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Abstract
In this paper, we establish an iterative algorithm and estimation of solutions for a
fractional turbulent flow model in a porous medium under a suitable growth
condition. Our main tool is the monotone iterative technique.
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1 Introduction
Over the past decades, a large number of investigations have been carried out to study var-
ious natural and engineering systems and processes that involve fluid flow through porous
media [–], such as petroleum extraction, where the flow accelerates toward the pumping
well while crossing regions of variable porosity, and a turbulent regime eventually occurs
and affects the overall pressure drop and well performance. Dybbs and Edwards [] con-
ducted a flow visualization study, and they showed that fluid flow in a porous medium ex-
hibits turbulent characteristics when the pore-Reynolds number (based on the pore scale
and velocity) becomes higher than a few hundred. Leibenson [] introduced a p-Laplacian
equation to describe turbulent flows in a porous medium. Inspired by the above work,
many authors studied the existence and uniqueness of solution for differential equation
involving p-Laplacian under various boundary conditions, here we refer the reader to the
work of Li et al. [], Chen et al. [], Zhang et al. [–], Goodrich [, ], Ding et al. [],
and the references therein.

In this paper, we study a fractional order differential equation involving the p-Laplacian

–Dβ
t
(
ϕp

(
–Dα

t x
))

(t) = f
(
x(t)

)
, (.)

subject to the following nonlocal boundary conditions:

Dα
t x() = Dα

t x() = D
γ
t x() = , D

γ
t x() =

∫ 


D

γ
t x(s) dA(s),

where Dα
t , Dβ

t , Dγ
t are the standard Riemann-Liouville derivatives,

∫ 
 x(s) dA(s) denotes

a Riemann-Stieltjes integral and  < γ ≤  < α, β ≤ , α – γ > , A is a function of the
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bounded variation and dA can be a signed measure, ϕp is the p-Laplacian operator defined
by ϕp(s) = |s|p–s, p > . Obviously, ϕp(s) is invertible and its inverse operator is ϕq(s), where
q >  is a constant such that 

p + 
q = .

A fractional derivative gives a perfect aid to characterize the memory and hereditary
properties of various processes and materials. Therefore differential equations of frac-
tional order are being used in modeling of the electrical and mechanical properties of
various real materials, the rheological properties of rock, as well as the hereditary prop-
erties of various biological processes [–], and many extensive researches have been
carried out to develop numerical schemes and analytical solutions [–].

In this paper, we focus on the iterative algorithm and estimation of positive solutions for
the problem (.) by introducing a new growth condition on the nonlinearity f :

(F) f : [, +∞) → [, +∞) is continuous and non-decreasing, and there exists a constant
ε >  such that

sup
s>

f (s)
sε

< +∞. (.)

The assumption (F) is a relatively weaker condition than the superlinear or sublinear or
the mixed superlinear and sublinear condition, which includes many interesting cases [,
–]. Furthermore, (.) can be adopted to extend some results of partial differential
equations [, ]. Some basic examples satisfying (F) are

() f (s) = asκ , where a,κ > .
() f (s) = sμ arctan s, μ > .
() f (s) = sμ(s + ) ln( + 

s+ ) + sμ, μ > .
() f (s) = ln(a + s), a > .
Here we also comment that there are relatively few results on fractional order equations

with nonlocal Riemann-Stieltjes integral boundary conditions, and no work has been done
concerning the iterative algorithm of solutions of Equation (.). The rest of the paper is
organized as follows. In Section , we present some preliminaries and lemmas which are
used in the rest of the paper. In Section , we establish the existence of the maximal and
minimal solutions, estimation of the lower and upper bounds of the extremal solutions
and an iterative scheme converging to the exact extremal solutions.

2 Preliminaries and lemmas
This work restricts attention to Riemann-Liouville fractional derivatives; for details, see
the monographs [, ]. First of all, according to the definition and properties of the
Riemann-Liouville fractional calculus, we make a change of variable, x(t) = Iγ v(t), v ∈
C[, ], then we have

Dα
t x(t) =

dn

dtn In–αx(t) =
dn

dtn In–αIγ v(t) =
dn

dtn In–α+γ v(t) = D
α–γ
t v(t),

Dα+
t x(t) =

dn

dtn In–α–x(t) =
dn

dtn In–α–Iγ v(t) =
dn

dtn In–α–+γ v(t)

= D
α–γ +
t v(t),

D
γ
t x(t) = D

γ
t Iγ v(t) = v(t).

(.)
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Thus, using (.), the BVP (.) reduces to the following modified fractional differential
equation:

–Dβ
t ϕp

(
–D

α–γ
t v(t)

)
= f

(
Iγ v(t)

)
, (.)

with boundary condition

D
α–γ
t v() = D

α–γ
t v() = , v() = , v() =

∫ 


v(s) dA(s).

As the inverse is also valid, the BVP (.) is indeed equivalent to the BVP (.).
Now denote

G(β , t, s) =


�(β)

⎧
⎨

⎩
[t( – s)]β–,  ≤ t ≤ s ≤ ,

[t( – s)]β– – (t – s)β–,  ≤ s ≤ t ≤ ,
(.)

A =
∫ 


tα–γ – dA(t), GA(s) =

∫ 


G(α – γ , t, s) dA(t), (.)

and assume  ≤A <  and GA(s) ≥  for s ∈ [, ].
Suppose  < γ ≤  < α, β ≤ , α – γ > . The following results have been obtained in [,

].

Lemma . (see []) Given h ∈ L(, ), then the problem

⎧
⎨

⎩
–D

α–γ
t v(t) = h(t),  < t < ,

v() = v() = ,

has the unique solution v(t) =
∫ 

 G(α – γ , t, s)h(s) ds.

Lemma . (see []) Let h ∈ L(, ), then the fractional boundary value problem

⎧
⎨

⎩
–Dβ

t ϕp(–D
α–γ
t v(t)) = h(t),

D
α–γ
t v() = D

α–γ
t v() = , v() = , v() =

∫ 
 v(s) dA(s),

has the unique solution

v(t) =
∫ 


H(t, s)ϕq

(∫ 


G(β , s, τ )h(τ ) dτ

)
ds,

where

H(t, s) =
tα–γ –

 – A GA(s) + G(α – γ , t, s). (.)

Lemma . (see []) The function G(β , t, s) and H(t, s) have the following properties:
() G(β , t, s) > , H(t, s) > , for t, s ∈ (, ).
() tβ–(–t)s(–s)β–

�(β) ≤ G(β , t, s) ≤ β–
�(β) tβ–( – t), for t, s ∈ [, ], and

tβ–(–t)s(–s)β–

�(β) ≤ G(β , t, s) ≤ β–
�(β) s( – s)β–, for t, s ∈ [, ].
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() There exist two positive constants d, e such that

dtα–γ –GA(s) ≤ H(t, s) ≤ etα–γ –, t, s ∈ [, ]. (.)

Let E = C[, ] be the Banach space of all continuous functions equipped the norm ‖v‖ =
max{v(t) : t ∈ [, ]}. Define a cone P of E by

P =
{

v ∈ E : there exist nonnegative numbers lv < Lv such that

lvtα–γ – ≤ v(t) ≤ Lvtα–γ –, t ∈ [, ]
}

and an operator T by

(Tv)(t) =
∫ 


H(t, s)ϕq

(∫ 


G(β , s, τ )f

(
Iγ v(τ )

)
dτ

)
ds,

then the fixed point of operator T in E is the solution of Equation (.), and x = Iγ v(τ ) is
the solution of Equation (.).

Now we define the constant

M = sup
s>

f (s)
sε

.

We have the following lemma.

Lemma . Assume that (F) holds. Then T : P → P is a continuous, compact, and increas-
ing operator.

Proof Let v ∈ P. Then there exist two nonnegative numbers Lv > lv ≥  such that

lvtα–γ – ≤ v(t) ≤ Lvtα–γ –, t ∈ [, ]. (.)

Since


�(γ )

∫ t


(t – s)γ –sα–γ – ds =

�(α – γ )
�(α)

tα–,

we have

�(α – γ )lv

�(α)
tα– ≤ Iγ v(τ ) ≤ �(α – γ )Lv

�(α)
tα–. (.)

If v ≡ , then it follows from (.) that

(Tv)(t) ≤ etα–γ –
∫ 


ϕq

(∫ 


G(β , s, τ )f () dτ

)
ds

≤ e
[

(β – )f ()
�(β)

]q–

tα–γ – (.)



Wu et al. Boundary Value Problems  (2016) 2016:116 Page 5 of 11

and

(Tv)(t) ≥ dtα–γ –
∫ 


GA(s)ϕq

(∫ 


G(β , s, τ )f () dτ

)
ds

≥ d
∫ 


GA(s)s(β–)(q–)( – s)q– ds

[
f ()

�(β + )

]q–

tα–γ –. (.)

Otherwise, by (F), T is increasing on x, and thus from (F) and (.), we have

(Tv)(t) ≤ etα–γ –
∫ 


ϕq

(∫ 


G(β , s, τ )f

(
Iγ v(τ )

)
dτ

)
ds

≤ etα–γ –
∫ 


ϕq

(∫ 


G(β , s, τ )M

(
Iγ v(τ )

)εdτ

)
ds

≤ etα–γ –
[

(β – )M
�(β)

(
�(α – γ )Lv

�(α)

)ε]q–

. (.)

On the other hand,

(Tv)(t) ≥ dtα–γ –
∫ 


GA(s)ϕq

(∫ 


G(β , s, τ )f

(
Iγ v(τ )

)
dτ

)
ds

≥ d
∫ 


GA(s)s(β–)(q–)( – s)q– ds

[
f ()

�(β + )

]q–

tα–γ –. (.)

Take

L∗
v = max

{
e
[

(β – )M
�(β)

(
�(α – γ )Lv

�(α)

)ε]q–

, e
[

(β – )f ()
�(β)

]q–}
,

l∗v = d
∫ 


GA(s)s(β–)(q–)( – s)q– ds

[
f ()

�(β + )

]q–

,

then by (.)-(.), we have l∗v tα–γ – ≤ (Tv)(t) ≤ L∗
v tα–γ –. Thus T is well defined and uni-

formly bounded and T(P) ⊂ P.
On the other hand, according to the Arezela-Ascoli theorem and the Lebesgue domi-

nated convergence theorem, it is easy to see that T : P → P is completely continuous. �

3 Main results
Denote

rq =
[

eϕq

(
(β – )M

�(β)�ε(γ + )

)] 
–ε(q–)

, ρq =
[


M

(
�(γ + )

e
ϕq

(
�(β)
β – 

))ε] 
ε(q–)–

,

then we have the following main results.

Theorem . Assume (F) holds, and the following conditions are satisfied:

ε(q – ) > , f () ≤ ρq. (.)
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Then Equation (.) has a minimal solution x∗ and a maximal solution y∗, and there exist
some nonnegative numbers mi < ni, i = , , such that

mtα– ≤ x∗(t) ≤ ntα–, mtα– ≤ y∗(t) ≤ ntα–, t ∈ [, ]. (.)

Moreover, for initial values v() = , w() = r, let {v(n)} and {w(n)} be the iterative sequences
generated by

v(n)(t) =
(
Tv(n–))(t) =

(
Tnv())(t),

w(n)(t) =
(
Tw(n–))(t) =

(
Tnw())(t).

(.)

Then

lim
n→+∞ v(n) = D

γ
t x∗, lim

n→+∞ w(n) = D
γ
t y∗,

uniformly for t ∈ [, ].

Proof We construct a closed convex set of P by P[, rq] = {v ∈ P : ‖v‖ ≤ rq}, and we prove
T(P[, rq]) ⊂ P[, rq].

In fact, for any v ∈ P[, rq], if v ≡ , it follows from Lemma . and (.) that

∥
∥(Tv)

∥
∥ = max

t∈[,]

{∫ 


H(t, s)ϕq

(∫ 


G(β , s, τ )f

(
Iγ v(τ )

)
dτ

)
ds

}

≤ e
∫ 


ϕq

(∫ 



β – 
�(β)

τ ( – τ )β–f () dτ

)
ds ≤ eϕq

(
β – 
�(β)

f ()
)

≤ ϕq

(
β – 
�(β)

)[


M

(
�(γ + )

e
ϕq

(
�(β)
β – 

))ε] q–
ε(q–)–

= eϕq

(
β – 
�(β)

)[
Mq–

(
e

�(γ + )
ϕq

(
β – 
�(β)

))ε(q–)] 
–ε(q–)

=
[(

eϕq

(
β – 
�(β)

))–ε(q–)

Mq–
(

e
�(γ + )

ϕq

(
β – 
�(β)

))ε(q–)] 
–ε(q–)

= rq. (.)

Otherwise, we have

 < v(t) ≤ max
t∈[,]

v(t) ≤ rq, t ∈ (, ), (.)

and

 < Iγ v(t) =


�(γ )

∫ t


(t – s)γ –v(s) ds ≤ rq

�(γ + )
, t ∈ (, ). (.)
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So by (F), () and () of Lemma ., and (.), we get

∥
∥(Tv)

∥
∥ = max

t∈[,]

{∫ 


H(t, s)ϕq

(∫ 


G(β , s, τ )f

(
Iγ v(τ )

)
dτ

)
ds

}

≤ etα–γ –
∫ 


ϕq

(∫ 


G(β , s, τ )

f (Iγ v)
(Iγ v)ε

(
Iγ v

)ε dτ

)
ds

≤ e
∫ 


ϕq

(∫ 



β – 
�(β)

τ ( – τ )β–M
rε

q

�ε(γ + )
dτ

)
ds

≤ eϕq

( (β – )Mrε
q

�(β)�ε(γ + )

)
= rq. (.)

Equations (.) and (.) imply that T(P[, rq]) ⊂ P[, rq].
Let v()(t) =  and v()(t) = (Tv())(t) = (T)(t), t ∈ [, ], then it follows from  ∈ P([, rq])

that v()(t) ∈ T(P[, rq]). Denote

v(n+) = Tv(n) = Tn+v(), n = , , . . . .

It follows from T(P[, rq]) ⊂ P[, rq] that vn ∈ P[, rq] for n ≥ . Noticing that T is compact,
we see that {v(n)} is a sequentially compact set.

On the other hand, since v() ≥  = v(), we have

v()(t) =
(
Tv())(t) ≥ (

Tv())(t) = v()(t), t ∈ [, ].

By induction, we get

v(n+) ≥ v(n), n = , , . . . .

Consequently, there exists v∗ ∈ P[, rq] such that v(n) → v∗. Letting n → +∞, from the
continuity of T and Tv(n) = v(n–), we obtain Tv∗ = v∗, which implies that v∗ is a nonnegative
solution of the BVP (.), and thus x∗ = Iγ v∗(t) is a nonnegative solution of the BVP (.).
By (.), there exist constants  ≤ m < n such that

mtα– ≤ x∗(t) ≤ ntα–, t ∈ (, ).

Now let w()(t) = rq and

w()(t) =
(
Tw())(t), t ∈ [, ].

Since w()(t) = rq ∈ P[, rq], w() ∈ P[, rq]. Let

w(n+) = Tw(n) = T (n+)w(), n = , , . . . .

It follows from T(P[, rq]) ⊂ P[, rq] that

w(n) ∈ P[, rq], n = , , , . . . .
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From Lemma ., T is compact, and consequently {w(n)} is a sequentially compact set.
Now, since w() ∈ P[, rq], we get

 ≤ w()(t) ≤ ∥∥w()∥∥ ≤ rq = w()(t).

It follows from (F) that w() = Tw() ≤ Tw() = w(). By induction, we obtain

w(n+) ≤ w(n), n = , , , . . . .

Consequently, there exists w∗ ∈ P[, rq] such that w(n) → w∗. Letting n → +∞, from the
continuity of T and Tw(n) = w(n–), we have Tw∗ = w∗, which implies that y∗ = Iγ w∗(t) is
another nonnegative solution of the boundary value problem (.) and y∗ also satisfies
(.) since w∗ ∈ P.

At the end, we prove that x∗ and y∗ are extremal solutions for Equation (.). Let ũ be
any positive solution of Equation (.), then v() =  ≤ ũ ≤ rq = w(), and v() = Tv() ≤ Tũ =
ũ ≤ T(w()) = w(). By induction, we have v(n) ≤ ũ ≤ w(n), n = , , , . . . . Taking the limit, we
have v∗ ≤ ũ ≤ w∗, which implies that x∗ and y∗ are the maximal and minimal solutions of
Equation (.), respectively. The proof is completed. �

Corollary . Assume (F) holds, and

ε(q – ) > , f () = . (.)

Then Equation (.) has a minimal solution which is trivial and a positive maximal solution
y∗, and there exist positive numbers  < m < n, such that

mtα– ≤ y∗(t) ≤ ntα–, t ∈ [, ]. (.)

Moreover, for the initial value w() = r, let {w(n)} be the iterative sequence generated by

w(n)(t) =
(
Tw(n–))(t) =

(
Tnw())(t). (.)

Then

lim
n→+∞ w(n) = D

γ
t y∗

uniformly for t ∈ [, ].

Corollary . If p =  (ϕp reduces to the linear operator), assume that (F) holds and sat-
isfies the following conditions:

ε > , f () ≤ ρ. (.)

Then Equation (.) has a minimal solution x∗ and a maximal solution y∗, and there exist
some nonnegative numbers mi < ni, i = , , such that

mtα– ≤ x∗(t) ≤ ntα–, mtα– ≤ y∗(t) ≤ ntα–, t ∈ [, ]. (.)
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Moreover, for initial values v() = , w() = r, let {v(n)} and {w(n)} be the iterative sequences
generated by

v(n) = Tv(n–) = Tnv(), w(n) = Tw(n–) = Tnw(). (.)

Then limn→+∞ v(n) = D
γ
t x∗, limn→+∞ w(n) = D

γ
t y∗ uniformly for t ∈ [, ].

Corollary . Suppose (.) holds and one of the following assumptions is satisfied:
(f) f : [, +∞) → [, +∞) is continuous and non-decreasing, there exists a constant

ε >  such that f (x)
xε is increasing with respect to x and limx→+∞ f (x)

xε = M > .
(f) f : [, +∞) → [, +∞) is continuous and non-decreasing, there exists a constant

ε >  such that f (x)
xε is nonincreasing with respect to x and limx→+

f (x)
xε = M > .

(f) f : [, +∞) → [, +∞) is continuous and non-decreasing, and there exists a constant
ε >  such that limx→+

f (x)
xε = a > , limx→+∞ f (x)

xε = b > , M = max{a, b}.
Then Equation (.) has a minimal solution x∗ and a maximal solution y∗, and there exist
some nonnegative numbers mi < ni, i = , , such that

mtα– ≤ x∗(t) ≤ ntα–, mtα– ≤ y∗(t) ≤ ntα–, t ∈ [, ]. (.)

Moreover, for initial values v() = , w() = r, let {v(n)} and {w(n)} be the iterative sequences
generated by

v(n) = Tv(n–) = Tnv(), w(n) = Tw(n–) = Tnw(). (.)

Then

lim
n→+∞ v(n) = D

γ
t x∗, lim

n→+∞ w(n) = D
γ
t y∗,

uniformly for t ∈ [, ].

An example Consider the following nonlocal boundary value problem of the fractional
p-Laplacian equation:

⎧
⎨

⎩
–D



t (ϕ 


(–D



t x))(t) = x(t), t ∈ (, ),

D


t x() = D



t x() = D



t x() = , D



t () =

∫ 
 D



t x(s) dA(s),

(.)

where A is a bounded variation function satisfying A(t) =  for t ∈ [, 
 ), A(t) =  for t ∈

[ 
 , 

 ), A(t) =  for t ∈ [ 
 , ]. Then Equation (.) has a positive maximal solution y∗; and

there exist positive numbers  < m < n, such that

mt

 ≤ y∗(t) ≤ nt


 , t ∈ [, ]. (.)

Proof By a simple computation, the problem (.) reduces to the following multi-point
boundary value problem:

⎧
⎨

⎩
–D



t (ϕ 


(–D



t x))(t) = x(t), t ∈ (, ),

D


t x() = D



t x() = D



t x() = , D



t x() = D



t x( 

 ) – D


t x( 

 ).
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Let

α =



, β =



, p =



, f (x) = x.

First, we have

A =
∫ 


tα– dA(t) =  ×

(



) 


–
(




) 


= . < ,

and by a simple computation, we have GA(s) ≥ .
Obviously, f () =  and

sup
s>

f (s)
s = , ε(q – ) = 

(



– 
)

=



> .

By Corollary ., Equation (.) has a positive maximal solution which satisfies (.). �
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