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Abstract. We prove that rays in linearly elastic anisotropic nonuniform me-

dia obey Fermat’s principle of stationary traveltime. First, we formulate the

concept of rays, which emerges from the Hamilton equations. Then, we show

that these rays are solutions of the variational problem stated by Fermat’s prin-

ciple. This proof is valid for all rays except the ones associated with inflection

points on the phase-slowness surface.
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1. Introduction

Fermat’s variational principle of stationary traveltime is often implicitly assumed

to be valid in seismological studies that employ ray-theory methods. Many quanti-

tative results pertaining to traveltimes and raypaths are obtained using this princi-

ple. However, Fermat’s principle is not a fundamental postulate of the ray theory

and, thus, we set out to prove it for linearly elastic anisotropic nonuniform media.

Rays are solutions of the Hamilton equations. In many cases, rays can also be

obtained by following Fermat’s principle of stationary traveltime. In this paper,

we use the rigorous notion of a ray, emerging from the Hamilton equations, to

formulate and prove the statement of Fermat’s principle.

Many researchers have discussed ray theory extensively. Notable works include

Achenbach et al. (1982), Kravtsov and Orlov (1990), and Červený (2001). Our

work is motivated by the works of Maurycy Pius Rudzki (Rudzki, 1913), Marcelo

Epstein and Jędrzej Śniatycki (Epstein and Śniatycki, 1992) that deal with Fermat’s

variational principle.
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The paper of Rudzki (1913) emphasizes Fermat’s principle as a variational prob-

lem in anisotropic nonuniform media, without actually proving this principle. Ep-

stein and Śniatycki (1992) prove this principle by using a Hamiltonian that differs

from the one used in our work and, hence, the resulting proof is different. The

Hamiltonian in our work is a homogeneous function. This homogeneity signifi-

cantly simplifies the computations involving the Hamiltonian.

We are also familiar with a proof by Babich (1961) in a paper that deals with the

intensity of wavefronts in anisotropic nonuniform media. This paper, which relies

on differential geometry, is written for an audience with substantial mathematical

knowledge and requires the reader to identify the proof in the paper. Our approach,

which shows the details of the proof of Fermat’s principle in anisotropic nonuniform

media, requires only familiarity with differential equations.

We would like to note that after the submission of our paper, a preprint of a

new paper dealing with Fermat’s principle was brought to our attention (Červený,

2002). In his paper, Červený (2002) invokes the concept of the Finsler metric,

which defines the geometry of the calculus of variations in the context of ray theory

(e.g., Antonelli et al., 2002), to prove Fermat’s principle in anisotropic nonuniform

media. The formulation of Červený (2002), similarly to the one of Babich (1961), is

directed at readers familiar with differential geometry. Again, our approach relies

on mathematical knowledge more familiar to a general audience of geophysicists.

2. Statement of Fermat’s principle

In 1657, in a letter to Cureau de la Chambre1, Fermat formulated his variational

principle for the propagation of light. He stated that light travels along a curve

that renders the traveltime minimum. In modern notation, a generic form of this

principle can be restated by the following theorem.

1Oeuvres de Fermat (Paris, 1891) Vol. II, p. 354.
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Theorem 1. Rays are the solutions of the variational problem

(2.1) δ

B∫
A

ds

V (x, n)
= 0,

where ds is an arclength element and V (x, n) is the ray velocity in direction n =

dx/ds at point x. A and B are the fixed endpoints of this variational problem.

Fermat’s principle of stationary traveltime is often assumed to be valid for the

propagation of seismic signals. However, the notions of a ray and the velocity,

V , are not obvious entities. To obtain the meanings of these entities and prove

Theorem 1, we formulate the concepts of ray and ray velocity2 in the context of

linearly elastic anisotropic nonuniform media.

3. Seismic rays

3.1. Cauchy’s equations of motion in elastic solids. Rays result from solving

— by the method of characteristics — the eikonal equation, which is associated

with the elastodynamic equations that correspond to a linearly elastic solid. The

equations of the characteristics of the eikonal equation are the Hamilton equations,

whose solutions give rays.

The elastodynamic equations are rooted in Cauchy’s equations of motion, namely,3

(3.1) ρ (x)
d2ui

dt2
=
∂σij

∂xj
,

where ρ (x) is the mass density at point x, u is a vector describing the displacement

of the medium, and σij is the stress tensor. As can be observed by considering the

left-hand side of equation (3.1), Cauchy’s equations of motion are a statement of

Newton’s second law.

2This entity is also commonly referred to as group velocity.
3In this paper we use the Einstein summation convention.
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To formulate the elastodynamic equations in the context of linear elasticity, we

let the stress tensor be given by

(3.2) σij = cijkl (x) εkl,

where cijkl (x) are the elasticity parameters at point x, and

εkl =
(
∂uk/∂x

l + ∂ul/∂x
k
)
/2

is the infinitesimal strain tensor. Equations (3.2) are the constitutive equations of

a linearly elastic solid.

Inserting the stress-tensor expression given in equations (3.2) into Cauchy’s equa-

tions of motion, we obtain the desired elastodynamic equations. To solve these

equations, we assume the trial solution to be of the form

(3.3) u (x, t) = A (x) f (ψ (x)− t) ,

where ψ is referred to as the eikonal function, whose level sets correspond to wave-

fronts, and where A denotes the amplitude. Inserting trial solution (3.3) into the

elastodynamic equations, we obtain

(3.4)


∂cijkl (x)
∂xj

∂Ak

∂xl + cijkl (x) ∂2Ak

∂xj∂xl = 0

∂
∂xj

[
cijkl (x)Al

∂ψ
∂xk

]
+ cijkl (x) ∂Ak

∂xl
∂ψ
∂xj = 0

cijkl (x)Ak
∂ψ
∂xj

∂ψ
∂xl − ρ (x) δikAk = 0

.

Since the concepts of rays and ray velocity do not require us to consider am-

plitude, we turn our attention to the last equation of system (3.4) from which the

amplitude can be factored out.

3.2. Eikonal equation. The last equation of system (3.4) possesses a nontrivial

solution if and only if

(3.5) det

[
cijkl (x)

∂ψ

∂xj
∂ψ

∂xl
− ρ (x) δik

]
= 0.



FERMAT’S PRINCIPLE FOR SEISMIC RAYS IN ELASTIC MEDIA 5

Considering a three-dimensional medium and denoting

(3.6) pj =
∂ψ

∂xj
,

we can write determinantal equation (3.5) as a third-degree polynomial in p2,

namely,

(3.7)
(
p2
)3

det

[
cijkl (x)

pj
|p|

pl
|p|
− ρ (x) 1

p2
δik
]
= 0.

As defined in expression (3.6), p = ∇ψ is a vector normal to the wavefront, and

hence, in view of the trial solution, shown in expression (3.3), p2 = pip
i is the

squared magnitude of the slowness with which the wavefront propagates. Con-

sequently, v2 = 1/p2 is the squared magnitude of the velocity with which the

wavefront propagates. Since wavefronts are loci of constant phase, this velocity is

referred to as phase velocity.

Polynomial (??) can be written as

(3.8)

p2 − 1

v21

(
x, p|p|

)
p2 − 1

v22

(
x, p|p|

)
p2 − 1

v23

(
x, p|p|

)
 = 0.

Herein, the quantities 1/v2i (x, p/ |p|) are the three roots of polynomial (??), and,

in general, correspond to the three wave types that exist in an anisotropic medium.

Due to the positiveness of strain energy, the three roots are real and positive. For

anisotropic solids, the three roots are distinct except at the discrete singular points,

which commonly occur for the two slower waves. For isotropic solids, we obtain

only two distinct roots. Since the dependence of v on p is given only in terms of

p/ |p|, the phase-velocity function, v (x, p/ |p|), is homogeneous4 of degree zero in p.

4We say that function f is homogeneous of degree r in ξ, if f (cξ, ζ) = crf (ξ, ζ), where c denotes
a constant. Similarly, function f is absolute-value homogeneous of degree r in ξ, if f (cξ, ζ) =
|c|r f (ξ, ζ).
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Each factor of expression (3.8) corresponds to the eikonal equation for a given

wave type, which can be written as

(3.9) p2 =
1

v2
(
x, p|p|

) .
The eikonal equation is the key equation of ray theory. According to this equation,

the squared magnitude of the slowness with which the wavefront propagates is a

function of properties of the medium, which depend on position and direction.

Phase-velocity function, v (x, p/ |p|), is smooth and, hence, differentiable with

respect to both position and direction. The smoothness with respect to position

x results from our assumption of a medium that is specified by functions cijkl (x)

and ρ (x) that are smooth. The smoothness with respect to direction p/ |p| is a

consequence of the smoothness of the multiplication and addition operations.

3.3. Hamilton ray equations.

3.3.1. Method of characteristics. In the context of ray theory, we solve equation

(3.9) using the method of characteristics (e.g., Courant and Hilbert, 1989). To do

so, we define function H, called the Hamiltonian, as

(3.10) H (x, p) =
1

2
p2v2

(
x,

p

|p|

)
.

The factor of 1/2 in expression (3.10) guarantees a parametrization of the charac-

teristics of eikonal equation (3.9) by time.

The equations of the characteristics of eikonal equation (3.9) are the Hamilton

equations, given by

(3.11)

 ẋi = dxi

dt = ∂H
∂pi

ṗj =
dpj
dt = − ∂H

∂xj

.

At this point, we can state the definition of a ray that underlies the formulation of

this paper.
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Definition 2. Rays correspond to the solutions of the Hamilton equations, given

by system (3.11). Rays are given by the function x = x (t).

Remark 3. In mathematical literature, rays x (t) are often referred to as base char-

acteristics while (x (t) , p (t)) are referred to as characteristics (e.g., Bleistein, 1984).

In view of Definition 2, the Hamilton equations that are shown in system (3.11) are

often referred to as Hamilton ray equations. Definition 2 also allows us to state the

concept of ray velocity V , which is given by |ẋ (t)|.

3.3.2. Properties of the Hamiltonian. By examining expression (3.10), we note that,

in view of the phase velocity being homogeneous of degree zero in p, H is homoge-

neous of degree two in p.

Also, since H does not explicitly depend on time, its value is conserved along

the ray. This can be stated by the following lemma.

Lemma 4. The Hamiltonian H (x, p), given by expression (3.10), is conserved

along the ray.

Proof. Using system (3.11) and the fact that H does not explicitly depend on time,

we can write
dH

dt
=
∂H

∂x
ẋ+

∂H

∂p
ṗ+

∂H

∂t
= −ṗẋ+ ẋṗ = 0.

�

The value of the Hamiltonian, which is conserved along the ray, is equal to 1/2.

This results from the fact that the eikonal equation, which is shown in equation

(3.9), must be satisfied along its characteristics. Hence, in view of this equation,

which states that p2v2 = 1, and expression (3.10), we require that

(3.12) H (x, p) =
1

2
,

along a ray.
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4. Variational formulation

4.1. Euler equations5. Fermat’s principle is a variational formulation. To show

that this principle is valid for seismic rays, we use the Legendre transformation to

restate the Hamilton ray equations as the Euler equations, which state the station-

arity condition of a variational problem.

In view of the Legendre transformation, we can define the Lagrangian as

(4.1) L (x, ẋ) = pi (x, ẋ) ẋ
i −H (x, p (x, ẋ)) ,

where

(4.2) ẋi =
∂H

∂pi
,

is the inverse Legendre transformation. Having defined L, we can state the ray-

tracing problem in the context of the calculus of variations, namely,

(4.3) δ

∫ B

A

Ldt = 0.

Hence, the rays satisfy the Euler equations

(4.4)
∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
= 0.

In our case, the Lagrangian, shown in expression (4.1), is conserved along each

ray and its value is 1/2. Also, this Lagrangian is homogeneous of degree two in ẋ.

These properties are shown in the following steps.

Lemma 5. If H (x, p) is homogeneous of degree two in p, then

L (x, ẋ (x, p)) = H (x, p) ,

where, by the inverse Legendre transformation, stated in expression (4.2), ẋi =

∂H/∂pi.

5These equations are also commonly referred to as the Euler-Lagrange equations.
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Proof. Consider the Lagrangian

L (x, ẋ (x, p)) = piẋ
i −H.

In view of the inverse Legendre transformation, we can write

L (x (t) , ẋ (x (t) , p (t))) = pi
∂H

∂pi
−H.

If H is homogeneous of degree two in p, by Euler’s homogeneous-function theorem,

we obtain

L (x (t) , ẋ (x (t) , p (t))) = 2H −H = H,

which is the required expression. �

In view of the conserved value of the Hamiltonian, H, as shown in Lemma 4 and,

following expression (3.12), we obtain the following corollary of Lemma 5.

Corollary 6. Along each ray, the Lagrangian, L, is equal to 1/2.

In our case, in view of the Hamiltonian being homogeneous of degree two in p,

the analogous property of the Lagrangian is shown in the following lemma.

Lemma 7. If the Hamiltonian, H (x, p), is homogeneous of degree two in p, then

the Lagrangian, L (x, ẋ), is homogeneous of degree two in ẋ.

Proof. By Lemma 5, H (x, p) = L (x, ẋ (x, p)), where ẋ and p are related by the

inverse Legendre transformation ẋi = ∂H/∂pi. Let p′ = ap, where a is a constant.

The corresponding Hamilton equations are

(ẋ′)
i
=
∂H (x, p′)

∂p′i
=
∂H (x, ap)

∂ (api)
.

By the homogeneity of H and the property of the differential operator, we can write

(ẋ′)
i
=
∂H (x, ap)

∂ (api)
=
a2 ∂H(x,p)

∂pi
∂(api)
∂pi

=
a2 ∂H(x,p)

∂pi

a
;
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hence,

(ẋ′)
i
= a

∂H (x, p)

∂pi
,

which, in view of the Hamilton equations, given by system (3.11), can be stated as

ẋ′ = aẋ.

Consequently, we can write

L (x, aẋ) = L (x, ẋ′) ,

which, by Lemma 5, yields

L (x, aẋ) = L (x, ẋ′) = H (x, p′) = H (x, ap) = a2H (x, p) = a2L (x, ẋ) ,

where the expression in the middle results from the homogeneity of H. This means

that the Lagrangian L (x, ẋ) is homogeneous of degree two in ẋ. �

The solutions of system (4.4) have a fixed parametrization by the traveltime. In

other words, variational problem (4.3) depends on parametrization. For the Euler

equations to be independent of parametrization, the corresponding Lagrangian must

be absolute-value homogeneous of degree one in ẋ. Parametrization independence is

necessary to state Fermat’s principle since its generic form, as shown in expression

(2.1), is parametrization independent.

Let us consider function F given by

(4.5) F =
√
2L.

Note that F is absolute-value homogeneous of degree one in ẋ. Under certain

conditions, which are satisfied in our case, the solutions of the Euler equations

given by system (4.4) are also the solutions of the Euler equations given by

(4.6)
∂F

∂xi
− d

dt

(
∂F

∂ẋi

)
= 0.

This is stated by the following lemma.
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Lemma 8. A solution of equations (4.4) that satisfies the initial condition given

in Corollary 6, where L is given by expression (4.1) is also a solution of equations

(4.6), where F =
√
2L.

Proof. Inserting L = F 2/2 into equations (4.4), we obtain

∂

∂xi

(
F 2

2

)
− d

dt

[
∂

∂ẋi

(
F 2

2

)]
= F

∂F

∂xi
− d

dt

[
F
∂F

∂ẋi

]
= F

[
∂F

∂xi
− d

dt

(
∂F

∂ẋi

)]
− dF

dt

∂F

∂ẋi

= 0.

Since L = 1/2 along a ray, as shown in Corollary 6, then F = 1 and, hence,

dF/dt = 0 along the solutions of equations (4.4). Thus, equations (4.4) become

equations (4.6), as required. �

If we can show that

(4.7) F =
|ẋ|

V
(
x, ẋ|ẋ|

) ,
where |ẋ| = ds/dt and ẋ/ |ẋ| = n, then we prove Theorem 1, since the right-hand

side of equation (4.7) is the integrand of equation (2.1).

4.2. Ray velocity. In order to show that the right-hand side of equation (4.7)

is the integrand of equation (2.1), we must formulate ray velocity in a variational

context. Since, as shown in Lemma 7, the Lagrangian is homogenous of degree two

in ẋ, we can write

L (x, ẋ) = L (x, |ẋ|n) = |ẋ|2 L (x, n) ,

where n = ẋ/ |ẋ|. Since, as stated in Corollary 6, the value of the Lagrangian along

a ray is 1/2, we can write
1

2
= |ẋ|2 L (x, n) .



FERMAT’S PRINCIPLE FOR SEISMIC RAYS IN ELASTIC MEDIA 12

As this expression is valid along any ray, the ray velocity V , given by |ẋ|, can be

expressed as

(4.8) V (x, n) = |ẋ| = 1√
2L (x, n)

.

Now, we are ready to complete our proof of Theorem 1.

5. Proof of Theorem 1

Proof. By Lemma 8, rays are the solutions of the Euler equations stated in system

(4.6). Consequently, the rays are the solutions of the variational problem

(5.1) δ

B∫
A

Fdt = 0.

In view of expression (4.5), we can restate this variational problem as

δ

B∫
A

F (x, ẋ) dt = δ

B∫
A

√
2L (x, ẋ)dt = 0.

Since, as stated in Lemma 7, L is homogeneous of degree two in ẋ, we can write

δ

B∫
A

√
2 |ẋ|2 L (x, n)dt = δ

B∫
A

|ẋ|
√

2L (x, n)dt = 0.

In view of expressions (4.8) and recalling that |ẋ|dt = ds, we conclude that

δ

B∫
A

F (x, ẋ) dt = δ

B∫
A

ds

V (x, n)
= 0.

Hence, the solutions of the Hamilton ray equations, which, by Definition 2, corre-

spond to rays, are the solutions of variational problem (2.1). �

6. Conclusions

We have proven that, in general, seismic rays in linearly elastic anisotropic

nonuniform media obey Fermat’s principle of stationary traveltime. Firstly, we

formulate the concept of seismic rays, which emerges from the Hamilton equations.
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Secondly, we show that these rays satisfy the generic form of Fermat’s variational

principle.

Our proof relies on the Legendre transformation. We can use the Legendre

transformation only if the Hamiltonian, H, is regular, namely,

det

[
∂2H

∂pi∂pj

]
6= 0.

As stated by Hanyga (2001), the requirement of regularity imposes certain limita-

tions on our ability to prove Theorem 1; namely, we are unable to use the Legendre

transformation at the inflection points. Note that this limitation applies to all the

proofs of Fermat’s principle that are known to us. However, as shown by Mus-

grave (1970), for an elastic medium defined by constitutive equations (3.2), the

innermost phase-slowness surface is always convex and, hence, the Hamiltonian as-

sociated with the fastest wave is always regular. In other words, Fermat’s principle

is always valid for the fastest wave. For the other two wave types, we cannot use

our approach at the points where the Hamiltonian is irregular.

This does not mean that Fermat’s principle does not hold in general; however, the

proof of Theorem 1 in the context of a phase-velocity function giving an irregular

Hamiltonian remains an open problem.
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