1 I · · · 0
...

...
. . .

...

BT
i N 0

Pi 0 · · · −εi N I



+


Pi EΣ FAi + FT

Ai
ΣT ET Pi Pi EΣ Fi1 · · · Pi EΣ Fi N

FT
i1Σ

T ET Pi 0 · · · 0
...

...
. . .

...

FT
i N ΣT ET Pi 0 · · · 0





Author's personal copy

1174 B. Liu et al. / Nonlinear Analysis 68 (2008) 1169–1183

=


Ψi ( Ãi0) Pi Bi10 · · · Pi Bi N 0

BT
i10

Pi −εi1 I · · · 0
...

...
. . .

...

BT
i N 0

Pi 0 · · · −εi N I

+


Pi E

0
...

0

Σ


FT

Ai

FT
i1
...

FT
i N


T

+


FT

Ai

FT
i1
...

FT
i N

ΣT


Pi E

0
...

0


T

. (23)

By Lemma 2.1, it follows that
Ψi ( Ãi ) − αi Pi Pi Bi1 · · · Pi Bi N

BT
i1 Pi −εi1 I · · · 0
...

...
. . .

...

BT
i N Pi 0 · · · −εi N I

 < 0 (24)

holds if and only if there exists a positive constant εi > 0 such that
Ψi ( Ãi0) − αi Pi Pi Bi10 · · · Pi Bi N 0

BT
i10

Pi −εi1 I · · · 0
...

...
. . .

...

BT
i N 0

Pi 0 · · · −εi N I

+ εi


Pi E

0
...

0




Pi E
0
...

0


T

+ ε−1
i


FT

Ai

FT
i1
...

FT
i N




FT
Ai

FT
i1
...

FT
i N


T

< 0. (25)

By the Schur Complementary Theorem [14], it follows that, for i = 1, 2, . . . , N , (25) is equivalent to

Ψi ( Ãi0) − αi Pi Pi Bi10 · · · Pi Bi N 0 Pi E FT
Ai

BT
i10

Pi −εi1 I · · · 0 0 FT
i1

...
...

. . .
...

...
...

BT
i N 0

Pi 0 · · · −εi N I 0 FT
i N

ET Pi 0 · · · 0 −ε−1
i I 0

FAi Fi1 · · · Fi N 0 −εi I


< 0. (26)

For t ∈ [tk, tk+1), we see that, by condition (ii), (26) implies that

D+V (t) ≤

N∑
i=1

αi xT
i Pi xi +

N∑
i=1

N∑
j=1

εi j xT
j (t − τ j (t))x j (t − τ j (t))

≤ max
1≤i≤N

{αi }

N∑
i=1

xT
i Pi xi + max

1≤ j≤N

{
1
νi

N∑
j=1

ε j i

}
N∑

i=1

xT
i (t − τi (t))Pi xi (t − τi (t))

≤ max
1≤i≤N

{αi } · V + max
1≤i≤N

{
1
νi

N∑
j=1

ε j i

}
· V̄ (t). (27)

Hence, by Lemma 2.3 and condition (ii), it follows that, for t ∈ [tk, tk+1), there exists a constant σ > 0 such that

V (t) ≤ V̄ (tk)e−σ(t−tk ), (28)

where V̄ (tk) = suptk−τ≤s≤tk {V (s)}, and σ > 0 satisfies (18).
Let C̃ik = Cik + Kdi and C̃ik0 = Cik0 + Kdi . When t = tk , we can use Lemma 2.2 to show that, for some positive

constants γk > 0, k ∈ N,

V (tk) =

N∑
i=1

xT
i (tk)Pi xi (tk) =

N∑
i=1

xT
i (t−k )[(C̃ik0 + EΣ Fik )

T Pi (C̃ik0 + EΣ Fik )]xi (t
−

k )

=

N∑
i=1

xT
i (t−k )[C̃T

ik0
Pi C̃ik0 + FT

ik
ΣT ET Pi C̃ik0 + C̃T

ik0
Pi EΣ Fik + FT

ik
ΣT ET Pi EΣ Fik ]xi (t

−

k )
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≤

N∑
i=1

xT
i (t−k ){C̃T

ik0
Pi C̃ik0 + γkC̃T

ik0
Pi E ET Pi C̃ik0 + γ −1

k FT
ik

Fik + (µi‖ET E‖)FT
ik

Fik }xi (t
−

k )

=

N∑
i=1

xT
i (t−k ){C̃T

ik0
Pi C̃ik0 + γkC̃T

ik0
Pi E ET Pi C̃ik0 + (µi‖ET E‖ + γ −1

k )FT
ik

Fik }xi (t
−

k ). (29)

By the Schur Complementary Theorem, it holds that, for i = 1, 2, . . . , N ,

C̃T
ik0

Pi C̃ik0 + γkC̃T
ik0

Pi E ET Pi C̃ik0 + (µi‖ET E‖ + γ −1
k )FT

ik
Fik − βki Pi < 0 (30)

is equivalent to the following matrix inequalities:C̃T
ik0

Pi C̃ik0 − βki Pi C̃T
ik0

Pi E FT
ik

ET Pi C̃ik0 −γ −1
k I 0

Fik 0 −(µi‖ET E‖ + γ −1
k )I

 < 0. (31)

Hence, by condition (iii), we obtain

V (tk) <

N∑
i=1

βki xT
i (t−k )Pi xi (t

−

k ) ≤ βk

N∑
i=1

xT
i (t−k )Pi xi (t

−

k ) = βk V (t−k ), (32)

where βk = max1≤i≤N {βki }, k ∈ N.
In the following, we shall show, by induction, that

V (t) ≤ µMk−1
‖φ‖

2e−σ(t−t0), t ∈ [tk−1, tk), k ∈ N, (33)

where µ = max1≤i≤N {µi }.
When k = 1, since for all t ∈ [t0 − τ, t0],

‖xi (t)‖ = ‖φi (t)‖ ≤ ‖φi‖ = sup
t0−τ≤t≤t0

‖φi (t)‖,

we get

V (t) ≤ max
1≤i≤N

{λmax(Pi )} ·

N∑
i=1

‖xi (t)‖
2

≤ µ · ‖φ‖
2, t ∈ [t0 − τ, t0],

where ‖φ‖
2

=
∑N

i=1 ‖φi‖
2.

Hence, we have

V̄ (t0) ≤ µ · ‖φ‖
2. (34)

By (28) and (34), we get

V (t) ≤ V̄ (t0)e−σ(t−t0) ≤ µ · ‖φ‖
2e−σ(t−t0) = M0µ · ‖φ‖

2e−σ(t−t0), t ∈ [t0, t1). (35)

Thus, (33) holds for k = 1.
Now assume (33) holds for k ≤ m, m > 1. Then, we shall show that (33) holds for k = m + 1.
By (32) and (17) and the induction assumption, we have

V (tm) ≤ βm V (t−m ) ≤ µβm Mm−1
‖φ‖

2e−σ(tm−t0) ≤ µMm
‖φ‖

2e−σ(tm−t0). (36)

Hence, by condition (iv) and (36), it follows that, for k = m + 1, t ∈ [tm, tm+1),

V (t) ≤ V̄ (tm) · e−σ(t−tm )
= max

tm−τ≤t≤tm
{V (t)} · e−σ(t−tm )

= max{ sup
tm−τ≤t<tm

{V (t)}, V (tm)}e−σ(t−tm )

≤ max{µMm−1
‖φ‖

2e−σ(tm−τ−t0), µMm
‖φ‖

2e−σ(tm−t0)}e−σ(t−tm )

= max{Mm−1eστ , Mm
}µ‖φ‖

2e−σ(tm−t0)e−σ(t−tm )

≤ µMm
‖φ‖

2e−σ(t−t0). (37)

Therefore, by the induction principle, we see that (33) holds for all k ∈ N.
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Finally, we shall show that

‖x(t)‖ ≤ K‖φ‖e−α(t−t0), t ≥ t0, (38)

where, α =
1
2 {σ −

ln M
δτ

} > 0, K =

√
µ
ν

, and ν = min1≤i≤N {νi }.

Since δτ ≤ infk∈N{tk−tk−1}, we have k−1 ≤
tk−1−t0

δτ
, which implies Mk−1

≤ e
ln M
δτ

(tk−1−t0). Thus, for t ∈ [tk−1, tk),
we get

‖x(t)‖2
≤

V (t)

ν
≤

µ

ν
‖φ‖

2 Mk−1e−σ(t−t0) ≤
µ

ν
‖φ‖

2e−(σ−
ln M
δτ

)(t−t0). (39)

Hence, (38) holds, which implies that system (2) is robustly exponentially stable with decay rate 1
2 {σ −

ln M
δτ

}. The
proof is complete. �

Remark 3.1. Theorem 3.1 presents the robust exponential stability criteria. However, these criteria cannot be used
to design the feedback control gain matrices Kci , Kdi , i = 1, 2, . . . , N . The following corollary aims to address this
problem.

Corollary 3.1. Let Assumptions 1 and 2 be satisfied. Assume that, for given µi > 0 and νi > 0, i = 1, 2, . . . , N,
conditions (i) and (iv) of Theorem 3.1 are satisfied, while conditions (ii)–(iii) are replaced by the following conditions
(ii∗)–(iii∗):

(ii∗) there exist matrices Yci ∈ Rn×n , such that, for i = 1, 2, . . . , N, the following LMIs hold:

Ψi ( Ãi0) + Y T
ci + Yci − αi Pi Pi Bi10 · · · Pi Bi N 0 Pi E FT

Ai

BT
i10

Pi −εi1 I · · · 0 0 FT
i1

...
...

. . .
...

...
...

BT
i N 0

Pi 0 · · · −εi N I 0 FT
i N

ET Pi 0 · · · 0 −ε−1
i I 0

FAi Fi1 · · · Fi N 0 −εi I


< 0, (40)

where Ψi ( Ãi0) = Pi Ãi0 + ÃT
i0 Pi + 2ri

√
µi
νi

Pi and αi , εi j satisfy (14);

(iii∗) there exist matrices Ydi ∈ Rn×n , such that, for i = 1, 2, . . . , N, the following LMIs hold:
CT

ik0
Pi Cik0 + Y T

di Cik0 + Cik0 Ydi − βik Pi CT
ik0

Pi E + Y T
di E FT

ik
Y T

di

ET Pi Cik0 + ETYdi −γ −1
k I 0 0

Fik 0 −(µi‖ET E‖ + γ −1
k )I 0

Ydi 0 0 −Pi

 < 0. (41)

Then, the large-scale uncertain impulsive system (2) with the controllers (uci , udi ) = (P−1
i Yci xi , P−1

i Ydi xi ),
i = 1, 2, . . . , N, is robustly exponentially stable with decay rate 1

2 {σ −
ln M
δτ

}.

Proof. Let Kci = P−1
i Yci , Kdi = P−1

i Ydi , i = 1, 2, . . . , N . Then, by Theorem 3.1 and the Schur Complementary
Theorem, the conditions of the theorem follows readily. �

Remark 3.2. It is interesting to discuss two special cases: (i) uci = 0 and (ii) udi = 0. That is to say, only the
continuous controllers uci or only the impulsive controllers udi are used to robustly and exponentially stabilize system
(2). In the case of udi = 0, i.e., Kdi = 0, Theorem 3.1 and Corollary 3.1 can be used to design the continuous feedback
controllers uci = Kci xi , i = 1, 2, . . . , N , to robustly and exponentially stabilize the system. But when uci = 0,
i.e., Yci = 0 or Kci = 0, it is noted that the condition for αi < 0 in Theorem 3.1 and Corollary 3.1 is not satisfied. In
fact, when uci = 0, i.e., Kci = 0, and matrix Ai is not a stable matrix, then αi > 0. In the following, we will use the
Razumikhin technique (see [15]) and Theorem 3.1 in [7] to solve this problem.
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Theorem 3.2. Let uci = 0, udi = Kdi xi and Assumptions 1 and 2 be satisfied. Assume that there exist positive definite
matrices Pi ∈ Rn×n , and constants γk > 0, εi j > 0, εi > 0, α̂i > 0, 0 < βik < 1, i, j = 1, 2, . . . , N, k ∈ N, such
that

(i) there exist some positive constants νi > 0, µi > 0, i = 1, 2, . . . , N, such that

νi I ≤ Pi ≤ µi I, i = 1, 2, . . . , N ; (42)

(ii) for k ∈ N, i = 1, 2, . . . , N, the following matrix inequalities hold:

Ψi (Ai0) − α̂i Pi Pi Bi10 · · · Pi Bi N 0 Pi E FT
Ai

BT
i10

Pi −εi1 I · · · 0 0 FT
i1

...
...

. . .
...

...
...

BT
i N 0

Pi 0 · · · −εi N I 0 FT
i N

ET Pi 0 · · · 0 −ε−1
i I 0

FAi Fi1 · · · Fi N 0 −εi I


< 0, (43)

where Ψi (Ai0) = Pi Ai0 + AT
i0 Pi + 2ri

√
µi
νi

Pi ;

(iii) for i = 1, 2, . . . , N , k ∈ N, the following matrix inequalities hold:C̃T
ik0

Pi C̃ik0 − βik Pi C̃T
ik0

Pi E FT
ik

ET Pi C̃ik0 −γ −1
k I 0

Fik 0 −(µi‖ET E‖ + γ −1
k )I

 < 0, (44)

where C̃ik0 = Cik0 + Kdi ;
(iv) there exists a positive constant σ with σ > p such that

βk ≤ e−σ(tk+1−tk ), (45)

where βk = max1≤i≤N {βki }, p = p1 + p2, p1 = max1≤i≤N {α̂i },
and p2 = max1≤i≤N {

1
νi

∑N
j=1 ε j i }.

Then, the closed-loop large-scale uncertain impulsive system (2) is robustly exponentially stable with decay rate
1
2 (σ − p).

Proof. Let the Lyapunov function be defined by

V (t) =

N∑
i=1

xT
i (t)Pi xi (t).

Then, by an argument similar to that used in the proof of Theorem 3.1, it follows from condition (i) that, for
t ∈ [tk, tk+1),

D+V (t) ≤

N∑
i=1

α̂i xT
i Pi xi +

N∑
i=1

N∑
j=1

εi j xT
j (t − τ j (t))x j (t − τ j (t))

≤ max
1≤i≤N

{α̂i }

N∑
i=1

xT
i Pi xi + max

1≤ j≤N

{
1
νi

N∑
j=1

ε j i

}
N∑

i=1

xT
i (t − τi (t))Pi xi (t − τi (t))

, p1V (t) + p2V (t − τ(t)), (46)

where p1 = max1≤i≤N {α̂i }, p2 = max1≤i≤N

{
1
νi

∑N
j=1 ε j i

}
.

Thus, by Theorem 3.1 in [7], if V (t + s) ≤ V (t) for any −τ ≤ s ≤ 0, then

D+V (t) ≤ (p1 + p2)V (t) , pV (t), (47)
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which implies that

V (t) ≤ V (tk)ep(t−tk ), t ∈ [tk, tk+1), k ∈ N, (48)

where p = p1 + p2 > 0.
Let C̃ik0 = Cik0 + Kdi . By condition (iii), it follows from an argument similar to that used in the proof of

Theorem 3.1, that

V (tk) <

N∑
i=1

βki xT
i (t−k )Pi xi (t

−

k ) ≤ βk

N∑
i=1

xT
i (t−k )Pi xi (t

−

k ) = βk V (t−k ), (49)

where βk = max1≤i≤N {βki }, k ∈ N.
From (48) and (49), we obtain

V (t) ≤ βk V (t−k )ep(t−tk ) = V (t−k )ep(t−tk )+ln βk , t ∈ [tk, tk+1), k ∈ N, (50)

which implies that

V (t−k+1) ≤ V (t−k )ep(tk+1−tk )+ln βk ≤ V (t−k )e−(σ−p)(tk+1−tk ) ≤ · · · ≤ V (t0)e−(σ−p)(tk+1−t0). (51)

Thus, for any t ∈ [tk, tk+1), k ∈ N, we obtain

V (t) ≤ V (t0)e−(σ−p)(t−t0), (52)

which implies that, for any initial condition x(s) = φ(s), s ∈ [−τ, 0],

‖x(t)‖ ≤

√
µ

ν
‖φ‖e−α(t−t0). (53)

Hence, by (53) and Theorem 3.1 in [7], system (2) with the impulsive controllers udi = Kdi xi , i = 1, 2, . . . , N , is
robustly exponentially stable with decay rate 1

2 (σ − p). The proof is complete. �

Corollary 3.2. Let uci = 0 and Assumptions 1 and 2 be satisfied. Assume that, for given µi > 0 and νi > 0,
i = 1, 2, . . . , N, conditions (i)–(ii) and (iv) of Theorem 3.2 are satisfied, while condition (iii) is replaced by the
following (iii∗):

(iii∗) for i = 1, 2, . . . , N , k ∈ N, the following LMIs hold:
CT

ik0
Pi Cik0 + Y T

di Cik0 + Cik0 Ydi − βik Pi CT
ik0

Pi E + Y T
di E FT

ik
Y T

di

ET Pi Cik0 + ETYdi −γ −1
k I 0 0

Fik 0 −(µi‖ET E‖ + γ −1
k )I 0

Ydi 0 0 −Pi

 < 0. (54)

Then, the large-scale uncertain system (2) with the impulsive controllers udi = P−1
i Ydi xi , i = 1, 2, . . . , N, is

robustly exponentially stable with decay rate 1
2 (σ − p).

Proof. The conclusion follows as a direct consequence of Theorem 3.2 with Kdi = P−1
i Ydi , i = 1, 2, . . . , N . �

Remark 3.3. In system (1), if Cik1 = Cik2 = I and uci = 0, then (1) can be regarded as an uncertain continuous large-
scale system which is subjected to the impulsive controllers {udi (tk), k ∈ N}. In this case, Cik = I and Corollary 3.2
can be used to design the feedback impulsive controllers {Kdi xi (tk), k ∈ N} under which the closed-loop continuous
uncertain system is robustly exponentially stable with decay rate 1

2 (σ − p).

4. Examples and simulations

In this section, one representative example is given for illustration. Here, the numerical simulation procedure is
coded and executed in the MATLAB environment.
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Example 4.1. Let the chaotic Colpitts’ oscillator [17] be used as a subsystem in the large-scale uncertain system with
coupling time-delays. A single Colpitts’ oscillator is in the form of

ẏ1 = αy2
ẏ2 = −σ(y1 + γ y2 + y3)

ẏ3 = β(y2 + a1 y1 + a3 y3
1),

(55)

where α, β, σ, a1, γ, a3 ∈ R. It is known that when the parameters α = 2.4, β = 2.2, σ = 1, γ = 0.252, a1 = 1 and
a3 = −0.2, system (55) is chaotic.

Let y = (y1, y2, y3)
T. Then, the matrix form of the Colpitts’ oscillator is described as:

ẏ = A0 y + ϕ(y) (56)

where A0 =

(
0 α 0

−σ −γ σ −σ

a1β β 0

)
and ϕ(y) =

(
0
0

a3βy3
1

)
.

Suppose that the large-scale uncertain system with coupling time-delays is given by

ẋi = Axi + ϕ(xi ) +

N∑
j=1

Bi j x j (t − τ j (t)), i = 1, 2, . . . , N , (57)

where xi = (xi1, xi2, xi3)
T, the matrix A ∈ N [A1, A2], where

A1 =

 −0.5 α − 0.5 −0.5
−σ − 0.5 −γ σ − 0.5 −σ − 0.5
a1β − 0.5 β − 0.5 −0.5

 and A2 =

 0.5 α + 0.5 0.5
−σ + 0.5 −γ σ + 0.5 −σ + 0.5
a1β + 0.5 β + 0.5 0.5

 ,

while the coupling term matrices are in the form of

Bi i =

0.5 0.5 0
0 0.5 0.2
0 0 −0.5

 , Bi,i+1 =

−1.0 −0.3 0
0 0.25 −0.1
0 0 1.0

 , Bi,i+2 =

0.5 −0.2 0
0 −0.75 −0.1
0 0 −0.5

 ,

and BN−1,N+1 = BN−1,1, BN−1,N+2 = NN−1,2, BN ,N+1 = BN1, and BN ,N+2 = BN2.
In the following, we will design impulsive controller udi (tk) = Kdi xi (tk) with which the system

ẋi = Axi + ϕ(xi ) +

N∑
j=1

Bi j x j (t − τ j (t)), t ∈ (tk, tk+1],

∆xi (t) = ui (t) = Kdi (xi (t) − y(t)), t = tk, k ∈ N, i = 1, 2, . . . , N , (58)

is robustly and exponentially stable.
From [18,19], it follows that∥∥∥∥∂ϕ(di )

∂xi

∥∥∥∥ ≤ 5.28, i = 1, 2, . . . , N . (59)

To apply Corollary 3.2, we choose εi j = 1, εi = 1, νi = 1, µi = 2, Yci = 0. Then, by using the LMI Tool
Box within the MATLAB environment to solve the LMIs (54), for i = 1, 2, . . . , 10, we obtain α̂i = 6, βik =

0.01, maxk∈N{tk+1 − tk} = 0.2878, and

Pi =

1.5437 0.3646 0.1371
0.3646 1.4298 0.1290
0.1371 0.1290 1.1520

 , Ydi =

−1.5328 −0.3546 −0.1330
−0.3546 −1.4215 −0.1264
−0.1330 −0.1264 −1.1502

 . (60)

Now, we may design the required impulsive controller udi (tk) = Kdi xi (tk) as follows:
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Fig. 1. The first elements of states, xk1(t), k = 1, 2, . . . , 10.

Fig. 2. The second elements of states, xk2(t), k = 1, 2, . . . , 10.

t0 = 0, tk − tk−1 = 0.2, k ∈ N, and the impulsive control gain matrices Kdi are:

Kdi = P−1
i Ydi =

−0.9944 0.0053 0.0022
0.0022 −0.9957 0.0011
0.0022 0.0011 −0.9988

 , i = 1, 2, . . . , 10. (61)

Thus, p1 = 6, p2 = 10. Therefore, by setting σ = 23, we obtain

σ > p = p1 + p2, and βk ≤ e−σ(tk+1−tk ) k ∈ N. (62)

Hence, by Corollary 3.2, the impulsive controller udi (tk) = Kdi xi (tk) designed above can achieve robust exponential
stabilization for this large-scale uncertain system and its decay rate is 1

2 {σ − p} = 3.5.

In the simulations, we choose tk+1 − tk = 0.2, k ∈ N, and set, without loss of generality, the initial conditions
xi (t) = ci , whenever t ≤ 0, where ci , i = 1, 2, . . . , N , are constants. For any A ∈ N [A1, A2], we set A = A1 + R3×3,
where the matrix R3×3 = (ri j )3×3 is a 3 × 3 random matrix in which 0 ≤ ri j ≤ 1. In Figs. 1–3 we let τ j (t) ≡ 0.1,
and we see that the large-scale uncertain system can be robustly exponentially stabilized by the controller given by
(61). In Figs. 4–6 we use different time-delays: τ j (t) =

11− j
100 , j = 1, 2, . . . , 10, then we can see that the large-scale

uncertain system can still be robustly exponentially stabilized by the same controller given by (61).
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Fig. 3. The third elements of states, xk3(t), k = 1, 2, . . . , 10.

Fig. 4. The first elements of states, xk1(t), k = 1, 2, . . . , 10.

Fig. 5. The second elements of states, xk2(t), k = 1, 2, . . . , 10.
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Fig. 6. The third elements of states, xk3(t), k = 1, 2, . . . , 10.

5. Conclusions

The coupling of subsystems seriously affects the dynamical behaviors such as the stability of a large-scale
system. Since coupling time-delay and uncertainty often occur in a practical large-scale system, it is important to
investigate their effect on the stability of a large-scale system. In this paper, the robust exponential stabilization
problem for a large-scale uncertain impulsive system with coupling time-delays has been studied by employing hybrid
feedback control techniques and an impulsive control method. The controller so designed is robust with respect to
the uncertainties in the subsystem parameters and the coupling time-delays. By using the methods of the Lyapunov
function and Razumikhin technique as well as Linear Matrix Inequalities (LMIs), some simple and effective criteria
for achieving robust exponential stabilization have been derived, with fast convergence rates. The decay rates are also
obtained to estimate the convergence rate. These conditions are expressed in terms of LMIs. Finally, one relevant
example, for impulsive controllers, has been considered and solved so as to illustrate the results obtained in the paper.
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