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-Porous hydrogel microspheres were synthesised and mixed with dry-water forming a colloidal 
system 

-Formation of methane gas hydrates in the colloidal system was fast and high in hydration capacity 

-The system is reusable for methane storage  
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Abstract  

Methane gas hydrates are a promising alternative for storage and transport of natural 

gas. In this paper, porous poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-

hydroxyethyl methacrylate-co-methacrylic acid) (PHEMA-co-MAA) hydrogel 

microspheres were synthesised and examined as a reusable scaffold for methane 

storage in the hydrated form. The hydration kinetics, methane storage capacity of the 

hydrogel microspheres and a mixed colloidal system made of hydrogel particles and 

dry-water droplets were investigated in a 300 cm
3
 steel vessel at 273.2 K and varying 

pressures. Hydration of methane in the mixed colloidal system is high in capacity and 

exceedingly reversible. Higher pressure and smaller size of hydrogel microspheres 

result in higher capacity and kinetics, however reduce recyclability of the hydration. 

The porous hydrogel particles alone are too soft for reuse and need to be improved for 

practical application.  
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1. Introduction 

Gas hydrates are ice-like clathrate compounds consisting of a host lattice formed by 

hydrogen-bonded water molecules and a large variety of small guest molecules 

enclosed in the lattice. They form when small gas molecules including methane, 

carbon dioxide and hydrogen, come into contact with water at low temperature and 

high pressure (Sloan and Koh, 2008; Koh, 2002). It is generally accepted that the 

formation of gas hydrates is a gas-liquid or gas-solid interfacial phenomenon. The 

formation kinetics of gas hydrates is largely dependent on the nucleation and growth 

rate of the gas hydrates, the rate of methane transfer through the liquid or solid phase, 

and the rate of heat transfer.  

 

Methane hydrate has a relatively high gas to solid ratio, storing up to 180 volume of 

gas (at standard conditions) in 1 volume of hydrate (Sloan, 2003) and can be held in a 

metastable solid state at atmospheric pressure (Stern et al., 2001). These make 

methane hydrates a promising alternative for storage and transport of natural gas 

(Gudmundsson and Graff 2003; Mori 2003; Masoudi and Tohidi, 2005). However, the 

application of the technology has been challenged by the slow formation rate and low 

storage capacity, as well as the thermal stability of methane hydrates.  

 

Common methods for increasing clathrate forming kinetics include the use of high 

pressures, vigorous mechanical mixing, chemical additives and micron sized ground 

ice particle (Sloan, 2003). Among the chemical additives, surfactants has been found 

to promote gas hydrate formation without affecting the thermodynamics of hydrate 

crystallization (Zhong and Rogers, 2000; Yoslim et al., 2010; Okutani et al., 2008). 

Tetrahydrofuran (THF) (Giavarini, 2008), cyclopentane (Sun et al., 2003; Zhang et al., 
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2004), and tetra-iso-amylammoinium bromide(TiAAB) (Wang et al., 2009) have also 

been used as hydrates promoters. The added promoter occupies some of the cavities in 

the clathrate structure, therefore reducing the volume available for the trapping of gas 

molecules (Carter et al., 2010).  More recent work by Cooper‘s group has been focused 

on high surface area polymers and dry-water. The latter are made of free-flowing 

water droplets surrounded by hydrophobic silica nanoparticles that prevent droplet 

coalescence (Binks and Murakami, 2006). For example, polystyrene-based polyHIPE 

(high internal phase emulsion) (Su et al., 2008), a foamed polyurethane (Talyzin 2008) 

and a slightly cross-linked poly(acrylic acid) sodium salt (PSA) (Su et al., 2009) have 

been used to increase the storage capacity of hydrogen in THF-stabilized clathrates. 

However, using same materials as a support media for methane storage was less 

successful. TiAAB semi-clathrates were used with PolyHIPE for reversible methane 

storage. Up to 20 charge-discharge cycles were accomplished. However, only 35-40 

v/v
 
storage capacity was achieved (Wang et al., 2009). The low methane storage 

capacity was assumed due to the hydrophobicity of the polymer and its poor water 

wettability. Using dry water by the same group, a much higher methane storage 

capacity (175 v/v) and a relatively rapid formation rate of methane hydrates was 

achieved (Wang et al., 2008). The authors expanded their work and utilised a gelling 

agent to form ‗dry gel‘ so as to stabilise the dry system toward coalescence, therefore 

improving the recyclability of the material. One of the reported ‗dry gel‘ systems was 

found to be recyclable over eight heating/cooling cycles with a gas capacity of 130 

v/v (Carter et al., 2010). Inspired by the work of Cooper‘s group, we investigated the 

possibility of utilisation of cross-linked three dimensional porous poly(2-hydroxyethyl 

methacrylate) (PHEMA) hydrogel microspheres as support for methane hydrate 

formation.  
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PHEMA polymers are often produced by free radical polymerisation of hydroxyethyl 

methacrylate (HEMA) in the presence of a cross-linker and an initiator. When in 

contact with water, PHEMA polymers absorb and retain large amounts of water 

becoming hydrogels. These hydrogels maintain a transparent and homogenous 

network that is suitable for such applications as contact lens and intraocular lens in 

which optical clarity and limited diffusional characteristics are required. When 

PHEMA hydrogels are produced in the presence of porogens or a large amount of 

water, phase separation occurs as a consequence of thermodynamic interactions 

between water and polymer network, leading to the formation of a spongy and opaque 

hydrogel containing interconnected pores much greater than those in the homogenous 

hydrogels (Lou et al., 2004). These hydrogels have been found useful in the 

development of ophthalmic implants and controlled drug delivery systems (Chirila et 

al., 1998; Hicks et al., 2006; Lou et al., 2007; Wang et al., 2010). The high water 

content, excellent hydrophilicity and interconnected pores of these hydrogels could be 

ideal to support the methane hydrate formation and to enhance gas permeation and 

interactions with water molecules. In this work, porous microspheres of PHEMA and 

a copolymer of HEMA with methacrylic acid (MAA), PHEMA-co-MAA, were 

produced by a suspension polymerization in the presence of a porogenic mixture of 

cyclohexanol and 1-octanol (Horak et al., 1993). The produced porous PHEMA 

spherical hydrogels were examined, alone and together dry-water, for reversible 

methane storage.  The hydrate formation kinetics and capacity, and the reusability of 

these hydrogels were investigated.  

 

2. Experimental 
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2.1 Materials 

2-Hydroxyethyl methacrylate (HEMA) and ethyleneglycol dimethacrylate (EDMA) 

were supplied by Bimax. 2.2‘-Azobis(2-methylpropinitrile) (AIBN) was purchased 

from Sigma-Aldrich and recrystallized from ethanol prior to use. Cyclohexanol (99%) 

was purchased from APS Chemicals. Other chemicals including 1-octanol (99
 
%), 

poly(N-vinyl-2-pyrrolidone) (PVP, MW=360,000), and methacrylic acid (MAA, 99%) 

were purchased from Sigma-Aldrich and used as received.  

 

2.2 Preparation and characterisation of hydrogel microspheres 

The following procedure was used to prepare the hydrogel microspheres: to a 15 ml of 

porogen mixture (organic phase) containing 1-octanol and cyclohexanol of 2:3 

volume ratio, 9.5 ml of monomer (HEMA or HEMA-MAA at a volume ratio of 8.5:1), 

0.1 g of initiator (AIBN), and 0.5 ml of crosslinking agent (EDMA) were added and 

well mixed. The organic phase was then mixed with 75 ml of a 1% PVP aqueous 

solution in a glass flask and then purged with nitrogen for 30 min. The polymerization 

was carried out at 70°C for 8 h with continuous stirring at 180 rpm. After cooling to 

room temperature, the polymer particles were washed with water, methanol and water 

successively. The hydrogel particles were suspended in water for storage (Figure 1a). 

Soft hydrogel particles (Figure 1b) after the removal of free water from the 

suspension were used for further investigation.  

 

SEM images of hydrogel microspheres were taken on a Philips XL 30. The necessary 

conductivity was guaranteed through a gold coating which was applied through 

physical vapour deposition (PVD). All hydrogel microspheres were freeze-dried prior 

to the SEM examination. Light microscopy images of the dried microspheres were 
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obtained using a Nokon Optiphot-2 with a Pulnix digital camera. The ζ-potential of 

the microspheres was measured using a Malvern Zetasizer Nano-ZS and folded 

capillary cells (DTS 1060 from Malvern Instrument). 

 

 

Figure 1 Photos of (a) water suspension of hydrogel particles, (b) free hydrogel 

particles, and (c) mixed hydrogel particles with dry-water. 

 

2.3 Preparation of mixed dry-water and hydrogel particles  

Mixed dry-water and hydrogel particles were produced using the method reported by 

Carter et al. (2010).  In brief: dried hydrogel microspheres (2.00 g) were mixed with 

HB630 (1.00g) and then hydrated in deionized water (17.00 g) in a blender (Philips 

HR1727/06, 1.5 litre). Mixing was carried out at a speed of 18000 rpm for 3 x 15 

seconds at ambient conditions. Free flowing particles containing hydrogels mixed 

with silica nanoparticles were produced (Figure 1c).   

 

2.4 Synthesis of methane hydrates  

Synthesis of methane hydrates was carried out using a method similar to that was 

reported in a previous paper (Yang et al., 2011).  The experimental set-up is shown 

schematically in Figure 2. Before each experiment, a 300 cm
3
 stainless steel high-

pressure vessel (Jiangsu Hai‘an Scientific Research Instrument Factory) was washed 

with deionized water and charged with 15.00g of hydrogel microspheres or the 

http://product.pcpop.com/000075744/Index.html
http://product.pcpop.com/000075744/Index.html
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mixture of hydrogel-dry water particles. The vessel was then flushed with methane 

(99.99 % purity, Guangzhou Yinglai Gases Co., Ltd) three times to remove air in the 

vessel. Afterwards, a circulating cooling bath (THD-3010, Zhejiang Ningbo Tianheng 

Instrument Factory) with a heating/cooling coil was turned on to adjust the vessel 

temperature to 273.2 K. Two thermal resistance detectors (Pt100, ± 0.01 K, 253 ~ 

473K Jiangsu Plaza Premium Electric Instrument Co., Ltd.) were used to monitor the 

temperatures of gas and liquid phases in the reaction vessel. Once the desired 

temperature was reached and maintained constant for several minutes, methane was 

injected into the vessel until the given pressure was reached (4.5 or 7.5 ± 0.1 MPa). 

The pressure in the vessel was monitored using a pressure transducer (DG1300, 0~40 

± 0.01 MPa, Guangzhou Senex Instrument Co., Ltd.). The time (t), temperature (T) 

and pressure (P) was recorded at 10-second intervals with Agilent 34970A Data 

Logger (Agilent Technologies Co., Ltd.). The formation of methane hydrates was 

shown when the temperature increased due to the latent heat and the gas pressure 

decreased as a consequence of methane consumption. The hydration process was 

assumed to reach its completion when the pressure drop rate was less than 0.01 MPa 

over 30 min.  

 

For the reversibility measurement, the formed hydrates were first dissociated by 

raising the system temperature back to 298.5 K, allowing full release of methane from 

the hydrates form. The vessel was then cooled to 273.2 K. This cycle was repeated for 

several times.  
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Figure 2 Schematic diagram of experimental set-up. 

 

2.5 Determination of methane consumption  

Methane consumption during the hydration process was determined from the 

pressure-temperature data and was used as an estimation of the storage capacity of 

methane in the hydrates form. The compressibility factor ―Z‖ in real gas law (PV = 

nZGT) was utilized to calculate the number of moles (n) of free methane present in 

the vessel under each set of pressure-temperature (P-T) points, where G is universal 

gas constant. The compressibility factor can be computed by Redlich-Kwong equation 

(Redlich and Kwong, 1949). The free methane volume (V) was assumed constant 

throughout the reaction (i.e., volume changes due to phase transitions were neglected).  

 

3. RESULTS AND DISCUSSION 
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3.1 Microsphere preparation and characterisation 

Preparation of PHEMA microspheres by suspension polymerizing HEMA in an 

aqueous solution is a well-established process developed for chromatographic packing 

materials and artificial emboli (Horak et al., 2006). To obtain a macroporous structure, 

suspension copolymerization of HEMA and crosslinking agent EDMA is often carried 

out in the presence of porogens. Both low molecular weight porogens and polymeric 

porogens can be used to prepare PHEMA microspheres. In this work, low molecular 

weight porogens, cyclohexanol and 1-octanol, were used for the convenience of 

removal after polymerisation. The water-insoluble porogen 1-octanol was used to 

extract the hydrophilic monomers from water phase. Polymerisation took place in the 

organic phase in which 1-octanol is a poor solvent and cyclohexanol is a good solvent 

for the polymerised HEMA. Phase separation occurs within the organic phase due to 

the thermodynamic interaction between 1-octanol and polymer network, leading to 

the formation of porous structure. It is shown in Figure 3a-d that the produced 

PHEMA and PHEMA-co-MAA microsphere are in the range of tens to hundreds 

micrometres. Each microsphere consists of aggregated fine polymer particles (~1µm) 

that are divided by the interconnected pores and channels (Figure 3e and f). The size 

of polymer particles and pores were dependant on the polymerisation condition and 

the amount of 1-octanol in the oil phase. The microspheres were divided into two 

portions, < 100 µm and > 100 µm, for methane storage investigations. The measured 

ζ-potential was -10.4 ± 0.59 mV for PHEMA and -23.1 ± 0.95 mV for PHEMA-co-

MAA. 
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Figure 3 Light microscopic and SEM images showing the size of PHEMA (a, c) and 

PHEMA-co-MAA (b, e) microspheres, and the interconnected pores and channels (f, 

g) within the hydrogel microspheres.  In a and b, magnification bar = 200 µm.
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3.2 Formation of methane hydrates 

Formation of methane hydrates in various systems was revealed by the T-P-t plots 

displayed in Figure 4. In the presence of dry water, or the mixtures of dry water with 

PHEMA (<100 µm), PHEMA-co-MAA (<100 µm) and PHAME-co-MAA (>100 µm), 

a rapid decrease in pressure, accompanied by an increase in temperature was observed 

within the first 2-3 hours, indicating the formation of methane hydrates. The pressure 

reached a plateau at around 400 min, demonstrating the completion of most hydrate 

growth. The increase in temperature in this time period is a result of the exothermal 

process of methane hydrates formation. For pure PHEMA hydrogels microspheres, no 

significant change in either the pressure or temperature was observed, indicating that 

little hydrates were formed. The particles were examined under an optical microscope 

after the hydration experiment. They were found attaching to each other forming a 

‗paste‘ of hydrogel particles, therefore preventing the fast and large volume formation 

of hydrates. Increased ζ-potential in PHEMA-co-MAA microspheres did not prevent 

the adhesive effect of the hydrogel particles. Methods of improving the anti-

adhesiveness of the hydrogel particles are under investigation. 
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Figure 4 Temperature and pressure history in one methane storage cycle showing (1) 

the rapid formation of methane hydrates in: dry water (▽&▼), dry water + PHEMA 

(<100 μm) (□&■); dry water + PHEMA-co-MAA (<100 μm) (○&●); dry water + 
PHEMA-co-MAA (>100 μm) (△&▲), and no formation in pure PHEMA (◇◆). 

Operation conditions:  T=273.2 K, P= 4.5 MPa. 

 

3.3 Methane storage capacity, kinetics and reversibility  

The pressure change was used to calculate methane consumption during the hydrates 

formation as described in the experimental section. The results were displayed in 

Figure 5, in which the volume of methane consumed by per gram of added water in 

the reaction vessel was used as a measure of the methane storage capacity in various 

systems. At 4.5 MPa, the calculated methane storage (after 900 min) was 160 cm
3
/g, 

154 cm
3
/g, 142 cm

3
/g for dry-water, and the mixed PHEMA (<100µm) and PHEMA-

co-MAA (<100 µm) with dry-water respectively, showing a slight reduction of 

methane capacity after mixing these hydrogel particles with dry water. A more 

significant reduction, to 123 cm
3
/g, was observed when the larger particles of 
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PHEMA-co-MAA (> 100 µm) were used. This is due to the reduced surface area for 

methane to transport and interact with the water molecules. When a higher initial 

pressure (7.5 MPa) was employed in the experiment, the methane capacity in 

PHEMA-co-MAA (>100 µm) increased to 144 cm
3
/g, due to the enhanced gas 

diffusion with increased pressure.  These results demonstrate that the smaller size of 

hydrogel particles and higher operational pressure lead to greater methane storage 

capacity. Repeated experiments on pure hydrogel microspheres showed a low storage 

capacity in the range of 20 to 70 cm
3
/g. These results were not as reproducible as the 

results obtained from dry-water and the mixed dry-water and hydrogel systems.  

 

The linear fittings of the methane consumption curves during the rapid hydration time 

period were carried out to determine the maximum formation rate of hydrates 

(Karaaslan and Parlaktuna, 2000; Lee et al., 2007). It can be seen from these fittings 

(Figure 5) that methane consumption was much quicker at 7.5 MPa. When the 

pressure was reduced to 4.5 MPa, methane hydrates formation was quicker in dry-

water and the smaller microspheres made of PHEMA or PHEMA-co-MAA (< 100 

µm) than in the larger PHEMA-co-MAA (>100 µm) microspheres. The estimated 

time at which 90% methane was consumed, t90, for each system was listed in Table 1. 

The results again demonstrate that the smaller particle size and higher pressure are 

benefit to the formation of methane hydrates. 
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Figure 5 Consumption of methane by various hydrogel-dry water systems at various 

pressures: ▽dry water; □PHEMA (<100µm, 4.5MPa);○PHEMA-co-MAA (<100µm, 

4.5MPa); △PHEMA-co-MAA (>100, 4.5 MPa), ☆ PHEMA-co-MAA (>100, 7.5 MPa) 

and ◇PHEMA (no silica, 4.5 MPa) (Operational conditions: T= 273.20K). 

 

Table 1 Methane storage capacity in various systems. 

Hydration System Methane Storage Capacity (cm
3
/g water) 

Cycle 1 (*t90, min) Cycle 2 Cycle 3 Cycle 4-8 

DW 160 (172) 126 92 - 

- 

- 

- 

127-129 

- 

PHEMA or PHEMA-co-MAA 20-70 (-)** - - 

DW+PHEMA (<100 µm, 4.5 MPa) 154 (210) 145 125 

DW+PHEMA-co-MAA (<100 µm, 4.5 MPa) 141 (191) 126 121 

DW+PHEMA-co-MAA (>100 µm, 4.5 MPa) 123 (293) 125 130 

DW+PHEMA-co-MAA (<100 µm, 7.5 MPa) 144 (142) 117 110   

*t90 is the time required for 90% methane hydrates to form within 900 min. ** poor 

reproducibility. No t90 was extracted from these data. 

 

Methane hydrates formation in these mixtures was reversible. Shown in Figure 6 is 

the pressure-temperature plots of eight hydration cycles of methane gases when the 

mixed dry-water and PHEMA-co-MAA (>100 µm) was used at 4.5 MPa. The 
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calculated methane consumption was within the range of 123 cm
3
/g and 129 cm

3
/g, 

indicating an excellent reversibility.   

 

Figure 6 Reversed storage of methane in PHEMA-co-MAA (>100µm, 4.5 MPa, 8 

cycles). 

 

Same experiment was carried out using dry-water and the mixed dry-water and 

hydrogel particles for three cycles. The methane storage capacity of these systems 

was listed in Table 1. For dry water, the storage capacity reduced from 160 cm
3
/g to 

90 cm
3
/g from cycle 1 to cycle 3, indicating its poor reusability. This is due to the 

destabilisation of dry-water as a consequence of the freeze-warm process as reported 

by Copper‘s group (Wang et al., 2008). When hydrogel particles were mixed with 

dry-water, the high methane capacity was well retained after three cycles (Table 1). 

The mixtures containing smaller hydrogels microspheres seemed less stable under 

higher pressure, although they have led to faster hydrates formation and greater 

methane storage capacity in a single storage experiment.  
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We hypothesized that the hydrogel particles and dry-water have stabilised each other 

in these mixed dry-water and hydrogel systems. The presence of hydrogel particles 

might not be able to prevent the coalescence of dry-water, as that of the gelling gel in 

Cooper‘s work (Carter et al., 2010). However, these particles absorb and retain the 

discharged water from ‗dry water‘, and act alone as a hydration scaffold for the 

hydrates to form. Although the hydrogel particles alone are not tough/firm enough to 

stay unseparated and to act as a functional support for the hydrates formation, they 

can be stabilised by the dry water and/or the silica nanoparticles, therefore capable for 

effective hydration. This hypothesis is illustrated by Figure 7, in which hydrates first 

form from the initially mixed dry-water and hydrogel systems (Figure 7A). During the 

freeze-thaw process, the perfect structure of dry-water might be disrupted upon 

freezing, resulting in water discharged from it upon melting (Figure 7B). The free 

water is absorbed by the hydrogel particles at the same time and formation of hydrates 

in the mixture occurs upon cooling (Figure 6B‘). With increased number of cycles, 

more and more water are freed out and the hydrogel particles become saturated 

(Figure 7C), leading to the system partially or fully covered by bulk volume of water. 

Therefore the formation of methane hydrates is retarred and methane capacity reduced. 

Without the presence of hydrogel particles, coalescence of the dry-water leads to a 

quick move of the process from A to C, methane hydration is irreversible. In the 

presence of hydrogel particles, reversible methane storage becomes possible. 

However the number of cycles changes depending on the operation condition as well 

as the size of hydrogel particles used. The water content also affects the capacity and 

reversibility of methane hydration which will be further investigated.   
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Figure 7 Illustration of reversible methane hydrates formation in a mixed dry-water 

and hydrogel system. A: the formation of methane hydrates in the mixed dry-water 

and hydrogel system; B: the thawing process leading to coalescence of dry-water; B‘: 

re-formation of hydrates from the thawed dry-water and hydrogel system; C: the 

formation of water saturated system that is unable or slow to re-hydrate with methane.   

   

Conclusions 

In summary, we have synthesised porous PHEMA and PHEMA-co-MAA hydrogel 

microspheres that results in systems capable of high capacity and reversible methane 

storage when mixed with dry-water. The excellent reversibility of the mixed colloidal 

systems is attributed to the co-stabilising effect between the hydrogel microspheres 

and the dry-water droplets. Increased operating pressure and smaller particle size 

enhance storage capacity and the formation kinetics, however reduce the stability, 

therefore the reusability of the systems. The hydrogel microspheres alone are too soft 

and adhesive to support the formation of methane hydrates. We are working on the 

materials to improve the rigidity so that the porous hydrogels alone can be used for 

reversible methane storage.  
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