
J:\INFORMATION MANAGEMENT\PROJECT MANAGEMENT\espace@Curtin\--- SHARED PROCESSING --\Procedures
2008\Attributions and links by publisher\IEEE attributions.doc

2

©2005 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195652154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Decision Support System for QoS-enabled Distributed Web Services Architecture

Chen Wu, Elizabeth Chang Patricia Thomson
School of Information Systems School of Information Systems

Curtin University of Technology University of Tasmania
Perth, Western Australia 6845 Hobart, Tasmania 7001

AUSTRALIA AUSTRALIA
{chen.wu, elizabeth.chang}@cbs.curtin.edu.au patricia.thomson@utas.edu.au

Abstract – Service selection is crucial for fulfilling the
requirements of service requestors. While in the real service-
oriented environment, Quality of Services (QoS) is one of the
greatest concerns for consumers during service selection.
Existing web services’ standards do not tackle the QoS issue
adequately when service discovery and selection are performed.
In this paper, we argue that the process of services selection is a
kind of decision making – to decide which service should be
selected dependent on their QoS and trustworthiness values as
well as their functional capabilities. Hence, we propose a service
selection solution which utilizes the Decision Support Systems
Module (DSS Module) to select the most appropriate service. In
DSS module we introduce Service Trust to carry out the service
QoS measurement based on the Context-specific Quality Aspects.
The architecture of DSS module is presented in detail and the
solution is also integrated into one of the components – domain-
broker – in our proposed distributed web services architecture.
The contributions of this paper are two fold. Firstly, we apply
DSS module into web services, thus opening a new, fertile
ground for DSS research in web services literature and
secondly, we provide a novel and feasible solution for QoS-
based service selection.

I. INTRODUCTION

Decision Support Systems (DSS) are computer systems
used to facilitate human decision making in solving complex
problems, where at least some stage is semi-structured or un-
structured. DSS was promoted in the late 1970s from the
Management Information Systems (MIS), and continued
evolving until today where is appears in the web-based DSS
[1] and open DSS [2]. In general, by 1) analyzing transaction
data; 2) gathering information from external sources; and 3)
reasoning from a decision model, a DSS is able to promptly
present useful decision making information in an appropriate
format that is easily understood and manipulated by humans.

Today DSS have been extensively utilized in various
applications within one enterprise or across different business
organizations. For instance, airlines use DSS to assist
analysis of flight ticket pricing and route selection. Supply
chain DSS can be used for planning schedules and
forecasting changes from the up-stream suppliers and down-
stream retailers. In this paper, we mainly investigate the
application of DSS in one of the significant e-logistics
scenarios where logistics customers select the logistics
service provider based on Quality of Services (QoS).

Meanwhile, in recent years, web services have
increasingly gained significant attention from both industry
and academia. As a promising solution for distributed system

integration, web services provide programmatic interfaces
that are used for flexible connectivity among heterogeneous
applications [3]. A large number of enterprises are now
starting to adopt emerging web services technologies such as
WSDL, SOAP and UDDI, to build their service-oriented
systems [4]. Hence, we believe it is a natural trend in the IT
industry that all inter-organization systems, where flexible
and reliable integration is highly pursued, will be enabled by
web services technology in the near future.

When thinking of how DSS can facilitate web service-
enabled service-oriented architecture (SOA), we would see
the well-known issue of service selection [5] can be
effectively tackled by employing certain DSS solutions for
the following two reasons. Firstly, existing web services
standards (e.g. UDDI) failed to provide a flexible, dynamic,
and reliable mechanism to allow service requestors to choose
the right quality service instance based on non-functional
attributes such as QoS and trust. Secondly, in service-
oriented environments, service selection can be seen as a
process of decision making, i.e. the service requestor should
make a decision on which service provider is currently
offering the most appropriate service to fulfil the requirement
among abundant function-relevant service provider
candidates. This argument is partly based on the assumption
that DSS ‘support’ rather than ‘automated’ decision making
[6], a task which cannot be completely achieved without
human participation and final decision making. Hence, while
some research attempts to automate the service selection
without human intervention, it is our belief that such
thorough automation will not occur in the real logistics
transaction due to the complexity of service selection [7].

Consequently, in this paper, we mainly deal with the issue
of how to support the decision making process with regards
to selecting the most appropriate web services providers
using DSS modules. We integrate into existing distributed
web services architecture a DSS module which would assess
the QoS of web services based on trust. An architecture
based on such conceptualization is also given.

The remainder of this paper is organized as follows:
Section II introduces the preliminary concepts of Trust, QoS,
Service Trust, Context, and Quality Aspects; Section III
explains the design of DSS module; Section IV describes the
overall QoS-enabled distributed web services architecture
which incorporates the DSS module and also provides the
detailed architecture of Domain-Broker where DSS module
resides; and Section V concludes our research in this paper
and visions for future work.

22040-7803-9252-3/05/$20.00 ©2005 IEEE

II. PRELIMINARY CONCEPTS

Since our research in this paper incorporates some of our
previous work on QoS and trust [8], before we discuss the
module design and architecture we would like to introduce
some preliminary concepts on QoS and trust, which would
facilitate understanding of our work in service selection DSS
in Service-Oriented Environments (SOE).

A. QoS and Service Trust

In Chang, Dillon and Hussain [8], ‘Trust’ is defined in a
service-oriented environment to mean ‘quality’. Hence, we
believe the quality of services (QoS) can be reflected by the
trustworthiness of the service. The ‘belief’ of Trust in a
service-oriented environment is meant the ‘quality
assessment’. In general, trust is realized by the concept of a
Trust relationship and Trust Value. Each relationship denotes
a trust value from the trusting party to the trusted party and it
is only for a particular context and timeslot. A context can be
decomposed into several aspects (dimensions) and that can
be used to derive the criteria for quality evaluation or
measurement. In a particular SOE, trust is defined as the
Service Trust that the Customer has in the Service Provider’s
ability to deliver Quality of Service in the given service
context and timeslot. In summary, the service trust
conceptualization is depicted in Fig. 1.

Figure 1. Service Trust Conceptualization

We identity the following concepts encompassed by Service
Trust.
• Service Requester is a Trusting Party who has the

trustworthiness value of the QoS of the service provider.
• Service Provider is a Trusted Party whose Quality of

Service is being considered by the service requester.
• Context is a specific service or service function.

• Quality Aspects defines the quality of service.
• QoS Criteria are metrics that are used for quality

assessment of the trustworthiness of the services.
• Timeslot is the timeframe for which the trust value holds.

That is, during this period, the trust value remains constant.
• Trustworthiness is a measure of the trust against a

trustworthiness scale.

B. Context and Quality Aspects

Here, we provide the definition of Context: Context
defines the nature of the service and service functions, and
each context has a name, a type and a functional specification
[8]. A Context can be decomposed into several quality
aspects, and with each quality aspect, there is always a set of
assessment criteria that can be used to measure the quality of
the Context Aspects. Fig. 2 depicts the formal representation
of a context hierarchy in the SOE.

Figure 2. Context with Quality Aspects

In Fig. 2, context such as ‘a logistics company providing
delivery service in the state of New Southern Wales’ can be
seen. Each context should be further decomposed into a set
of ‘Quality Aspects’. Quality Aspects decompose the Context
into several dimensions for the purpose of quality assessment
or measurement [8]. To continue with the example, the NSW
delivery service context can be further decomposed into three
Quality Aspects: intact delivery, on-time delivery, and
tracking capability. One should be aware that Quality Aspects
could be defined by the Service Level Agreement (SLA),
quality standards, or contracts established via bilateral
negotiation, etc. In the far right, there is a set of ‘Assessment
Criteria’ which are associated with each of the Quality
Aspects defined in the Context. Assessment Criteria define
the quality metrics for each Quality Aspect of the Context for
the purpose of measuring the delivered quality (aspects)
against the defined quality (criteria) [8]. For ‘on-time
delivery’, we can setup Criteria, for example: if never late,
assign Excellent - if rarely late, assign Good – and so forth.
For clear illustration of the metrics, the trustworthiness level
for each of the above criteria can be depicted in Table 1
below.

2205

C. DSS Request

Decision Support System (DSS) Request is initiated by
the end customer. DSS request is the problem definition for
the DSS module. In our proposed architecture, DSS request
is a small subset of Service Subscription Request (SRS) and is
the default input for DSS module. A typical DSS request
contains Service Context, QoS requirement, and/or QoS
report. The QoS requirement specifies the QoS level that the
service consumer expects from the desired service providers.
The QoS report contains the QoS experience information
collected from service consumers.

Table 1. Trustworthiness level for each criteria

In this section, we defined the basic concepts of QoS,
Service Trust, and metrics to measure the trustworthiness of
a service provider in the service-oriented environment. In the
following sections, we illustrate how to integrate such
concepts into the architectural design of DSS module and
overall architecture of distributed web services.

III. DSS MODULE DESIGN

In this section, we explain our design of DSS module in
facilitating the QoS based service selection. The DSS module
is deployed in the Domain-Broker which is described in
detail in next section from the overall architecture
perspective.

Although different DSS might have different purposes
and are working in diverse scopes, all DSS should have
similar technical components: Model, Database,
Communication, and User Interface [6] as illustrated in Fig.
3. The Database component contains collections of both
structured and unstructured data from a number of sources
that have been organized for easy access and analysis.
Recently, as the roaring development of data warehouses and
data mining techniques, the database component is
increasingly central in large enterprise decision making. In a
DSS, a decision problem is usually formulated as a model.
The model component is utilized and operated unswervingly
by decision makers to manage and exploit these models so
that they can simulate, describe and solve the actual
problems using appropriate solvers. The User Interface is
also very important since DSS does not generally automate
decision making; rather it gives support to the human to
make decisions. For instance, many problems are too
complex to be handled by humans but not so well defined

that they would be entirely performed by computers. This is
where the user interface can come into play. Good user
interface facilitates the interactions between the decision
maker and the DSS.

Figure 3. DSS Components (source [6])

Based on this components diagram, we therefore provide
the DSS module for web services selection in our
architecture design illustrated in Fig. 4 below.

Figure 4. DSS Module Design

As we can see, the DSS module consists of the following
components: DSS User Interface, DSS Request Handler, QoS
Handler, Discovery Handler, UDDI Client, QoS Analyzer,
QoS Logger, and QoS DB. The dotted-line around the UDDI
indicates that the UDDI is the external component. These
components work together to provide decision support in
selecting appropriate web services.

User Interface – User Interface essentially fulfils two
functionalities:

Firstly, collecting the DSS request which may include:
Service Context (reference), QoS requirement, or QoS report.
The service function information, which is conveyed by the
Context, is passed to Discovery handler as query parameters

2206

for searching UDDI, while QoS requirement along with the
service Context are delivered to QoS handler for afterwards
service selection processing, if necessary. The entity that
interacts with User Interface (i.e. the DSS module) could be
end customers, service requestors as well as other internal
modules in the Domain-Broker. If the DSS request directly
comes from end customers, Graphical User Interface (GUI)
could be offered as interaction tools. Application
Programming Interface (API) is also provided for
programmatic level integration with the DSS module. In this
research, all the API-level interfaces are represented in the
form of XML message documents such as WSDL.

Secondly, returning a list of service candidates in rank
order with the most appropriate service placed at the top of
the list. The representation of the list could be GUI web-
based tabular catalogue or pure XML data structure defined
by the particular schemas or some domain standards.

In a word, User Interface component can be regarded as
I/O sub-system for the DSS module.

DSS Request Handler – This component receives the DSS
request from the User Interface, handles the logic control to
parse the request, and splits it into two parts which are
further processed by two sub-handlers respectively: QoS
Handler and Context Handler.

The Discovery Handler processes the service functional
requirements associated with the Context embedded in the
DSS request and posts the query parameter to UDDI Client
for initial service discovery.

UDDI Client – For the purpose of discovering function-
relevant web services, the UDDI client is used for interacting
with and searching the specified UDDI registry to find those
services that could meet the functional requirements
indicated in the service context information enclosed in the
DSS request. In general, UDDI client operates the UDDI
inquiry API (e.g. find_service(), get_serviceDetail etc.). The
invoked API parameters are populated by the Context
Handler, which sends those functional requirements to the
UDDI client as each DSS request arrives.

QoS Handler mainly deals with the part of the DSS request
related to the QoS: either QoS requirement or QoS report.
The QoS requirement is restructured into DSS compliant
representation format which is sent as input parameter for the
QoS Analyzer component. The QoS report is however
forwarded to the QoS Logger for recording the history data
related to QoS.

QoS Analyzer – QoS Analyzer is the most important
component. It facilitates the actual decision making by taking
as input the QoS requirement, Context, relevant Trust Model,
appropriate Model Solver, and History QoS data from the
QoS Database, meanwhile generating the output of
trustworthiness values for involved web services. The result
is sent back via QoS Handler to the DSS Requester handler,
which produces the final ranking list of the services in

preferred representation format. For the purpose of
supporting an open architecture of DSS module, our design
fosters a flexible, multiple trust model loading mechanism
such that different models can be chosen for different service
contexts according to the nature of that particular service.
Consequently, choosing an appropriate model is a key design
issue for QoS analyzer since each Trust Model might have a
specific purpose. Meanwhile, as every Trust Model more
often than not employs fairly complex mathematical vehicles
such as the Markov Trust Model [9], the QoS Analyzer has to
select compatible (syntactically and semantically) solvers i.e.
the model solving algorithms, for a model and adequately
applying it to the model. In doing so, the QoS Analyzer
should be able to match the model parameters to the solver
parameters. In this paper, the Trust Model and the
corresponding solver algorithm will not be described in
detail. Interested readers are referred to Hussain, Chang and
Dillon [9] to obtain further extensive studies on Markov
Trust Model.

QoS Logger – After a web service finishes a service function
defined in the Context, the current service consumer, i.e.
service requestor, may wish to file the QoS experience and
send them to the DSS Module via the DSS User Interface,
which hands over the QoS report down to the QoS Logger
via QoS Handler. The QoS Logger collects and inspects the
raw data in the report and ultimately produces the QoS
history data from which trustworthiness value and service
behaviour can be inferred through QoS Analyzer. Such QoS
data is then saved to the QoS database for further query.

QoS Database – The design of a QoS database is based on
our previous work of ‘Trust database for Quality of Services’
proposed [8]. For the reason of simplicity and architectural
description, we assume that the QoS measure is based on the
service standard specified by certain consortium in a
particular domain rather than against the Service Level
Agreement or contract established by both service provider
and service consumer. As a result, we consider the following
table structures in the QoS database schema.

1. Service Requestor (Requestor ID, RName.QoS Measure#)
This table represents those trusting party who share their
direct experience or trust value to other potential service
requestors.

2. Service Provider (Provider ID, PName, …..QoS Index#)
This table is used to keep the records of trusted entity in
service-oriented environment. Please note that the
Provider_ID shall be consistent with the counterpart provider
identifier registered in the UDDI component.

3. Service Context (Service Context #, QoS Aspects#, QoS Aspects)
Since our assumption of standard service context is made by
standard organization or industry consortium, the Service
Context table is essentially a look-up dictionary which is
predefined tables, also called look-up tables in database
terms, and the data is normally persistent, i.e. no edit or
delete operations etc.

2207

4. QoS Criteria (QoS Aspect#, Context#, Criteria1, Criteria1, Criteria2
….CriteriaN)
The QoS Criteria table stores criteria for each Quality Aspect,
and this is also a look up dictionary, and the criteria database
is a weak entity and must associate with one of QoS context
database.

5. QoS Measure (Customer ID, QoS Assessment#, QoS Index#, Provider ID,
Context#, Trustworthiness Value)
The QoS Measure table contains each customer’s feedback
i.e. trust values and opinions. Note that each customer
feedback is represented by a trusting party’s trust value and
opinion in the trustworthiness scheme.

IV OVERALL ARCHITECTURE

In this section, we provide an explanation of how the DSS

module, elaborated above, can be integrated into the full
distributed web services architecture designed for a logistics
network.

A. Architectural Topology

As depicted in Fig. 5, the primary components of this

architecture are: service-peer, domain-peer, super-peer,
alliance-peer, and domain-broker and global-broker.
Service-peers, which provide logistics service such as
transportation and warehousing, scatter in the global service
space - the cloud in Fig. 5 – the broker-based web services
[10] environment where service requestors and providers
register with a single global UDDI. Ideally, logistics
customers are able to automatically discover and benefit
from these services without human intervention by exploiting
standard web services protocols (i.e. UDDI, SOAP, and
WSDL). Nevertheless, to our best knowledge, such thorough
dynamic automation does not occur in actual logistics
industry partially due to service consumers’ fear of services
QoS and trust. This motivates us to introduce into the
existing web services architecture the concept of domain -
the light-grey circle in Fig. 5. A domain represents a virtual
society where well related (functionality or vicinity) web
services gather together in attempt to offer quality and added-
value services to potential end customers. The domain-
specific knowledge is essential in defining the service trust
criteria [8], thus significantly facilitating the quality of
service assessment, without which the service selection
decision cannot be made. In particular, we utilize domain-
broker to include the DSS module to perform the service
selection. The domain-broker provides QoS-based service
selection within the scope of a particular domain. In general,
the domain-broker is responsible for managing (e.g. register,
matchmaking, etc.) domain-peers. The domain-peer is a type
of service-peer within a particular domain. Based on
capabilities and willingness, a domain-peer is prepared to be
joined with other selected domain-peers to offer quality
logistics services in response to the dynamic requirements
from external customers. Such dynamic relationship gives

rise to the alliance-peer. The alliance-peer is a special
domain-peer within a certain dynamic-alliance. The
dynamic-alliance (dotted line circle) is a smaller community
established in an ad-hoc manner amongst QoS-trusted web
services inside the same domain. When detailed requirements
are presented to a specific domain-peer, who alone is unable
to suffice such requirements, this domain-peer attempts to
initiate a dynamic-alliance by sending a service cooperation
request to selected domain-peers from its local matching
table where QoS partner services are logged and updated.
Alliance-peers work autonomously by exchanging messages
with each other to fulfil the end user requirements introduced
by the alliance-initiator. A super-peer is an alliance-peer that
maintains a particular dynamic-alliance composed of selected
domain-peers. A super-peer’s major responsibility includes
initiating the alliance by propagating a service composition
request and re-arranging the formation of the alliance in
accordance with changing requirements. Super-peer
interacts and coordinates with Super-peers representing
dynamic-alliance from other domains, thus coordinating two
or more alliances across domains.

Due to the space limit, we focus on the Domain-Broker
which integrates the DSS Module.

Figure 5. Overall Architecture

B. Domain-Broker Architecture

As mentioned earlier, Domain-Broker manages Domain-

Peers as well as provides some crucial add-on services to
Domain-Peers inside the domain. It handles the joining and
leave request from domain-peers, generates matching tables
for each Domain-Peer, and maintains the transaction history
data for Domain-Peers as well.

Formative domain protocol is employed inside each
domain to allow Service-Peer (service provider and/or

2208

consumer) ‘join’ and ‘leave’ a particular domain for some
reason. Once a Service-Peer SPnew turns into a new Domain-
Peer DPnew, it is firstly granted privilege to register (i.e.
apply the UDDI Publication API set) its detailed service
metadata with the Domain-UDDI. If the metadata is found
entirely new to this domain, the Domain-Broker creates new
QoS entry for DPnew in the QoS database maintained by the
DSS module. Otherwise, related QoS and trustworthiness
value can be obtained directly from existing records stored in
the QoS database for future service selection processing.

Suppose set },,{ 1 ndpdpDP = where DP
represents all the Domain-Peers in the current domain. The
Domain-Broker then propagates DPnew’s service metadata
(mainly high-level data such as name, interface,
classification, etc.) to a set of Domain-Peers DPIDP ⊂ ,
where

{ }newiii DPofconsumerpotentialaisdpDPdpdpIDP &| ∈=
The Domain-Broker needs to calculate the potential
consumer list for such propagation by comparing DPnew’s
service metadata with IDP’s Service Request Subscriptions
(SRS) which include QoS requirement as well as Service
Context, i.e. the functional requirements. Each

IDPidpi ∈ is able to check the detail service metadata by
querying Domain-UDDI and DSS module before DPnew can
be appended to its local matching table. For instance, it may
have specific QoS requirement at different time slot which is
not publicly stated in their SRS. Meanwhile, the Domain-
Broker also generates the matching table for DPnew itself.
This matching table stores a set of Domain-Peers

DPPDP ⊂ where
{ }newiii DPofproviderpotentialaisdpDPdpdpPDP &| ∈=

The potential provider is meant each PDPpdpi ∈ ’s
published service matches with DPnew’s intent of
consumption and potential requirements – both Context and
QoS – embedded in its SRS. DPnew can furthermore choose
the GUI-based matching list so that the human (i.e. the
decision maker) can mediate the service selection process
and update the matching table interactively. As a result, each
one of the involved IDPidpi ∈ as well as DPnew obtains an
updated local matching table which is afterwards used for
service interaction as a peer-to-peer routing mechanism. On
leaving the domain, the DPnew notifies the Domain-Broker,
who will then take the following steps 1) retrieve transaction
history data (e.g. QoS report) from the involved

IDPidpi ∈ and report them to DSS module for further
review; 2) propagate the leaving message to all involved

IDPidpi ∈ and PDPpdpi ∈ , which will in turn perform
certain routine operations accordingly (e.g. removing the
entry from the matching table); 3) unregistered the DPnew
from the Domain-UDDI.

The architectural design of Domain-Broker consists of
three core components: the subscription queue, the matching
engine, and the UDDI client. The domain interface
corresponds to the domain-broker protocol, while the service

interface corresponds to the global-broker protocol.

V. CONCLUSION and FUTURE WORK

In this paper, we proposed a new solution for QoS-based

web services selection. Our solution is based on our
observation that the service selection can be deemed as a
process of decision making. Hence, the solution makes
decisions for selecting the most suitable services by
leveraging a DSS module, which relies on measuring the
Services Trust against certain Quality Criteria defined in
Context-specific Quality Aspects. To realize our solution, we
place the DSS module into the Domain-Broker, one of the
most important architectural components in the distributed
web services architecture.

Currently, proof-of-concept prototyping work is ongoing.
For the future work, we will focus on the implementation of
the DSS module prototype embedded in the Domain-Broker.
In addition, the QoS selection simulation is also need to be
considered and the effectiveness measurement metrics should
be formulated in a formative way.

VI. REFERENCES

[1] Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J.,
Sharda, R. & Carlsson, C., 2002, ‘Past, present, and future of
decision support technology’, Decision Support Systems, no.
931.

[2] Gregg, D.G. & Goul, M., 1999, ‘A proposal for an open DSS
protocol’, Communication of the ACM, vol. 42, no. 11

[3] Kreger, H., 2003, ‘Fulfilling the web services promise’,
Communication of the ACM, vol. 46, no. 6.

[4] Cimetiere, J.C., 2003, ‘Web services adoption and technology
choices – Analysis of survey results’, Technical Report,
Group SQLI, TechMetrix Research.

[5] Maximilien, E.M. & Singh, M.P., 2004, ‘Toward autonomic
web services trust and selection’, Proceedings of the 2nd
International Conference of Service-Oriented Computing,
November 15-19, New York, USA.

[6] Power, D.J., 2000, Decision Support Systems Hyperbook.
Cedar Falls, IA: DSSResources.COM, HTML version, Fall
2000, accessed on (23rd Aug, 2005) at URL
http://dssresources.com/dssbook/

[7] Alonso, G., Casati, F., Kuno, H., Machiraju, V., Web Services
– Concepts, Architecture and Applications, Springer-Verlag
Berlin Heidelberg New York 2004, ISBN 3-540-44008-9

[8] Chang, E., Dillon, T.S. & Hussain, F.K., 2005, Trust and
Reputation for Service-Oriented Environments: Technologies
for Building Business Intelligence and Consumer Confidence,
John Wiley & Sons, ISBN: 0-470- 01547-0

[9] Hussain, F.K., Chang, E. & Dillon, T.S., 2005, ‘Markov
model for modelling and managing dynamic trust’,
Proceedings of 3rd IEEE International Conference on
Industrial Informatics, August 10-12, Perth, Australia.

[10] Wu, C. & Chang, E., 2005, ‘Comparison of web service
architectures based on architecture quality properties’,
Proceedings of 3rd IEEE International Conference on
Industrial Informatics, August 10-12, Perth, Australia.

2209

