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ABSTRACT. In this paper, we consider an optimal sensor scheduling problem in continuous time.

This problem aims to find an optimal sensor schedule such that the corresponding estimation error

is minimized. It is formulated as a deterministic optimal control problem involving both discrete

and continuous valued controls. A computational method is developed for solving this deterministic

optimal control problem based on a branch and bound method in conjunction with a gradient-based

method. The branch and bound method is used to determine the optimal switching sequence of

sensors, where a sequence of lower bound dynamic systems is introduced so as to provide effective

lower bounds for the construction of the branching rules. For a given switching sequence, determining

the respective optimal switching time is a continuous-valued optimal control problem and can be

solved by gradient-based method with appropriate gradient formulae. This computational method

is very efficient, as demonstrated by the numerical examples.

Keywords: Discrete-valued control; Kalman filter; lower bound dynamic system; sensor schedul-

ing; switching sequence; switching time.

1. INTRODUCTION

In many practical scenarios in areas such as optical communications, radio as-

tronomy, medical diagnosis, seismology, geological surveying, hydrology, population

surveying, a large amount of data is collected from different and diverse sources. We

consider the case where the collection is done in continuous time from different sensors

with various degrees of reliability. On the basis of the collected data, one is required

to estimate the needed but unknown information (signal) as accurately as possible.

In the case of a single sensor and a linear system in a Gaussian environment, the

optimal estimator is given by the Kalman filter.

These problems are referred to as optimal sensor scheduling problems. They have

received considerable attention in the open literature. In [10, 17], the measurement

adaptation problems are formulated. They can be converted into optimal control
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problems. In [3], the sensor scheduling problem is modeled in continuous time, where

the scheduling policies are considered as processes adapted to the observation σ-

algebra. It is then shown that the optimal scheduling policy can be obtained by

solving a quasi-variational inequality. However, this general formulation is much

too complex for an optimal solution to be computed. In [15], the sensor scheduling

problem considered is in continuous time involving linear systems. It corresponds to

the situation where the control variables are restricted to take values from a discrete

set but the switching times are to take place over a continuous time horizon. This

formulation leads to an optimal discrete-valued control problem, which is a special

case of the form considered in [14, 21]. The optimal fusion problem is considered in [6,

7], where the objective is to find the optimal strategy for assigning appropriate weights

to each of the sensors dynamically such that the estimation error is minimized. The

control parametrization method [20], the control parametrization enhancing technique

[14, 21], and the software MISER3.2 [11] are applied to solve this problem.

For the case of discrete time, the sensor scheduling problem is solved by stochastic

strategies, such as those reported in [9], and by the tree search type of algorithms,

such as those reported in [12, 18, 19]. Based on the positive semi-definite property of

the covariance matrix introduced in [13], a branch and bound method is developed

in [5] to search for the optimal scheduling policy. The branching rule is based on

a precise expression of an effective lower bound. This method is very efficient. A

generalized class of this problem is also considered in [4], where N2 out of the N1

sensors can be turned on at any one time and a hybrid method, which combines

branch and bound and a gradient-based method, is developed to solve this problem.

In this paper, we apply the branch and bound method to solve the sensor scheduling

problem in continuous time, as also considered in [15].

The rest of the paper is organized as follows. Section 2 contains the problem

formulation. In Section 3, we develop a computational solution algorithm which

combines a gradient-based method and the branch and bound method. For illustra-

tion, a numerical example is solved in Section 4. Section 5 completes the paper with

some concluding remarks.

2. PROBLEM FORMULATION

Let (Ω,F , P ) be a given probability space. Consider a system governed by the

following linear Ito stochastic differential equation

(2.1a) dx(t) = A(t)x(t)dt + B(t)dV (t), t ∈ [0, T ],

with initial condition

(2.1b) x(0) = x0,
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where 0 < T < ∞ and, for each t ≥ 0, A(t) ∈ Rn×n and B(t) ∈ Rn×d are uniformly

bounded measurable matrix-valued functions. The process {V (t), t ≥ 0} is a d-

dimensional standard Brownian motion on (Ω,F , P ) with mean and covariance given

by

E{V (t)} = 0 and E{(V (t), y)2} = t ‖ y ‖2,

where ‖ · ‖ denotes the usual Euclidean norm. The initial state x0 is a Rd-valued

Gaussian random vector on (Ω,F , P ) with mean E(x0) = x̄0 and covariance E{(x0 −

x̄0)(x0 − x̄0)ᵀ} = P0. It is the process {x(t), t ≥ 0} that we wish to estimate on the

basis of measurement data obtained by N sensors, which are governed by the system

of Ito stochastic differential equations given by

(2.2a) dyi(t) = Ci(t)x(t)dt + Di(t)dWi(t), t ∈ [0, T ],

(2.2b) yi(0) = 0,

where i = 1, . . . , N , Ci(t) ∈ Rm×n, Di(t) ∈ Rm×m, yi(t) ∈ Rm, and, for each i,

1 ≤ i ≤ N , {Wi(t), t ≥ 0} is a standard Rm-valued Brownian motion.

A sensor schedule can be represented by a function u : [0, T ] → ∆ = {1, . . . , N}.

u(t) = i means that the sensor i is used at time t. Let U denote the set of all such

sensor schedules which are measurable.

For any sensor schedule u ∈ U , we have the output equation:

(2.3a) dy(t) =

N
∑

i=1

χ{u(t)=i}[Ci(t)x(t)dt + Di(t)dWi(t)], t ∈ [0, T ],

(2.3b) y(0) = 0.

Then, let

(2.4) Fy
t = σ{y(s), 0 ≤ s ≤ t}

denote the smallest σ-algebra generated by the observation process y(t) associated

with u. Given the history F y
t , it is well known that the unbiased minimum variance

estimate of the process {x} is given by its conditional expectation:

(2.5) x̂(t) = E{x(t)|F y
t }.

Let the error covariance matrix be denoted by

(2.6) P (t) = E{(x(t) − x̂(t))(x(t) − x̂(t))
ᵀ

}.

Then, for a given u ∈ U , the optimal x̂(t) is given by Kalman filter, which is deter-

mined from applying the following theorem.
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Theorem 1. For a given sensor schedule u ∈ U , the unbiased minimum variance

estimate x̂(t) is the solution of the stochastic differential equation

dx̂(t) =[A(t) − P (t)

N
∑

i=1

χ{u(t)=i}C
ᵀ

i (t)R
−1
i Ci(t)]x̂(t)dt

+ [P (t)
N

∑

i=1

χ{u(t)=i}C
ᵀ

i (t)R
−1
i (t)]dy(t), t ∈ [0, T ],(2.7a)

x̂(0) =x̄0,(2.7b)

where

(2.8) Ri(t) = Di(t)D
ᵀ

i (t),

and the error covariance matrix P (t) satisfies the matrix Riccati differential equation:

Ṗ (t) =A(t)P (t) + P (t)Aᵀ(t) + B(t)Bᵀ(t)

− P (t)(

N
∑

i=1

χ{u(t)=i}C
ᵀ

i (t)R
−1
i (t)Ci(t))P (t),(2.9a)

P (0) =P0.(2.9b)

The proof of this theorem is the deduction of a Kalman filter, which can be found

in [1, 2]. We outline the main idea of this proof below.

Proof. The linear recursive filter we need to construct must be of the form

dx̂ = G(t)x̂(t)dt + Γ(t)dy

x̂(0) = x̄0,

where the matrices G and Γ need to be determined. The condition (2.5) is equivalent

to

Ex(t) = Ex̂(t), ∀t ∈ [0, T ]

E||x(t) − x̂(t)||2 → Minimum, ∀t ∈ [0, T ].

These two conditions are then applied to determine G and Γ. Details are given in

[1].

Obviously, P (t) depends on the sensor schedule u ∈ U and should be denoted by

Pu(t). Then, we formulate the sensor scheduling problem as:

Problem 1. Find a u ∈ U such that

(2.10) J(u) =

∫ T

0

Tr{W (t)Pu(t)}dt + c Tr{Pu(T )}
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is minimized, where Pu(t) is the solution of (2.9) under the sensor schedule u, W (t)

is an n×n-positive definite matrix-valued measurable function which is equibounded

on [0, T ], and c is a positive constant.

The cost functional (2.10) aims to minimize estimation errors with a special

emphasis on the terminal error.

In practice, it is impossible to implement a sensor schedule with infinitely many

switches. Thus, we only consider the case of finitely many switches. Suppose that

the number of switchings is M , then the sensor schedule u ∈ U is equivalent to the

switching strategy

(υ, τ) = ((υ1, τ1), (υ2, τ2), . . . , (υM , τM)),

where

υ = (υ1, . . . , υM), υi ∈ {1, . . . , N}, i = 1, . . . , M,

is the switching sequence, and

τ = (τ1, . . . , τM),

M
∑

k=1

τk = T, τi ≥ 0, i = 1, . . . , M,

is the respective switching time vector. Let Υ denote the set of all possible switching

sequences and also let Ξ denote the set of all possible switching time vectors. Then,

Problem 1 is equivalent to

Problem 2. Find an admissible switching strategy (υ, τ) ∈ Υ × Ξ, such that

(2.11) J(υ, τ) =

∫ T

0

Tr{W (t)Pυ,τ(t)}dt + c Tr{Pυ,τ(T )}

is minimized, where Pυ,τ (t) is the solution of

Ṗ (t) =A(t)P (t) + P (t)Aᵀ(t) + B(t)Bᵀ(t)−

P (t)Cᵀ

υi
(t)R−1

υi
(t)Cυi

(t)P (t), t ∈ [
i−1
∑

k=0

τk,
i

∑

k=0

τk), i = 1, . . . , M,(2.12a)

P (0) =P0,(2.12b)

under the switching strategy (υ, τ). Here, τ0 = 0 for the sake of simplicity, W (t) is

an n × n-positive definite matrix-valued measurable function which is equibounded

on [0, T ] and c is a positive constant.

Problem 2 is a mixed-integer optimization problem, where υ is the discrete-valued

control and τ is the continuous-valued control.
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3. SOLUTION METHOD

3.1. Gradient Formulae. If the switching sequence υ is fixed, Problem 2 can be

reduced to an ordinary optimal control problem solvable by the standard control

parametrization approach and many gradient-based methods can be applied to find

the optimal switching time vector τ . For this, we first apply the control parameteri-

zation enhancing transform (CPET) ([14, 21]) as follows.

Introduce a new time scale s on [0, M) as

dt

ds
= τi, s ∈ [i − 1, i), i = 1, . . . , M,(3.1a)

t(0) = 0, t(M) = T.(3.1b)

Denote

P̄ (s) = P (t(s)), R̄(s) = R(t(s)), W̄ (s) = W (t(s)),

Ā(s) = A(t(s)), B̄(s) = B(t(s)), C̄(s) = C(t(s)).(3.2)

Then, we transform the subproblem of Problem 2 into

Problem 3. Suppose that the switching sequence υ is given. Find the respective

switching time vector τ ∈ Ξ such that

(3.3) Jυ(τ) =
M

∑

i=1

∫ i

i−1

τiTr{W̄ (s)P̄υ,τ (s)}ds + c Tr{P̄υ,τ(M)}

is minimized, where t(s) is the solution of (3.1), P̄υ,τ (s) is the solution of

˙̄P (s) =τi[Ā(s)P̄ (s) + P̄ (s)Āᵀ(s) + B̄(s)B̄ᵀ(s)

− P̄ (s)C̄ᵀ

υi
(s)R̄−1

υi
(s)C̄υi

(s)P̄ (s)], s ∈ [i − 1, i), i = 1, . . . , M,(3.4a)

P̄ (0) =P0,(3.4b)

where W̄ (s) is an n × n-positive definite matrix-valued measurable function, equi-

bounded on [0, M ], and c is a positive constant.

Since τ is a continuous variable, many gradient-based algorithms can be applied

to solve Problem 3. Then, we need to derive the gradient of the cost functional (3.3)

with respect to τ , which is stated as the following theorem.

Theorem 2. Consider Problem 3. The gradient of the cost functional is

(3.5)
∂Jυ(τ)

∂τi
=

∫ i

i−1

∂H(s, P̄ (s), τ, Λ(s))

∂τi
ds, i = 1, . . . , M,
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where H is the Hamiltonian function given by

H(s, P̄ (s), τ, Λ(s)) = τiTr{W̄ (s)P̄υ,τ (s)} +

n
∑

j,k=1

Λjk(s)f̄jk(s, P̄ (s), τ),

s ∈ [i − 1, i), i = 1, . . . , M,(3.6)

and where f̄ is the right hand side of (3.4a). The matrix Λ(t) is the solution of the

costate system:

(3.7a) Λ̇ᵀ(s) = −
∂H(s, P̄ (s), τ, Λ(s))

∂P̄ (s)
,

with terminal condition

(3.7b) Λᵀ(M) = cI.

The proof is very similar to that in [16]. The main idea of the proof is based on

a variational argument as outlined below.

Proof. Suppose that for a variation δτi of τi, the first order variation of P̄ (s) is δP̄ (s).

Then, by (3.6) and (3.7), we obtain the first order variation of the cost functional

(3.3) as follows.

δJυ =c
dTr{P̄ (M)}

dP̄ (M)
δP̄ (M) +

M
∑

l=1

∫ l

l−1

δ[H −
n

∑

j,k=1

Λjk(s)
˙̄Pjk(s)]ds

=cTr{δP̄ (M)} +
M

∑

l=1

∫ l

l−1

[
n

∑

j,k=1

∂H

∂P̄jk
δP̄jk(s) +

∂H

∂τi
δτi −

n
∑

j,k=1

Λjk(s)δ
˙̄Pjk(s)]ds

=
n

∑

j,k=1

(cIjk − Λjk(M))δP̄jk(M) + Λjk(0)δP̄jk(0)

M
∑

l=1

∫ l

l−1

[(
n

∑

j,k=1

∂H

∂P̄jk
+

n
∑

j,k=1

Λ̇jk(s))δP̄jk(s) +
∂H

∂τi
δτi]ds

=
M

∑

l=1

∫ l

l−1

∂H

∂τi
δτids =

∫ i

i−1

∂H

∂τi
ds · δτi.

The conclusion of the proof follows readily.

Then, we use the following algorithm to calculate the value of cost functional and

its gradient.

Algorithm 1.

1. For each given τ ∈ Ξ, compute the solution P̄ (·|τ) of the system (3.4) by solving

the differential equation (3.4a) forward in time from s = 0 to s = M with the

initial condition (3.4b).

2. With P̄ (·|τ) obtained above, calculate the values of the cost functional (3.3).
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3. Compute the costate solution Λ(·|τ) by solving the costate differential equation

(3.7a) backward in time from s = M to s = 0 with the terminal condition (3.7b).

4. Apply Theorem 2 to compute the gradient of the cost functional.

With the gradient given in Algorithm 1, we can apply a gradient-based method

to solve Problem 3. In this paper, we use FFSQP([22]) to solve Problem 3.

FFSQP is based on sequential quadratic programming (SQP) routine. The prin-

ciple of SQP routine is as follows. We choose an initial parameter τ (0) ∈ Ξ to start.

Then, for each τ i ∈ Ξ, the values of the cost functional and the constraint (3.1b) as

well as the gradient obtained by Algorithm 1 are used to generate the next iterate

τ i+1 ∈ Ξ. This iterative process continues until some stopping rules are satisfied and

the optimal solution has been obtained.

3.2. Branch and Bound Method. For a given switching time vector τ , Problem 2

becomes a discrete-valued optimal control problem as follows.

Problem 4. Suppose that a switching time vector τ is given. Find a switching

sequence υ ∈ Υ such that

(3.8) Jτ (υ) =

∫ T

0

Tr{W (t)Pυ,τ (t)}dt + c Tr{Pυ,τ (T )}

is minimized, where Pυ,τ (t) is the solution of (2.12), W (t) is an n × n-positive defi-

nite matrix-valued measurable function and is bounded on [0, T ], and c is a positive

constant.

We will apply the branch and bound method to determinate the optimal switching

sequence υ in Problem 4. But we first need to analyze the positive semi-definite

property of the error covariance matrix P (t).

Given two symmetric matrices P1 and P2 with same dimension, the notation

P1 ≥ P2 means that P1 − P2 is a positive semi-definite matrix.

Then, the following result is clear.

Lemma 1. Consider the equation (2.12). Suppose that there are two solutions, de-

noted by P1(t) and P2(t), such that

P1(t) ≤ P2(t), t ∈ [0, T ].

Then,

∫ T

0

Tr{S(t)P1(t)}dt + c Tr{P1(T )} ≤

∫ T

0

Tr{S(t)P2(t)}dt + c Tr{P2(T )}.
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To continue, let us define the following dynamic system:

Ṗ (t) =A(t)P (t) + P (t)Aᵀ(t) + B(t)Bᵀ(t) − P (t)Ψ(t)P (t),(3.9a)

P (0) =P0,(3.9b)

where Ψ(t) is positive semi-definite for all t ∈ [0, T ].

Let Pψ(t) denote the solution of (3.9) and let Pυ,τ (t) denote the solution of (2.12)

corresponding to (υ, τ). Then, we have the following theorem.

Theorem 3. Consider the dynamic systems (2.12) and (3.9). Suppose that

(3.10) Ψ(t) ≥ Cᵀ

υi
(t)R−1

υi
Cυi

(t), ∀t ∈ [0, T ].

Then,

(3.11) Pψ(t) ≤ Pυ,τ (t), ∀t ∈ [0, T ].

Proof. For the sake of simplicity, we denote

Γ(t) = Cᵀ

υi
(t)R−1

υi
Cυi

(t).

Subtracting (2.12) from (3.9), we have

d(Pψ(t) − Pυ,τ (t))

dt
=A(t)(Pψ(t) − Pυ,τ (t)) + (Pψ(t) − Pυ,τ (t))A

ᵀ(t)

− Pψ(t)Ψ(t)Pψ(t) + Pυ,τ (t)Γ(t)Pυ,τ (t),(3.12a)

Pψ(0) − Pυ,τ (0) =0.(3.12b)

The quadratic item of the right hand side of (3.12a) can be rewritten as

− Pψ(t)Ψ(t)Pψ(t) + Pυ,τ (t)Γ(t)Pυ,τ (t)

= − (Pψ(t) − Pυ,τ (t))Ψ(t)(Pψ(t) − Pυ,τ (t)) − Pψ(t)(Ψ(t) − Γ(t))Pψ(t)

− (Pψ(t) − Pυ,τ (t))Ψ(t)Pυ,τ (t) − Pυ,τ (t)Ψ(t)(Pψ(t) − Pυ,τ (t)).(3.13)

Let

Ā(t) = A(t) − Pυ,τ (t)Ψ(t).(3.14)

Then, by (3.10), (3.13) and (3.14), (3.12) becomes

d(Pψ(t) − Pυ,τ (t))

dt
≤Ā(t)(Pψ(t) − Pυ,τ (t)) + (Pψ(t) − Pυ,τ (t))Ā

ᵀ(t).(3.15)

Suppose that Φ(t) is the fundamental matrix of Ā(t), then we have

Pψ(t) − Pυ,τ (t) ≤ Φ(t)(Pψ(0) − Pυ,τ (0))Φᵀ(t) = 0.(3.16)

This completes the proof.
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If (3.10) is satisfied, system (3.9) is called a lower bound dynamic system for

system (2.12).

To compute a lower bound during the branch and bound search, we need to

construct a sequence of lower bound dynamic systems. First, we need to choose an

adequate diagonal matrix function Ψ(t) based on Theorem 3 of [5], which is stated

as follows.

Theorem 4. Suppose that there is an n × n symmetric matrix G. If Ψ is given by






















n
∑

j=1

|G1j| 0 0 0

0
n
∑

j=1

|G2j| 0 0

0 0
. . . 0

0 0 0
n
∑

j=1

|Gnj|























,

then, G ≤ Ψ.

The choice of Ψ(t) is not unique. Here, we simply choose Ψ(t) in the form of

a diagonal matrix-valued function. By Theorem 4, we can readily choose diagonal

matrix-valued functions Ψυi
(t), i = 1, . . . , N , such that

(3.17) Ψυi
(t) ≥ Cᵀ

υi
(t)R−1

υi
(t)Cυi

(t).

Then, we choose

(3.18) Ψ(t) = max
υi∈∆

Ψυi
(t).

Finally, given a current switching sequence (υ1, . . . , υj), a lower bound can be com-

puted as

Lτ (υ1, . . . , υj) =

∫ T

0

Tr{W (t)P (t)} + c Tr{P (T )},(3.19)

where P (t) is the solution of the lower bound dynamic system given by

Ṗ (t) =A(t)P (t) + P (t)Aᵀ(t) + B(t)Bᵀ(t)

− P (t)Cᵀ

υi
(t)R−1

υi
(t)Cυi

(t)P (t), t ∈ [
i−1
∑

k=0

τk,
i

∑

k=0

τk), if i ≤ j,(3.20a)

Ṗ (t) =A(t)P (t) + P (t)Aᵀ(t) + B(t)Bᵀ(t)

− P (t)Ψ(t)P (t), t ∈ [
i−1
∑

k=0

τk,
i

∑

k=0

τk), if i > j,(3.20b)

with initial condition

(3.20c) P (0) = P0.
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Remark. The construction of a lower bound dynamic system is not unique. The

relaxation method can also be used to construct a lower bound dynamic system,

similar to the approach used in [8]. Define

C = {(α1, . . . , αN)|

N
∑

k=1

αk = 1, αk ≥ 0, ∀k}.

Then, given a current switching sequence (υ1, . . . , υj), a lower bound is computed by

solving the following relaxed problem.

Problem 5. Find a relaxed variable α = (α(j + 1), . . . , α(M)), ∀k, α(k) ∈ C, such

that

Lτ,α(υ1, . . . , υj) =

∫ T

0

Tr{W (t)Pα(t)} + c Tr{Pα(T )},(3.21)

is minimized, where Pα(t) is the solution of

Ṗ (t) =A(t)P (t) + P (t)Aᵀ(t) + B(t)Bᵀ(t)

− P (t)Cᵀ

υi
(t)R−1

υi
(t)Cυi

(t)P (t), t ∈ [
i−1
∑

k=0

τk,
i

∑

k=0

τk), if i ≤ j,(3.22a)

Ṗ (t) =
N

∑

l=1

αl(i)[A(t)P (t) + P (t)Aᵀ(t) + B(t)Bᵀ(t)

− P (t)Cᵀ

l (t)R
−1
l (t)Cl(t)P (t)], t ∈ [

i−1
∑

k=0

τk,

i
∑

k=0

τk), if i > j,(3.22b)

with initial condition

(3.22c) P (0) = P0.

Problem 5 can be considered as an optimal control problem where α is taken as

the control variable. Suppose that the optimal solution is denoted by α∗. Then, a

lower bound is given by Lτ,α∗(υ1, . . . , υj). System (3.22) under the solution α∗ is then

also a lower bound dynamic system.

However, the shortcoming of this approach is in the computation of α∗ for Prob-

lem 5. The overall computational effort is excessive when each lower bound is com-

puted by solving such an optimal control problem. Furthermore, the global solution

α∗ is difficult to determine.

Thus, we use the lower bound generated by (3.20) during a branch and bound

search below.

We now propose a branch and bound algorithm to solve Problem 4. First, we

identify a way to reduce the search region. Consider υk = i and υk = j, i 6= j. If

(3.23) Cᵀ

i (t)R
−1
i (t)Ci(t) ≤ Cᵀ

j (t)R
−1
j (t)Cj(t), ∀t ∈ [

k−1
∑

l=1

τl,
k

∑

l=1

τl),
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then, similar to the proof of Theorem 3, we can prove that the solution P under

{υ1, . . . , υk−1, j, υk+1, . . . , υM}

is less than or equal to the solution P under

{υ1, . . . , υk−1, i, υk+1, . . . , υM}.

This indicates that we should not use the strategy υk = i. Based on this principle,

we can ignore all those i for which there exists a j 6= i such that (3.23) holds. Let Ak

be the set of remaining cases to be searched for when t ∈ [
∑k−1

l=1 τl,
∑k

l=1 τl). Hence,

we obtain a reduced search region A defined by

(3.24) A = A1 ∪ A2 ∪ . . . ∪ AM .

We now want to solve Problem 4 over A. Given the current scheduled strategy

{υ1, . . . , υk}, we compute the lower bound Lτ (υ1, . . . , υk) which is then used for the

branching rule. That is, if Lτ (υ1, . . . , υk) is greater than the current minimum, then

there is no need for further branching.

Furthermore, we arrange the sensor numbers in ascending order of the lower

bounds for each υk ∈ Ak. Let Nk denote the cardinality of Ak and ρk(·) denote the

index, that is,

Lτ (υ1, . . . , υk−1, ρk(1)) ≤ Lτ (υ1, . . . , υk−1, ρk(2))

≤ . . . . . .

≤ Lτ (υ1, . . . , υk−1, ρk(Nk)).(3.25)

Then, we search over Ak according to ρk(l), l = 1, . . . , Nk. This will eliminate a further

number of unnecessary branchings and consequently accelerate the search speed.

This algorithm is a general branch and bound search method. It is stated as

follows.

Algorithm 2.

1. (Initialization)

Let Jmin = +∞. In practice, we can just take Jmin to be a very large value.

2. (Reduce the search region)

Obtain At which is to be searched and suppose, without loss of generality,

that At = {1, 2, . . . , Nt}.

3. (Branch and bound search)

Loop 1(the loop variable is k1):

(a). (Compute the lower bound and sort)

Compute the lower bounds Lτ (1), . . . , Lτ (N1) and arrange the sensors ρ1(1),

. . . , ρ1(N1) according to the ascending rule with respect to their lower bounds.

Set k1 = 1.
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(b). (Choose the value of υ1)

If k1 ≤ N1, then let υ1 = ρ1(k1), else break Loop 1 and exit Step 3, go to

Step 4.

(c). (Condition for no further branching)

If Lτ (υ1) > Jmin, then break Loop 1 and exit Step 3, go to Step 4, else go

to Loop 2.

Loop 2(the loop variable is k2):

(a). (Compute the lower bound and sort)

Compute the lower bounds Lτ (υ1, 1), . . . , Lτ (υ1, N2) and arrange the sensors

ρ2(1), . . . , ρ2(N2) according to the ascending rule with respect to their lower

bounds. Set k2 = 1.

(b). (Choose the value of υ2)

If k2 ≤ N2, then let υ2 = ρ2(k2), else break Loop 2 and go back to part (b)

of the front Loop 1, with k1 being increased by 1, that is, k1 = k1 + 1.

(c). (Condition for no further branching)

If Lτ (υ1, υ2) > Jmin, then break Loop 2 and go back to part (b) of the front

Loop 1, with k1 being increased by 1, that is, k1 = k1 + 1, else go to Loop 3.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Loop T − 1(the loop variable is kT−1):

(a). (Compute the lower bound and sort)

Compute the lower bounds Lτ (υ1, · · · , υT−2, 1), · · · , Lτ (υ1, · · · , υT−2, NT−1)

and arrange the sensors ρT−1(1), . . . , ρT−1(NT−1) according to the ascending

rule with respect to their lower bounds. Set kT−1 = 1.

(b). (Choose the value of υT−1)

If kT−1 ≤ NT−1, then let υT−1 = ρT−1(kT−1), else break loop T − 1 and go

back to part (b) of the front Loop T − 2, with kT−2 being increased by 1,

that is, kT−2 = kT−2 + 1.

(c). (Condition for no further branching)

If Lτ (υ1, · · · , υT−1) > Jmin, then break Loop T −1 and go back to part (b) of

the front Loop T−2, with kT−2 being increased by 1, that is, kT−2 = kT−2+1,

else go to Loop T .

Loop T : (Compute and update the current optimal value)

(a). Let kT denote the loop variable for loop T and set kT = 1.

(b). If kT ≤ NT , then compute the value of the cost functional J(υ1, · · · , υT−1, kT ).

(c). If J(υ1, · · · , υT−1, kT ) < Jmin, then Jmin = J(υ1, · · · , υT−1, kT ).

Increment for loop variables:
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kT = kT + 1, go to part (b) of Loop T .

kT−1 = kT−1 + 1, go to part (b) of Loop T − 1.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

k2 = k2 + 1, go to part (b) of Loop 2.

k1 = k1 + 1, go to part (b) of Loop 1.
4. (Output and stop)

Output the optimal value Jmin, then stop.

3.3. Computational Algorithm. We have proposed a gradient-based method and

a branch and bound method to solve Problem 3 and Problem 4, respectively. We now

combine these two methods to solve Problem 2.

Define a solution sequence as follows.

(3.26) (υ0, τ 0), (υ1, τ 0), (υ1, τ 1), (υ2, τ 1), . . . . . .

This sequence is generated as follows. We begin with an initial switching time

vector τ 0 and determine a corresponding optimal switching sequence υ0 by solving

Problem 4 using the branch and bound method. Next, we fix the switching sequence

υ0 and use the gradient-based method to determine a corresponding optimal switching

time vector τ ∗ by solving Problem 3. If the cost functional value J(υ0, τ ∗) is less than

J(υ0, τ 0), let τ 1 = τ ∗. Else let τ 1 = τ 0. We then fix τ 1 and determine a corresponding

optimal switching sequence υ∗ by solving Problem 4 again using branch and bound.

If J(υ∗, τ 1) is less than J(υ0, τ 1), let υ1 = υ∗. Else, let υ1 = υ0.

If υi = υi+1, then it follows from the construction of (3.26) that we have

J(υi, τ i) ≤ J(υ, τ i), J(υi, τ i) ≤ J(υi, τ), ∀υ ∈ Υ, ∀τ ∈ Ξ.

Hence, the solution sequence terminates and we have obtained an optimal solution

(υi, τ i). By the same principle, if τ i = τ i+1, then the solution sequence also terminates

and we have obtained an optimal solution (υi+1, τ i).

Furthermore, we can show that the solution sequence (3.26) is sure to terminate

in a finite number of steps as follows. Suppose that the sequence (3.26) doesn’t

terminate. Then there exist two positive integers i and j, i < j, such that υi = υj,

since Υ is a finite set. Then, we have

J(υi, τ i) < J(υi+1, τ i+1) < · · · < J(υj, τ j) = J(υi, τ j) ≤ J(υi, τ i).

This is a contradiction and hence (3.26) must terminate in a finite number of steps.

Summarizing, we present the following algorithm to solve Problem 2.

Algorithm 3.

1. Given an initial switching time vector τ 0, apply the branch and bound method

to find the optimal switching sequence υ0 of Problem 4. Set k = 1.
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2. Fix υk−1 and apply a gradient-based method to find the optimal switching time

vector τ k of Problem 3, using the gradient formulae from Theorem 2. If τ k =

τk−1, goto Step 4. Else goto Step 3.

3. Fix τ k and apply the branch and bound method to find the optimal switching

sequence υk of Problem 4. If υk = υk−1, goto Step 4. Else set k = k + 1 and

goto Step 2.

4. Return the solution and its functional value. Stop.

4. ILLUSTRATIVE EXAMPLE

In this section, the proposed method is applied to two examples. The computa-

tion was performed in Compaq Visual Fortran double precision. It was run on a PC

with the Windows system, having a CPU speed of 1.6GHz and equipped with 192MB

RAM.

Example 1. Consider the system dynamics described by






ẋ1(t)

ẋ2(t)

ẋ3(t)






=







cos(3t) 0 0.4

0.3 0.8 ∗ sin(3t) −0.2

0.2 0.5 (sin t + cos t)/2













x1(t)

x2(t)

x3(t)






+







1.5

1.5

2.0






V (t),







x1(0)

x2(0)

x3(0)






=







0

0

0






.

Assume that there are 8 sensors given by

dyi(t) = Ci(t)x(t)dt + Di(t)dWi(t), i = 1, . . . , 8,

C1(t) =

[

1.0 0 0

1.0 0 0

]

, D1(t) =

[

1 0

0 1

]

,

C2(t) =

[

0 1.0 0

0 1.0 0

]

, D2(t) =

[

1 0

0 1

]

,

C3(t) =

[

0 0 1.0

0 0 1.0

]

, D3(t) =

[

1 0

0 1

]

,

C4(t) =

[

1.0 0 0

0 1.0 0

]

, D4(t) =

[

1 0

0 1

]

,

C5(t) =

[

0 0 0

0 1.0 1.0

]

, D5(t) =

[

1 0

0 1

]

,

C6(t) =

[

0 0 1.0

1.0 0 0

]

, D6(t) =

[

1 0

0 1

]

,
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C7(t) =

[

0.7 0.5 0.6

0 0 0

]

, D7(t) =

[

1 0

0 1

]

,

C8(t) =

[

0 0 0

0.7 0.5 0.6

]

, D8(t) =

[

1 0

0 1

]

.

The cost functional is

J(u) =

∫ T

0

Tr{P (t)}dt,

where the terminal time is T = 12.

In this example, suppose that the number of switchings is M = 6, then the

cardinality of Υ is 86 = 262144. We use the proposed method to solve this problem.

By the computation of Cᵀ

i (t)R
−1
i (t)Ci(t), i = 1, . . . , 8, we see that the 7th sensor and

8th sensor have the same effect and that the 8th sensor is removed during branch and

bound. We begin with τ 0 = (2, 2, 2, 2, 2, 2), then by branch and bound, we obtain

the optimal switching sequence as υ0 = (5, 5, 5, 3, 5, 7), where only 735 switching

sequences need to be computed. Next, we obtain the next optimal switching time

vector as τ 1 = (2.458, 2.391, 2.546, 1.052, 1.580, 1.973) by FFSQP. Then we fixed τ 1

and find the optimal switching sequence as υ1 = (5, 7, 5, 3, 5, 7) by branch and bound,

where only 497 switching sequences need to be computed. We then use FFSQP to

find τ 2 = (3.710, 1.000, 2.660, 1.099, 1.552, 1.979). Finally, by branch and bound, we

obtain υ2 = υ1, where only 490 switching sequences need to be computed. The

minimal error is 39.5686. The results are given Table 1 and Figure 1.

Switching Sequences Switching Time Vectors Errors

(2.000, 2.000, 2.000, 2.000, 2.000, 2.000)

(5, 5, 5, 3, 5, 7) 40.9230

(2.458, 2.391, 2.546, 1.052, 1.580, 1.973) 40.2102

(5, 7, 5, 3, 5, 7) 40.0309

(3.710, 1.000, 2.660, 1.099, 1.552, 1.979) 39.5686

Table 1. Results for Example 1.

To compare with the approach in [15], we also apply the CPET to solve this

problem, where the penalty for each switching is set to be 1.0. The results are then

compared with the proposed method in Table 2.

Example 2. Consider the system dynamics described by
[

ẋ1(t)

ẋ2(t)

]

=

[

0.5 1.0

1.0 0.5

] [

x1(t)

x2(t)

]

+

[

2.0

2.0

]

V (t),

[

x1(0)

x2(0)

]

=

[

0

0

]

.
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Figure 1. Optimal Sensor Schedule of Example 1.

Methods Number of Switches Errors

CPET 4 44.0679

Proposed Method 4 40.0872

Proposed Method 6 39.5686

Table 2. Results for Example 1.

Assume that there are 6 sensors given by

dyi(t) = Ci(t)x(t)dt + Di(t)dWi(t), i = 1, . . . , 6,

C1(t) =

[

1.0 + 1.2 ∗ sin(2t) 0

1.0 + 1.2 ∗ sin(2t) 0

]

, D1(t) =

[

1 0

0 1

]

,

C2(t) =

[

1.0 + 0.5 ∗ cos(2t) 1.0 + 0.5 ∗ cos(2t)

0 0

]

, D2(t) =

[

1 0

0 1

]

,

C3(t) =

[

1.0 + 0.5 ∗ sin(2t) 0

0 1.0 + 0.5 ∗ cos(2t)

]

, D3(t) =

[

1 0

0 1

]

,

C4(t) =

[

0 1.0 + 0.5 ∗ cos(2t)

1.0 + 0.5 ∗ sin(2t) 0

]

, D4(t) =

[

1 0

0 1

]

,

C5(t) =

[

0 0

1.0 + 0.5 ∗ cos(2t) 1.0 + 0.5 ∗ sin(2t)

]

, D5(t) =

[

1 0

0 1

]

,
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C6(t) =

[

0 1.0 + 1.8 ∗ sin(2t)

0 1.0 + 1.8 ∗ cos(2t)

]

, D6(t) =

[

1 0

0 1

]

.

The cost functional is

J(u) =

∫ T

0

Tr{P (t)}dt,

where the terminal time is T = 8.

In this example, the total number of switching sequence is 68 = 1679616. We

apply the proposed method to solve it. The branch and bound is applied three times

and there are only 150, 114 and 114 switching sequences to be computed, respectively.

The results are given in Table 3 and Figure 2.

Solutions Errors

τ 0 (1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000)

υ0 (6, 5, 2, 6, 5, 2, 6, 1) 20.4465

τ 1 (1.471, 0.476, 1.192, 1.492, 0.500, 1.200, 0.693, 0.975) 19.6792

υ1 (1, 5, 2, 6, 5, 2, 6, 1) 19.6580

τ 2 (1.474, 0.474, 1.190, 1.490, 0.500, 1.199, 0.694, 0.979) 19.6553

Table 3. Results for Example 2.

0 1 2 3 4 5 6 7 8

1
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4

5
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Time
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Figure 2. Optimal Sensor Schedule of Example 2
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5. CONCLUSION

In this paper, the optimal sensor scheduling problem is considered in continuous

time. The problem is formulated as a continuous time deterministic optimal con-

trol problem, where the switching sequence is the discrete-valued control and the

respective switching time vector is the continuous-valued control. A computational

algorithm, which combines the branch and bound algorithm and a gradient-based

method, is developed to solve this problem.

To apply the branch and bound algorithm, we analyze the positive semi-definite

property of error covariance matrix, which is the solution of a matrix Riccati differ-

ential equation. We construct a sequence of lower bound dynamic systems which are

used to compute efficient lower bounds for the branch and bound search. From the

numerical experience gained, we see that the proposed method is very efficient.
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