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Abstract: The design of soil consolidation via prefabricated vertical drains (PVDs) has been 31 

traditionally carried out deterministically and thus can be misleading due to the ignorance of 32 

the uncertainty associated with the inherent (spatial) variation of soil properties. To treat such 33 

uncertainty in the design process of soil consolidation by PVDs, stochastic approaches that 34 

combine the finite element method with the Monte Carlo technique (FEMC) have been 35 

usually used. However, such approaches are complex, computationally intensive and time 36 

consuming. In this paper, a simpler reliability-based semi-analytical (RBSA) method is 37 

proposed as an alternative tool to the complex FEMC approach for soil consolidation by 38 

PVDs, considering soil spatial variability. The RBSA method is found to give similar results 39 

to those obtained from the FEMC approach and can thus be used with confidence in practice.   40 

 41 

Keywords: Reliability-based design; Soil consolidation; Prefabricated vertical drains; Finite 42 

element method; Monte Carlo technique; Soil spatial variability. 43 

 44 

1. Introduction 45 

 46 

Traditionally, to predict soil consolidation by PVDs using available deterministic 47 

methods [e.g., 1, 2, 3], it has been usually assumed that the consolidating soil surrounding the 48 
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PVDs is homogeneous. In reality, however, the degree of consolidation achieved via PVDs is 49 

strongly dependent on soil properties that are spatially variable in nature, such as soil 50 

permeability, k, and volume compressibility, mv. Consequently, the rate of soil consolidation 51 

is difficult to predict deterministically, especially for heterogeneous soil deposits. Therefore, 52 

it is crucial to develop more realistic solutions that can accommodate the true nature of the 53 

inherent (spatial) variability of soil in the course of design of soil consolidation by PVDs. 54 

In recent years, a few attempts have been made to quantify and assess the uncertainty 55 

associated with soil consolidation. For example, some studies [i.e., 4, 5, 6] focussed on the 56 

impact of soil variability in one dimensional consolidation due to vertical drainage (i.e., no 57 

PVDs). A few more studies [i.e., 7, 8] focussed on the uncertainty associated with the 58 

measurement errors of soil testing for PVD-improved ground but soil spatial variability has 59 

not been explicitly investigated. More recently, Walker and Indraratna [9] proposed an 60 

analytical model incorporating a parabolic permeability distribution in the smear zone, and 61 

Basu et al. [10] performed a study to include a transition zone of linearly varying permeability 62 

between the smear and undisturbed zones with constant permeability. The above solutions, 63 

despite of being useful, failed to accommodate the true nature of soil spatial variability in 64 

design of ground improvement by PVDs and more alternative realistic solutions are needed.  65 

In order to treat soil spatial variability in most geotechnical engineering problems, 66 

stochastic computational schemes that combine the finite element method and Monte Carlo 67 

technique [e.g., 6, 11, 12] have been often used. Despite the fact that such schemes offer 68 

successful solutions, they require a large number of simulations that are computationally 69 

intensive and time consuming. In the current study, an alternative simplified reliability-based 70 

semi-analytical (RBSA) approach is introduced for design of soil consolidation by PVDs, 71 

considering the spatial variations of soil permeability, k, and volume compressibility, mv. The 72 

developed RBSA method is verified by comparing its results with those obtained from the 73 
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complex stochastic 3D finite-element Monte-Carlo (FEMC) approach and the results are 74 

found to be in a good agreement. In the sections that follow, the stochastic FEMC approach is 75 

demonstrated first followed by detailed description of the alternative RBSA method. 76 

  77 

2. Stochastic finite-element Monte-Carlo approach 78 

 79 

For the purpose of examining the proposed RBSA method which will be discussed later 80 

in detail in the following section, a series of stochastic FEMC analyses are performed and 81 

their results are used for comparison with the RBSA method. The FEMC approach merges the 82 

local average subdivision (LAS) technique [13] and finite element (FE) modelling into a 83 

Monte Carlo framework using the following steps: 84 

1. Identify the spatially variable soil properties affecting soil consolidation by PVDs; 85 

2. Create a virtual soil profile that contains random fields of designated soil properties; 86 

3. Incorporate the generated random fields of soil profile into FE modelling; and 87 

4. Repeat Steps 2 and 3 many times using the Monte Carlo technique so that a series of 88 

consolidation responses is obtained from which probabilistic solution for soil consolidation 89 

can be derived. 90 

The above steps, as well as the numerical procedures, are described below. 91 

 92 

2.1 Identification of significant spatially variable soil properties 93 

 94 

As indicated earlier, spatial variability of several soil properties can affect soil 95 

consolidation by PVDs. However, as confirmed by several researchers [e.g., 6, 14], soil 96 

permeability, k, and volume compressibility, mv, are the most significant factors affecting soil 97 

consolidation by PVDs. Although the coefficients of permeability in the vertical and 98 
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horizontal directions (i.e., kv and kh, respectively) may vary in the ground, the impact of kh is 99 

dominant [8]. Consequently, in the current study, only kh and mv are considered to be spatially 100 

variables, while the other soil properties are held constant and treated deterministically so as 101 

to reduce the superfluous complexity to the problem. 102 

  103 

2.2 Generation of random fields of soil properties 104 

  105 

In this study, the LAS method [13] extracted from the random field theory [15] are used 106 

to generate virtual random fields that allow rational random distributions of kh and mv, which 107 

are then implemented in the FEM modelling. Based on the random field theory, a random 108 

field of certain probability distribution of spatially variable soil property can be characterised 109 

by the soil property mean value, µ, variance, σ
2
 (can also be represented by the standard 110 

deviation, σ, or coefficient of variation, υ, where υ = σ/μ) and correlation length or scale of 111 

fluctuation, θ. The value of θ describes the limits of spatial continuity and can simply be 112 

defined as the distance over which a soil property shows considerable correlation between 113 

two spatial points. Therefore, a large value of θ indicates strong correlation (i.e., uniform soil 114 

property field), whereas a small value of θ implies weak correlation (i.e., erratic soil property 115 

field).  116 

In the current study, lognormally distributed random fields are assumed for simulating 117 

the spatial variability of kh and mv because this distribution is extensively used in the literature 118 

both for kh and mv [5, 6, 16]. To create a random field of soil property X, the following 119 

process is followed. A correlated local (arithmetic) average of normally distributed random 120 

field )(iGX over the domain of the ith element are first generated for 3D grid of soil mass with 121 

values of soil property of zero mean, unit variance and scale of fluctuation θX. The required 122 
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lognormally distributed random field defined by μX and σX is then obtained using the 123 

following transformation function [17]: 124 

  iGσμX XXXi lnlnexp                                                                                                      (1) 125 

where Xi is the soil property value assigned to the ith element; μlnX and σlnX are, respectively, 126 

the mean and standard deviation of the underlying normally distributed ln(X) evaluated from 127 

the specified μX and σX of the lognormally distributed X as follows: 128 
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Rearranging Eqs. (2) and (3) gives the following inverse relationships for the mean and 131 

standard deviation of the lognormally distributed X: 132 
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The correlation coefficient for a soil property between two spatial points within the 135 

soil domain is specified by an exponentially decaying ellipsoidal Markov spatial correlation 136 

function, ρ(τ), as follows: 137 
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where x, y and z are, respectively, the distances between two points in x, y and z directions; 139 

and θx, θy and θz are, respectively, the scales of fluctuation in x, y and z directions. It should be 140 

noted that the spatial correlation function in Eq. (6) becomes statistically isotropic when θx = 141 

θy = θz. It is worthy to note that the scale of fluctuation is estimated with respect to the 142 
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underlying normally distributed random field (i.e., lnX). Details on the estimation of the scale 143 

of fluctuation can be found in Lloret-Cabot et al. [18]. 144 

 145 

2.3 Finite element modelling incorporating soil spatial variability 146 

 147 

The subsurface profile simulated in the previous step with the specified spatial variation 148 

of kh and mv can now be employed as inputs into a FE consolidation modelling of soil 149 

improvement by PVDs. In this study, all numerical analyses are carried out using a modified 150 

version of the FE computational scheme ‘‘Program 8.6’’ from the book by Smith and 151 

Griffiths [19] in which soil consolidation is treated as 3D uncoupled problem solved using 152 

implicit time integration with the ‘‘theta’’ method. The authors modified the source code of 153 

“Program 8.6” to incorporate the volume compressibility and allow for repetitive Monte-154 

Carlo analyses.  155 

To demonstrate the validity of the proposed RBSA method against the FEMC approach, 156 

a consolidation problem is considered for comparison implying a unit cell of soil with central 157 

cylindrical drain of dimensions L = 1.0m, re = 0.536m, rs = 0.197m and rw = 0.032m (see Fig. 158 

1a). In the FE analyses, the circular influence area of the cylindrical unit cell is transformed to 159 

an equivalent square influence area (see Fig. 1b) of a side length 2

erS  (i.e., S = 0.95m). 160 

The selection of the equivalent square influence geometry in the FE modelling is convenient 161 

because it avoids the unfavourable mesh shape for the LAS method which requires square (or 162 

rectangular) elements to accurately compute locally averaged values of kh and mv for each 163 

element across the soil mass. For the same reason, a square shaped smear zone of side length 164 

Ss = 0.35m and PVD of a side length Sw = 0.05m are also employed in the FE modelling.  165 

It is well known that the overall consolidation of PVD-improved ground is governed by 166 

the radial (horizontal) flow of water rather than the vertical flow as the drainage length in the 167 
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horizontal direction is much less than that of the vertical direction and kh is often much higher 168 

than that of kv [2]. Under this reasoning, soil consolidation due to the horizontal drainage only 169 

is considered in the current study. Neglecting the vertical flow in the FE analyses is matched 170 

by setting kv to be equal to zero and since the permeability variance is often described without 171 

referring to any direction, the two components of kh (i.e., kx and ky) are assumed to be 172 

isotropic (i.e., kx = ky = kh). 173 

Although the accuracy of the FE solutions increases with the increase of the number of 174 

elements in the FE mesh, a trade-off between accuracy and run-time efficiency is necessary. 175 

Previous literature includes some recommendations regarding the optimum ratio of the scale 176 

of fluctuation to the finite element size. For example, Ching and Phoon [20] stated that this 177 

ratio should be ≥ 20, whereas Harada and Shinozuka [21] pointed out that it should be ≥ 2. In 178 

the current study, a sensitivity analysis on various FE mesh dimensions is conducted and it is 179 

found that a discretization of the FE mesh with an element of size 0.05m × 0.05m × 0.05m 180 

gives a reasonable precision and complies with the recommendation given by Harada and 181 

Shinozuka [21]. The 3D mesh used consists of 7220 eight node hexahedral elements (see Fig. 182 

1b). The initial condition for the uncoupled analysis (i.e., no displacement degrees of freedom 183 

and only pore pressure degrees of freedom) is such that the excess pore pressure at all nodes 184 

(except at the nodes of the drain boundary) is set equal to 100 kPa, while the excess pore 185 

pressure at each node of the drain boundary is set equal to zero.  186 

During the mandrel installation of PVDs, a disturbed zone surrounding the drain (i.e., 187 

smear zone) of reduced kh and increased mv is produced. However, soil spatial variability in 188 

the smear zone persists [22], albeit no longer fully natural. Under this reasoning, two groups 189 

of RBSA models are developed in this study under various assumed ground conditions. In the 190 

first group, the spatially variable soil properties are assumed to be continuous over the whole 191 

unit cell. However, non-stationary mean for the spatially variable soil properties are used to 192 
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take into account the smear effect. In this case, the random fields of the spatially variable soil 193 

properties in the smear zone are generated separately from those of the undisturbed zone; 194 

however, this is carried out in such a way that the ratio of soil permeability in the undisturbed 195 

zone to the smear zone (i.e., kh/ hk  ) and the ratio of volume compressibility in the smear zone 196 

to the undisturbed zone (i.e., vv mm / ) are held constant. In the second group, it is assumed that 197 

the spatially variable soil properties in the smear zone are completely independent of those of 198 

the undisturbed zone. In this case, the random fields of the spatially variable soil properties 199 

for the undisturbed and smear zones are generated separately with their corresponding 200 

dimension and specified random field parameters.  The well resistance is another factor that 201 

may affect the efficiency of PVD-improved ground, which is caused due to the deformation 202 

of the drain (i.e., folding, bending, crimping) and infiltration of fine soil particles through the 203 

drain filter. However, the discharge capacity of most available PVDs in the market is 204 

relatively high and well resistance can thus be practically ignored [23], which is the case in 205 

the presented example herein. It should be noted though that the proposed RBSA method can 206 

also take into account the well resistance effect, if needed. 207 

In the current study, 
hk  and 

vm are taken to be equal to 0.15m/year and 1.0×10
-3

m
2
/kN, 208 

respectively. The ratio 
hh kk  / , which may vary from 2 to 6 as reported by various 209 

researchers [e.g., 2, 23], is taken to be equal to 3. The ratio 
vm /

vm is taken to be 1.2, which 210 

is in accordance with the value reported by Walker [24]. In order to validate the proposed 211 

RBSA, it is decided to conduct the study over the following range of υ and θ for kh and mv:  212 

 
hk  (for both the smear and undisturbed zones) = 100, 200, 300 (%) 213 

 
vm  (for both the smear and undisturbed zones) = 10, 20, 30 (%) 214 

 θθθ
vh mk  (for both the smear and undisturbed zones) = 0.1, 0.25, 0.5, 1.0, 5.0, 10.0 (m) 215 
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It should be noted that the abovementioned selected ranges of υ and θ for kh and mv are typical 216 

to those reported in the literature [e.g., 25, 26] and are believed to represent sufficiently the 217 

practical values that can establish general trends for the stochastic soil consolidation 218 

behaviour. A single generation of the random fields and the subsequent FE analysis is termed 219 

“realization”. For an individual realization, the degree of consolidation at any certain 220 

consolidation time, t, is expressed as U(t) and can be calculated with the help of the following 221 

expression: 222 

0

)(
1)(

u

tu
tU                                                                                                                           (7) 223 

where u0 is the initial pore pressure and ū(t) is the average pore pressures at any t (calculated 224 

by numerically integrating the excess pore pressure across the mesh and dividing by the total 225 

mesh volume), of the consolidation process.  226 

 227 

2.4 Repetition of process based on the Monte Carlo technique 228 

 229 

Following the procedures of the Monte Carlo technique, the process of generating 230 

random fields of kh and mv and the subsequent FE analysis is repeated numerous times with 231 

the same υ and θ until an acceptable accuracy of estimated statistics of U(t) is achieved. It is 232 

found that 2000 Monte Carlo simulations are sufficient to yield reliable and reproducible 233 

estimates. One single case of FE analysis with 2000 Monte-Carlo simulations typically takes 234 

6 days on an Intel core i5 CPU @ 3.4 GHz computer. The above repetitive process is 235 

performed for each combination of the selected υ and θ, and the obtained outputs from each 236 

realization of the Monte Carlo procedures are collated and statistically analyzed to make a 237 

comparative study between the FEMC approach and the proposed RBSA method, as will be 238 

seen later.  239 

 240 



11 
 

3. Reliability-based semi-analytical model 241 

 242 

It is not uncommon that practicing engineers have neither the time nor the resources to 243 

perform full scale FEMC simulations of soil consolidation by PVDs including spatially 244 

random properties. Therefore, in this study, an approximate, easy to use reliability-based 245 

semi-analytical (RBSA) model is introduced from which direct estimates of the probability of 246 

achieving certain U(t) can be readily obtained. The development of the RBSA model requires 247 

a performance function or a theoretical (deterministic) model as the commencing point to 248 

travel through to the reliability (stochastic) solution. Available deterministic analytical 249 

solutions for soil consolidation by PVDs are based on the unit cell concept for a single drain, 250 

which is also adopted in the RBSA model. It should be noted that the unit cell concept is 251 

deemed to be valid for stochastic analysis of PVD-improved ground because it was found in a 252 

recent study carried out by the authors using the FEMC approach that the multi-drain 253 

behaviour can be well represented by an idealized unit cell analysis, provided that certain 254 

factorized statistical parameters, computed by taking into account the size of the unit cell, are 255 

used so as to give equivalent solutions to those of the multi-drain. Detailed description of the 256 

validity of the unit cell concept for stochastic analyses of PVD-improved ground as compared 257 

to the multi-drain solution is beyond the scope of this paper and can be found elsewhere [see, 258 

27].  259 

In the current study, the commonly used radial consolidation equation of Hansbo [2] is 260 

used as the commencing point towards the RBSA model. This equation considers the unit cell 261 

concept and has gained a wide acceptance in practical application. The solution is based on 262 

the equal strain hypothesis and can estimate the degree of consolidation due to the horizontal 263 

drainage, Uh(t), at any time, t, as given in the following equation (note that as the vertical flow 264 
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is ignored in the FE solution, Uh(t) from Hansbo’s theory will be equal to U(t) of the FE 265 

analysis and can be simply denoted as U(t)). 266 
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where Fn, Fs and Fr are the drain spacing factor, smear factor and well-resistance factor, 269 

respectively, and can be determined by: 270 
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where γw is the unit weight of water; re is the radius of the equivalent soil cylinder with 274 

impermeable perimeter (or the radius of zone of influence); t is the consolidation time; α is a 275 

group parameter representing the smear effect and geometry of the PVD system; n = re/rw is 276 

the drain spacing ratio (rw is the equivalent radius of the drain); s = rs/rw is the smear ratio (rs 277 

is the radius of the smear zone); hk  is the horizontal permeability of the smear zone; qw is the 278 

vertical discharge capacity of the drain; L is the maximum vertical drainage distance; and z is 279 

the depth from the top of the consolidating layer. All parameters shown in Eqs. (8–12) are 280 

illustrated in Fig. 1. 281 

It is mentioned earlier that the installation procedure of PVDs not only reduces kh but also 282 

increases mv within the smear zone, leading to different volume compressibility in the smear 283 

zone that is denoted earlier as vm . The ignorance of the increased mv in the smear zone may 284 

lead to a lack of precision in the analysis. However, α parameter in Eq. (8) proposed by 285 



13 
 

Hansbo [2] disregards vm . In an effort to rectify this situation, Walker [24] introduced a new 286 

parameter termed as the smear zone volume compressibility parameter, 
vm , is included in 287 

Eq. (8) to take into account vm . For a single smear zone with constant increased volume 288 

compressibility,
vm is given by Walker [24] as follows: 289 
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By including
vm into Eq. (8), a modified form of this equation is thus: 291 
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If the changes of mv in the smear zone are not considered, then 
vm in Eq. (14) will be equal 293 

to 1.0. That is, Eq. (14) will return back to its original form of Hansbo’s [2] formula presented 294 

in Eq. (8). Since kh and mv are the only random variables, rearranging Eq. (14) and defining 295 

   tU1/1ln  as U*(t) gives: 296 
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The above conversion of Eq. (14) to Eq. (15) is necessary as it simplifies the process of 298 

obtaining a closed form solution for the mean and variance of the degree of consolidation 299 

function U*(t) directly from the statistically defined input data (i.e., mean and variance) of kh 300 

and mv. 301 

The reliability-based solution requires determination of a reasonable probability 302 

distribution of U*(t), once found, the statistical parameters of the distribution of U*(t) can be 303 

estimated. In this regard, simple semi-analytical relationships are derived to aid the designer 304 

in estimating the statistical parameters of the distribution of U*(t) directly from the random 305 

field parameters. This involves considering an approximate model where the geometric 306 
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averages of kh and mv (i.e., hk and
vm , respectively) over the influence zone surrounding the 307 

PVD are used in Eq. (15). If the consolidating soil domain surrounding the PVD is termed D 308 

and discretized into an assembly of non-overlapping rectangular (or square) elements, then hk309 

and
vm over D can be defined as: 310 
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where i = 1,2, …, j represents the element number, )(DG
hk and )(DG

vm
are the arithmetic 313 

averages of )(iG
hk and )(iG

vm , respectively, over the domain D. It should be noted that kh and 314 

mv are assumed to be uncorrelated in the proposed RBSA model, which is due to the lack of 315 

data available in the literature to identify the degree and nature of the cross-correlation 316 

between k and mv. For the problem of one dimensional consolidation, Freeze [5] reported that 317 

non-zero cross-correlation between k and mv has a minor impact on the stochastic results of 318 

soil consolidation. Prior to finding the distribution and statistical parameters of U*(t), a brief 319 

discussion in regard to the underlying equivalent normally distributed mean and variance of 320 

the lognormally distributed soil property X (i.e., 
Xln

 and 2

ln X
 ) is essential, as follows. 321 

As mentioned earlier, the overall behaviour of PVD system is not governed by the soil 322 

properties at discrete points but rather by the average soil properties of the soil volume within 323 

the soil domain. For example, in a consolidating heterogeneous soil mass, high flow rates in 324 

some regions of high k are offset by lower flow rates in other regions of low k, meaning that 325 

the total flow from the vicinity of PVD is effectively an averaging process. Despite the fact 326 

that the input statistics (i.e.,  ,  and  ) characterizing the random soil property of interest 327 

is defined at the point level, soil properties are rarely measured at a point and most 328 
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engineering measurements concerned with soil properties are performed on samples of some 329 

finite volume, thus actually locally averaged over the sample volume. In light of this, the flow 330 

of water through spatially variable soil into the drain is essentially a process governed by the 331 

locally averaged soil properties. The local averaging is performed on the underlying point 332 

distribution (i.e., normal distribution) of the soil property of interest, which will lead to a 333 

reduction in the underlying point variance but the underlying mean will not be affected. For 334 

the lognormal distribution, however, both the mean and variance will be reduced by the local 335 

averaging, as the mean of a lognormal distribution depends on both the mean and variance of 336 

the underlying normal distribution. On the basis of the above discussion, the locally averaged 337 

mean of the underlying equivalent log-soil property field (lnX),
Xln

 , which is unaltered by 338 

the local averaging can be given by:  339 

XX lnln
                                                                                                                             (18) 340 

Using Eqs. (2) and (3), 
Xln

  can be expressed in terms of the input statistics of X, as follows: 341 

 2

lnln
1ln

2

1
ln XXXX

                                                                                             (19) 342 

According to the local averaging theory [15], the variance, 2

ln X
 , which is affected by the 343 

local averaging, is given by:  344 

  2

ln

2

ln XX
D                                                                                                                        (20) 345 

where γ(D) is the “variance function” that defines the amount by which the variance is 346 

reduced as a result of the local (arithmetic) averaging over a domain D and is a function of the 347 

size of the averaging domain and correlation function. The detailed calculation procedure of 348 

the variance reduction factor from the correlation function is given in Appendix A. It should 349 

be noted that, since the spatial variability of both kh and mv are modelled using 3D random 350 

fields and the FEMC results are obtained from 3D FEM analyses, γ(D) in this study is also 351 
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calculated using the 3D variance reduction function. By substituting Eq. (3) into Eq. (20), 352 

2

ln X
  can be expressed in terms of the prescribed statistics of X, as follows: 353 

   22

ln
1ln XX

D                                                                                                                (21) 354 

For the purpose of comparing the proposed RBSA method with the FEMC approach, two 355 

groups of RBSA models are developed. The random soil properties are considered to be 356 

continuous over the whole unit cell in the first group, whereas random soil properties of the 357 

smear zone in the second group are assumed to be independent of the undisturbed zone. For 358 

each group, two RBSA models are developed to comply with the cases of considering both kh 359 

and mv as random variables, while only kh is considered to be a random variable in the second 360 

case. For convenience, the RBSA models are denoted as G1C1 and G1C2 for the first group, 361 

whereas they are denoted as G2C1 and G2C2 for the second group. Considering the 362 

readership of the paper, only the two most general RBSA models, namely G1C1 and G2C2, 363 

are presented in th section below, whereas the other two RBSA models (i.e., G1C2 and 364 

G2C2) are presented in Appendix C. To facilitate the use of the RBSA models, an illustrated 365 

worked example will follow.  366 

 367 

3.1 G1C1: RBSA model considering kh and mv as continuous random variables over the entire 368 

unit cell 369 

 370 

In the development of the RBSA–G1C1 model, it is assumed that both kh and mv vary 371 

spatially in such a way that their second moment structures (variance, covariance, etc.) in the 372 

undisturbed and smear zones are identical with respect to the mean (i.e., 
kk =

hk  , 
hk =

hk 373 

and 
vm =

vm , 
vm =

vm ). This means that the variance and covariance structure is assumed to 374 

be stationary. However, non-stationary means for kh and mv are used to take into account the 375 

smear effect. This is considered because non-stationary correlation structures are uncommon 376 
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in geotechnical engineering due to the prohibitive volumes of data required to estimate their 377 

parameters. In geotechnical engineering, random-field models are often non-stationary in their 378 

mean; however, the variance and covariance structure is generally assumed to be stationary 379 

(Fenton and Griffiths 2008). As kh and mv are continuous over the entire soil domain, each 380 

point in the unit cell is correlated to each other. Therefore, it can be assumed that 
hh kk  / and 381 

vm /
vm remain constant in the unit cell. In other words, α and

vm contribute with little or no 382 

variability to U*(t). Considering kh and mv as the only random variables and using their 383 

geometric averages, Eq. (15) becomes:  384 

v

h

m

k
CtU )(*                                                                                                                         (22) 385 

where hk and vm are, respectively, the geometric averages of soil permeability and volume 386 

compressibility; 387 

vmwer

t
C

2
2

                                                                                                                         (23) 388 
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                                                                                                        (25) 390 

Since the random variation of well resistance effect is not considered in this study, rF   in Eq. 391 

(24), which represents the average well resistance effect over the entire drain length, can be 392 

estimated as [28]: 393 

w

k

r
q

L
F h



3

2 2

                                                                                                                       (26) 394 

Now a reasonable distribution for U*(t) can be found. Since both kh and mv are assumed to be 395 

lognormally distributed, then hk and vm are also lognormally distributed (based on the central 396 
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limit theorem, the geometric average of a random variable tends to have a lognormal 397 

distribution), and therefore U*(t) will be lognormally distributed. In such a case, taking the 398 

logarithm of Eq. (22) yields: 399 

vh mkCtU lnlnln)(*ln                                                                                                      (27) 400 

To evaluate the probability of achieving a certain U(t), the mean )(*ln tU and variance 2

)(*ln tU  401 

of lnU*(t) need to be estimated. The mean )(*ln tU  of lnU*(t) can be obtained by taking the 402 

expectation of Eq. (27), as follows: 403 

vh
mktU C lnln)(*ln ln                                                                                                       (28) 404 

Assuming no cross-correlation between kh and mv, the variance 2

)(*ln tU of lnU*(t) can be 405 

simply estimated, as follows:  406 

2

ln

2

ln

2

)(*ln vh
mktU                                                                                                                (29) 407 

The four unknown parameters: 
hkln

 , 
vmln ,

2

ln hk
 and 2

ln vm  in Eqs. (28) and (29) are now need 408 

to be expressed in terms of the known statistical input parameters of kh and mv. With reference 409 

to Eq. (19), the following expressions of 
hkln

 and 
vmln are obtained: 410 

 2

lnln
1ln

2

1
ln

hhhh
kkkk

                                                                                              (30) 411 

 2

lnln 1ln
2

1
ln

vvvv mmmm                                                                                          (31) 412 

With reference to Eq. (21), 
2

ln hk
  and 2

ln vm  can then be expressed with the specified statistical 413 

parameters of kh and mv, as follows: 414 

    22

ln
1ln

hhh
kkk

D                                                                                                          (32) 415 

    22

ln 1ln
vvv mmm D                                                                                                        (33) 416 
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where  
hkD  and  

vmD  are the variance reduction factors for kh and mv, respectively. As the 417 

inherent spatial variability of both kh and mv is pertinent over the whole unit cell, the entire 418 

soil domain, D, is used for estimating  
hkD  and  

vmD . 419 

Now )(*ln tU  and 2

)(*ln tU  can be evaluated by substituting 
hkln

  and 
vmln in Eq. (28), and 420 

2

ln hk
 and 2

ln vm in Eq. (29), as follows: 421 

   
















 22

)(*ln 1ln
2

1
ln1ln

2

1
lnln

vvhh mmkktU C                                                   (34) 422 

         222

)*(ln 1ln1ln
vvhh mmkktU DD                                                                     (35) 423 

Using the developed semi-analytical relationships shown in Eqs. (34) and (35), the procedure 424 

for evaluating )(*ln tU and 2

)(*ln tU can then be summarized as follows: 425 

1. Determine the mean, standard deviation and scale of fluctuation of kh and mv (i.e., 
hk , 426 

hk and 
hk ; and 

vm ,
vm and 

vm );  427 

2. Calculate 
hhh kkk  /  and 

vvv mmm  / ; 428 

3. Evaluate all constant parameters involved in the RBSA method (i.e., α, 
vm , C,  

hkD and429 

 
vmD ); and 430 

4. Estimate )(*ln tU  and 2

)(*ln tU  by substituting C,
hk ,

vm ,
hk and 

vm in Eq. (34), and 431 

 
hkD ,  

vmD , 
hk and 

vm in Eq. (35). 432 

 433 

3.2 G2C1: RBSA model considering kh, hk  , vm and vm as independent random variables 434 

 435 

As kh, hk  , vm and vm are independent random variables, α and 
vm are no longer constant 436 

parameters. Eq. (15) is therefore becomes:  437 
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vmv

h

m

k
CtU


)(*                                                                                                               (36) 438 

where 439 

 
wer

t
C

2

2
                                                                                                                               (37) 440 

 and
vm  are, respectively, the equivalent α and 

vm parameters of the spatially variable soil 441 

and can be expressed by the following equations: 442 
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Assuming that: aF
s

n
r 









4

3
ln ; bs )ln(   and  W

k

k

h

h 


, Eq. (38) becomes: 445 

bWa                                                                                                                             (40) 446 

Similarly, by assuming g
n

sn






12

22

; h
n

s






1

1
2

2

  and  V
m

m

v

v 


, Eq. (39) becomes: 447 

hVg
vm                                                                                                                            (41)  448 

The parameters α and 
vm are respectively the function of permeability and volume 449 

compressibility. Therefore,  and 
vm , and in turn U*(t) will also be approximately 450 

lognormally distributed. In such a case, the mean )(*ln tU  of lnU*(t) can be obtained by taking 451 

logarithm and subsequent expectation of Eq. (36): 452 

vmvh
mktU C   lnlnlnln)*(ln ln                                                                            (42) 453 

The variance of kh, hk  , vm and vm contribute to the variance of lnU*(t). As  and 
vm454 

involve kh, hk  , vm and vm , then by assuming no cross-correlation between any of the random 455 

variables, the variance 2

)(*ln tU  of lnU*(t) is thus:  456 
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2

ln

2

ln

2

)*(ln
vmtU                                                                                                               (43) 457 

In order to obtain )(*ln tU  and 2

)(*ln tU  in Eqs. (42) and (43) above, the six unknown 458 

parameters 
hkln

 , 
vmln ,  ln , 

vm
 ln , 2

ln  and 
2

ln
vm

 must be obtained in terms of the 459 

known statistical input parameters of kh, hk  , vm and 
vm . The formulations of all unknown 460 

parameters are presented in Appendix B, as they are large enough not to be included in the 461 

main text so as to avoid any possible disruption to the readership of the paper. At the end of 462 

Appendix B, a procedure for calculating these unknown parameters is summarised from 463 

which )(*ln tU and 2

)(*ln tU can be estimated by substituting them in Eqs. (42) and (43). 464 

Having established with reasonable accuracy the distribution parameters of lnU*(t) for 465 

the RBSA method, the probabilities of achieving a target degree of consolidation at any 466 

specified time, Us(t), can be obtained from the following lognormal probability distribution 467 

transformation: 468 

 












 


)(*ln

)(*ln)(*ln
1)(*)(*

tU

tUs

s

tU
tUtUP




                                                                    (44) 469 

where: P [.] = probability of its argument, Φ(.) is the standard normal cumulative distribution 470 

function and Us*(t) is the target U*(t) that needs to be achieved. Since U*(t) is a 471 

monotonically increasing function of U(t), the following equation holds [29]: 472 

   )()()(*)(* tUtUPtUtUP ss                                                                                        (45) 473 

Assuming the target degree of consolidation is 90% (i.e., Us(t) =  0.9) and denoting it as U90, 474 

the probability of achievingU90 at any time, t, can be estimated as follows: 475 

   

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







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
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Note that when Us(t) = U90 = 0.9, then Us*(t) = ln[1/(10.9)] = 2.3026. In the following 477 

section, detailed comparison between the results obtained from the stochastic FEMC approach 478 

and proposed RBSA method is presented and discussed. 479 

 480 

4. Comparison between finite-element Monte-Carlo approach and reliability-481 

based semi-analytical method 482 

 483 

In this section, a comparison between the proposed RBSA method and FEMC approach 484 

is demonstrated through an illustrative worked example. For brevity and because of the good 485 

agreement between the results of the four proposed RBSA models (i.e., G1C1, G1C2, G2C1 486 

and G2C2) and their corresponding FEMC solutions, only G1C1 and G2C1 models are 487 

presented herein. It is to be reminded that kh and mv in G1C1model are considered as 488 

continuous random variables over the entire unit cell, whereas in G2C1 model kh and mv in the 489 

smear and undisturbed zones are considered to be independent random variables. Prior to 490 

comparison, the rationality of the assumption of lognormal distribution for U*(t) under 491 

various assumed ground conditions is assessed through the frequency density plot of U*(t) on 492 

the basis of 2000 realizations for each combination of the variability parameters υ and θ for 493 

the spatially variable soil properties at several different consolidation time. The chi-square 494 

goodness-of-fit tests for all cases are performed and yielded p-values between 0.15–0.96. 495 

Such high p-values indicate that there is a very little evidence in the simulated U*(t) sample 496 

against the null hypothesis of the assumed lognormal distribution. By accepting the lognormal 497 

distribution, all subsequent statistics of the underlying normally distributed lnU*(t) are 498 

estimated by the method of moments from the suite of 2000 realizations using the following 499 

transformations: 500 
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                                                                          (48) 502 

where: U*i(t) is the U*(t) from the ith realization (i = 1, 2, 3, …, nsim) and nsim is the total 503 

number of realizations (i.e., 2000). 504 

 505 

4.1 FEMC approach versus RBSA-G1C1 model 506 

 507 

The illustrative example used for comparison between the FEMC approach and RBSA-508 

G1C1 model involves the same unit cell consolidation problem illustrated earlier (i.e., L = 509 

1.0m, rw = 0.032m, re = 0.536m, rs = 0.197m, n = 16.75 and s = 6.156). The spatial variability 510 

of kh and mv is assumed to have 
hk = 0.15 m/year, kh/ hk  = 3.0, 

vm = 1.0×10
-3 

m
2
/kN, vv mm /  511 

= 1.2, 200
hk %, 20

vm % and 
vh mk   = 1.0m. Armed with the above information, 512 

)(*ln tU  (see Eq. (34)) and 2

)(*ln tU  (see Eq. (35)) are calculated by following the steps 513 

described earlier in developing the RBSA-G1C1 model, as explained below. 514 

Since no well resistance is considered, the constant parameters involved in the RBSA 515 

method can be calculated using the following equations: 516 

      703.5156.6ln1307575.16ln   517 

026.12.1
175.16

1156.6

175.16

156.675.16
2

2

2

22












vm  518 

If the probability of achieving 90% consolidation is to be determined at 0.75 year, then the 519 

parameter C will be: 520 

091.0
026.1703.58.9536.0

75.02
2





C  m year/kN 521 

Now using the algorithm presented in Appendix A, the variance reduction factor for kh and mv 522 

is given by: 523 
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  312.0,,)()(  LSSDD
vh mk   524 

Substituting the given μ, υ and the calculated constant parameters in Eqs. (34) and (35) yield:  525 

83.1)]2.01ln(5.0100.1[ln)]0.21ln(5.015.0[ln)091.0ln( 232

)(*ln  

tU  526 

514.0)2.01ln(312.0)0.21ln(312.0 222

)(*ln tU , therefore, 717.0)*(ln tU   527 

Using the computed values of )(*ln tU  and )(*ln tU in Eq. (46), the probability of achieving 528 

90% consolidation from the RBSA–G2C1 model can be computed as follows: 529 

  92.0
717.0

83.1)3026.2ln(
1)75.0( 90 







 
 UtUP  530 

The FEMC approach of the above problem yields   94.0)75.0( 90  UtUP , thus 531 

demonstrating an excellent agreement between the FEMC approach and proposed RBSA–532 

G2C1 method. Following the above procedure, *lnU , *lnU and P[U ≥ U90] at each time step 533 

over each combinations of the spatial variability parameters are evaluated for both solution 534 

approaches and the results are compared in Figs. 2–3. It should be noted that, for brevity, the 535 

results of only a few tests are presented. 536 

The agreement between μlnU* and σlnU* derived from the FEMC simulation and predicted 537 

by the RBSA-G1C1 model is examined in Fig. 2. The influence of υ on μlnU* is illustrated in 538 

Fig. 2(a) for a constant θ = 0.5m. It can be seen that, in general, the predicted values of μlnU* 539 

obtained from the RBSA model and the FEMC approach match exceptionally well. In both 540 

methods, the estimated μlnU* decreases with the increase of υ, as expected. The relationships 541 

between the estimated μlnU* versus the consolidation time, t, for various θ at constant 542 

200
hk % and 20

vm % are shown in Fig. 2(b). It can be seen that the results obtained 543 

from both the FEMC approach and RBSA-G1C1 model are almost identical. In each solution 544 

method, even though the results for various θ are drawn in the plot, they are embodied into a 545 

single curve, implying that the obtained results at different θ are very close and cannot be 546 
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distinguished. The virtually identical curves for all θ obtained from each method of analysis 547 

demonstrate that μlnU* is largely independent of θ. This is expected as in principle θ does not 548 

affect the local average mean of the normally distributed process. 549 

The effect of υ on σlnU* for a fixed value of θ = 0.5m is shown in Fig. 2(c), which shows 550 

that, in general, σlnU* increases with the increase of υ and the agreement between the FEMC 551 

approach and RBSA model is very good. The influence of θ on σlnU* at constant 200
hk % 552 

and 20
vm % is shown in Fig. 2(d). It can be seen that σlnU* increases with the increase of θ 553 

for both approaches, and apart from some slight discrepancy at high θ ≥ 5m, the agreement 554 

between the FEMC approach and RBSA model is reasonable and shows good compliance. 555 

This behaviour can be explained by noting that, when θ → 0, the simulated soil profile is 556 

consisted of an infinite number of independent ‘observations’, thus there is a decrease in the 557 

average variance of the consolidation rate and the averaging process almost perfectly predicts 558 

the condition in the unit cell. Conversely, when θ is large, the average variance of the 559 

consolidation rate is also expected to be large due to the decrease in the number of 560 

independent ‘observations’, resulting in less averaging variance reduction within each 561 

realization. 562 

The agreement between the FEMC approach and RBSA-G1C1 model is examined in 563 

terms of P[U≥ U90] in Fig. 3. The effect of υ on P[U≥ U90] at a fixed value of θ = 0.5m is 564 

shown in Fig. 3(a). It can be seen that the two solutions are in a good agreement despite some 565 

slight discrepancy at the earlier stage of consolidation. This may be attributed to the fact that 566 

the FEMC approach relies on the free strain concept, while the RBSA method is based on 567 

Hansbo’s solution of an equal strain assumption. As the probability of achieving a target 568 

degree of consolidation of usual interest is greater than 50%, any discrepancy in this range has 569 

a little implication from the practical point of view. In Fig. 3(b), the compliance between the 570 

FEMC approach and proposed RBSA method shows a good agreement for various θ at 571 
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constant 200
hk % and 20

vm %, although a slight discrepancy in P[U ≥ U90] exists 572 

when θ is as small as 0.1m (i.e., for erratic soil). It can also be seen that for any P[U ≥ U90] ≥ 573 

50%, the RBSA–G1C1 model yields slightly higher (unconservative) estimation of P[U ≥ 574 

U90] than that calculated by the FEMC approach when θ is as low as 0.1m. On the other hand, 575 

P[U ≥ U90] derived from the RBSA–G1C1 model is slightly lower (conservative) than those 576 

obtained from the FEMC approach when θ is as high as 1.0m. 577 

 578 

4.2 FEMC approach versus RBSA–G2C1 model 579 

 580 

Following the procedure set out in Appendix B, curves for *lnU ,
*lnU and in turn P[U ≥ 581 

U90] with time over some selected combinations of the spatial variability parameters are 582 

obtained for RBSA-G2C1 method. The agreement between μlnU*, σlnU* and P[U ≥ U90] derived 583 

from the FEMC simulation and predicted by the RBSA–G2C1 model are then examined in 584 

Figs. 4–9. As mentioned earlier, two independent random fields for kh and mv are generated 585 

for the undisturbed and smear zones. For convenience of presentation, the statistical 586 

parameters in the smear and undisturbed zones (i.e., υ and θ of kh and mv) are denoted with 587 

appropriate subscripts “s” and “u” depending on whether they are specified for the smear zone 588 

or undisturbed zone, where s refers to the smear zone while u refers to the undisturbed zone. 589 

The influence of increasing υ on the agreement between the FEMC approach and RBSA–590 

G2C1 model in terms of μlnU* at a fixed value of u = s = 1.0m is shown in Fig. 4. It can be 591 

seen that, in general, the predicted values of μlnU* obtained from the RBSA model match those 592 

obtained from the FEMC approach reasonably well. In both methods, the estimated μlnU* 593 

decreases with the increase of υ, as expected. However, the identical curves for all cases of υu 594 

(
hk and 

vm are fixed at 100% and 10%, respectively) for both methods in Fig. 4(a) indicate 595 

that the effect of increasing υu on μlnU* remains marginal. The effect of υs on μlnU* at fixed 596 
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values of 
hk  = 100% and 

vm = 10% is illustrated in Fig. 4(b). It can be seen that, although 597 

the agreement between the RBSA–G2C1 model and the FEMC approach is reasonably well, 598 

the discrepancy in μlnU* between the two methods becomes higher as t increases. Fig. 4 also 599 

demonstrates that the decreasing rate of μlnU* is higher for an increase in υs than υu.  600 

The matching of μlnU* obtained from the RBSA-G2C1 model and FEMC approach is 601 

examined in Fig. 5 for an increasing θ at constant values of 
kk =

hk  = 200% and 
vm =

vm = 602 

20%. The effect of θu on μlnU* for a constant value of θs = 0.25m is shown Fig. 5(a), whereas 603 

the effect of θs on μlnU* for a fixed value of θu = 0.25m is shown in Fig. 5(b). It can be seen 604 

that the results obtained from both the FEMC approach and RBSA–G2C1 model are nearly 605 

identical. However, a slight discrepancy in μlnU* from the two solution approaches is found 606 

when the consolidation time t is as large as 1 year. In each solution method, the single curve 607 

for all θ confirms that μlnU* is independent of θ.  608 

The agreement between the FEMC approach and RBSA–G2C1 model is further 609 

illustrated by matching the estimated σlnU* at different values of υu and υs, and at a constant u610 

= s = 1.0m (see Fig. 6). It can be seen that, in general, σlnU* increases with the increase of υ 611 

and the agreement between the two solution approaches is reasonably well. However, for a 612 

certain υ at any particular consolidation time t, the estimated values of σlnU* derived from the 613 

RBSA–G2C1 model are slightly higher than those obtained from the FEMC approach. The 614 

above observation is more accurate for υs (see Fig. 6(b)) than υu (see Fig. 6(a)). The 615 

comparison shown in Fig. 6 reveals that σlnU* is largely insensitive to varying υu and highly 616 

sensitive to increasing υs.   617 

The effect of θ derived from the FEMC approach and RBSA–G2C1 model in terms of 618 

σlnU* for fixed values of 
kk =

hk  = 200% and 
vm =

vm = 20% is demonstrated in Fig. 7. It can 619 

be seen that σlnU* increases with the increase of θ, and apart from some slight discrepancy at 620 

large θ (i.e., at θ ≥ 5.0m), the agreement between the two methods is again reasonably well. In 621 
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Fig. 7(a), it can be seen that varying θu (θs is fixed at 0.25m) has a marginal effect on σlnU, 622 

while varying θs has a considerable impact on the estimated values of σlnU* (see Fig. 7(b)).  623 

The influence of υ on the agreement between the FEMC approach and RBSA–G2C1 624 

model in terms of P[U ≥ U90] at a fixed value of 
u =

s = 1.0m is shown in Fig. 8. The effect 625 

of increasing υu on P[U ≥ U90] is illustrated in Fig. 8(a). It can be seen that the predicted P[U 626 

≥ U90] obtained from the proposed RBSA–G2C1 model agrees exceptionally well with those 627 

obtained from the FEMC approach for all cases of υu (
hk and 

vm are fixed at 100% and 10%, 628 

respectively). The virtually identical curves of P[U ≥ U90] in Fig. 8(a) for all υu indicate that 629 

P[U ≥ U90] is largely independent of υu. Fig. 8(b) illustrates the effect of υs on P[U ≥ U90] at a 630 

fixed value of 
u =

s =1.0m. Although the overall agreement between the estimated P[U ≥ 631 

U90] by the two methods is very good, the caveat, however, is that the RBSA–G2C1 model 632 

gives slightly unconservative estimate of P[U ≥ U90] for any P[U ≥ U90] > 50% and 633 

particularly when 
hk ≥ 200% with

vm ≥ 20%. This higher values of predicted P[U ≥ U90] 634 

given by the RBSA–G2C1 model is due to the higher predicted μlnU*, as shown in Fig. 4(b). 635 

Fig. 8 also illustrates that the increasing rate of P[U ≥ U90] with respect to t decreases as υ 636 

increases and this effect is more pronounced for an increase in υs than υu.  637 

Apart from some slight discrepancy particularly when P[U ≥ U90] in the range between 638 

70% − 90%, the FEMC approach and proposed RBSA–G2C1 model show good agreement 639 

for various θu (see Fig. 9(a)) and θs (see Fig. 9(b)) at constant values of υk = 100% and 
vm = 640 

25% as illustrated in Fig 9. This discrepancy between the two solutions is expected because of 641 

the fact that the variability in U(t) is zero at the beginning of consolidation (i.e., at t= 0.0),  642 

and gradually increases with the increase in the consolidation time until it reaches a maximum 643 

value at certain intermediate t, then decreases with further increase in time until it approaches 644 

zero again after the full consolidation is occurred. It can be seen that for any P[U ≥ U90] ≥ 645 

50%, the values of P[U ≥ U90] derived from the RBSA–G2C1 model are slightly higher 646 
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(unconservative) than those obtained from the FEMC approach when θ is as low as 0.25m, 647 

while this trend becomes opposite (conservative) when θ is as high as 1.0m. The comparison 648 

in Fig. 9(a & b) reveals that the effect of θs on P[U ≥ U90] is more significant than θu. 649 

The overall conclusion from the above comparison in Figs. 4–9 is that the RBSA-G2C1 650 

model and FEMC approach agree reasonably well despite some discrepancies in the results of 651 

μlnU* , σlnU*  and P[U ≥ U90]. This is attributed mostly to the empirical adjustment of the 652 

RSBA model which is necessary due to the fact that the sum of two lognormally distributed 653 

random variables does not have a simple closed form solution. In addition, for both solution 654 

methods it is found that the probabilistic behavior of soil consolidation is governed by the 655 

spatial variation of the soil properties of the smear zone. This behavior is expected because all 656 

expelled water from the PVD must pass through the smear zone. 657 

 658 

5. Discussion 659 

 660 

It is noteworthy that the agreement between the proposed RBSA method and FEMC 661 

approach shown above was examined for a consolidation problem of a soil layer having a 662 

thickness of 1m and isotropic scale of fluctuation. Therefore, to arrive at a general conclusion 663 

regarding the validity of the proposed RBSA method compared to the FEMC approach for 664 

thicker soil layers of anisotropic correlation structure, the comparison is also tested for a more 665 

practical example of a unit cell of thickness of geometry L = 4.25m, re = 0.48m, rs = 0.197m 666 

and rw = 0.032m, and parameters 
hk = 0.15m/year, kh/ hk  = 3.0,

vm = 1.0×10
-3

m
2
/kN and 667 

vv mm /  = 1.2. The 3D FE mesh of such problem consisted of 24,565 eight node hexahedral 668 

elements of size 0.05m × 0.05m × 0.05m. The FEMC approach of the problem needed an 669 

intensive computational time of 28 days to run 2000 realizations on an Intel core i5 CPU @ 670 

3.4 GHz computer. Therefore, only two FEMC simulation tests, named as FEMC1 and 671 
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FEMC2, are performed considering anisotropic θ. FEMC1 and FEMC2 stand for comparison 672 

with RBSA–G1C1 and FEMC2 and RBSA–G2C1 models, respectively. For FEMC1 and its 673 

counterpart RBSA–G1C1 model, the random field parameters are assumed to be as follows: 674 

200
hk %, 20

vm %,  yx  10.0m and z 1.0m. For FEMC2 and its counterpart 675 

RBSA–G2C1model, the spatial variability of kh and mv is assumed to have 
kk = 

hk  = 200%, 676 

vm = 
vm = 20%,  yx  10.0m and z 1.0m. The same θ for kh and mv for the smear and 677 

undisturbed zones are used in this investigation. The computed )(*ln tU , )(*ln tU and P[U≥ U90] 678 

from the two methods are compared in Fig. 10. It can be seen that )(*ln tU  (Fig. 10a), )(*ln tU679 

(Fig. 10b) and P[U≥ U90] (Fig. 10c) obtained from both the FEMC approach and RBSA 680 

method are almost identical, implying very good agreement between the two methods. This is 681 

due to the fact that the stochastic response of soil consolidation by PVDs is dependent on the 682 

ratio of the scale of fluctuation to the dimensions of the influence zone surrounding the PVD, 683 

which can be readily taken into account by the use of a variance reduction function. 684 

Therefore, the proposed RBSA method can be utilized with confidence as an easy-to-use 685 

alternative to the computationally intensive FEMC approach for assessing the reliability of 686 

soil consolidation by PVDs in spatially variable soils. Despite the fact that the proposed 687 

RBSA method is suitable for hand calculations, it is coded by the authors in FORTRAN to 688 

provide a user friendly executable program that can be readily used by practitioners, and the 689 

program is available for interested readers upon request. 690 

 691 

6. Conclusions 692 

 693 

Simple reliability-based semi-analytical (RBSA) models for predicting the statistics and 694 

probability of achieving a target degree of consolidation for PVD-improved ground were 695 
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developed incorporating the inherent (spatial) variability of soils. The performance function 696 

of the proposed RBSA models was based on the well-known deterministic equation of 697 

Hansbo [2], which considers soil consolidation due to the horizontal drainage only. Under 698 

various ground conditions, the proposed RBSA models account for the spatial variability of 699 

soil volume compressibility and/or soil permeability, which are considered to be the most 700 

significant spatial random variables affecting soil consolidation by PVDs.  701 

The results confirm that there is good agreement between the proposed RBSA method 702 

and the finite-element Monte-Carlo (FEMC) approach, implying that the simpler RBSA 703 

method negates the need for the computationally intensive and time consuming FEMC 704 

technique. The results also indicate that, for given coefficients of variation of soil 705 

permeability and volume compressibility, the stochastic response of soil consolidation by 706 

PVDs is dependent on the ratio of the scale of fluctuation to the dimensions of the influence 707 

zone surrounding the PVD, which can be readily taken into account by the use of a variance 708 

reduction function. Therefore, the proposed RBSA model can be confidently employed to 709 

assess the reliability of consolidation problems implying arbitrary dimensions. 710 

Despite the success of the proposed RBSA method for design of PVD-improved ground, 711 

it has some limitations compared to the FEMC approach which can deal with more general 712 

cases and offers the ability to solve problems with less restrictive conditions. For example, the 713 

RBSA method does not consider soil consolidation due to the vertical drainage; hence, the 714 

computed probability of achieving a target degree of consolidation would be slightly 715 

conservative. However, it should be emphasised that, in practice, the contribution of soil 716 

consolidation due to the vertical drainage is only a small fraction of the overall soil 717 

consolidation and can thus be neglected without significant impact on the design results. In 718 

addition, soil permeability and volume compressibility were assumed to be uncorrelated, 719 

which again may lead to somewhat conservative solutions. However, it was reported by 720 
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Freeze [5] that the impact of non-zero correlation between k and mv on problems of one 721 

dimensional consolidation is quite minor and the uncorrelated assumption adopted in the 722 

RBSA method is thus reasonable. The overall conclusion is that despite the abovementioned 723 

minor limitations of the proposed RBSA method compared to the FEMC approach, the RBSA 724 

provides more practical design for PVD-improved ground with an acceptable accuracy, which 725 

negates the need for the more sophisticated FEMC approach that requires impractical 726 

intensive computational time.   727 

 728 

 Appendix A. Variance reduction function 729 

 730 

Considering the averaging domain D is a cube of dimension X×Y×Z, then γ(D) 731 

corresponding to the Markov correlation function (see Eq. (6)) can be can be defined by Eq. 732 

(A.1), as follows [17]: 733 

    330 0 0 0 0 0 2211332211222
,,

1
,,  dddddd

ZYX
ZYX

X X Y Y Z Z
            (A.1) 734 

The sixfold integration in Eq. (A.1) can be condensed to a threefold integration by taking 735 

advantage of the quadrant symmetry of the Eq. (6) as follows [17]: 736 

    3210 0 0 321321222
,,))()((

8
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Eq. (A.2) can be computed numerically with reasonable accuracy using Gaussian quadrature 738 

integration scheme as follows [17]: 739 
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where 741 

2/)1( ii X   , 2/)1(,2/)1( kkjj ZY                                                         (A.4) 742 

In which, ωi, ϑi, and ng are the weights, Gauss points, and their total number, respectively. 743 
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Appendix B. Computation of 
hkln

 , 
vmln , ln , 

vm
ln , 2

 ln  and 
2

vm
 ln  744 

 745 

With reference to Eqs. (18) and (19), 
hkln

 and 
vmln can be calculated as follows: 746 

 2

lnln
1ln

2

1
ln

hhhh
kkkk

                                                                                          (B.1) 747 

 2

lnln 1ln
2

1
ln

vvvv mmmm                                                                                         (B.2) 748 

Taking expectation of Eqs. (40) and (41) yield the following equations of the mean of  (i.e.,749 

 ) and 
vm  (i.e., 

vm
 ):  750 

Wba                                                                                                                           (B.3) 751 

Vhg
vm

                                                                                                                        (B.4) 752 

The variance of  (i.e., 2

 ) and 
vm  (i.e., 

vm
 ) are thus:  753 

222

Wb                                                                                                                              (B.5) 754 

222

Vh
vm

                                                                                                                             (B.6) 755 

Recalling that, W = hh kk /  and V = vv mm / . Since both hk , hk  , vm and vm  are lognormally 756 

distributed, W and V will also be approximately lognormally distributed. According to Eqs. 757 

(18) and (19), the following expressions of μlnW  and μlnV with the known parameters are 758 

derived: 759 
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Since kh and 
hk   are independent random variables (no correlation between kh and 

hk  ) and 762 

pertinent only over the undisturbed soil domain, Du, and the smear zone, Ds, respectively, the 763 

overall variance 2

lnW  of lnW can be estimated with reference to Eqs. (20) and (21) as follows: 764 
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222
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and for the same reason, 766 
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where  
hkuD ,  

hksD


 ,  
vmuD  and  

vmsD


  are the variance reduction factors for kh, hk  , 768 

vm and 
vm , respectively.  769 

It can be noticed that both μlnW and 2

lnW of underlying normally distributed lnW are now 770 

known. So μW and 2

W of lognormally distributed W can readily be obtained with reference to 771 

Eqs. (4) and (5). However, as kh and hk   are not distributed over the entire soil domain and do 772 

not have the same influence on the overall behaviour of soil consolidation, the true µW and 773 

2

W  will be somewhat different from those calculated directly using μlnW and 2

lnW . For this 774 

reason, the expressions for µW and
 

2

W are empirically adjusted to obtain these two parameters 775 

of lognormally distributed W with reasonable accuracy as follows: 776 
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where 
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The reason as stated above for the empirical adjustment of µW and
 

2

W is also applicable for µV 780 

and
 

2

W , therefore 781 
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where 
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In Eqs. (B.11–B.14),
hhh kkk

 / and 
hhh kkk 

  / are the coefficients of variation of the 785 

equivalent permeability in the  undisturbed and smear zones, respectively (
hk

 ,
hk

 ,
hk 

 and786 

hk 
 are the standard deviation and mean of hk and hk  , respectively); 

vvv mmm  / and 787 

vvv mmm    / are the coefficients of variation of the equivalent volume compressibility in the  788 

undisturbed and smear zones, respectively (
vm ,

vm ,
vm  and

vm  are the standard deviation 789 

and mean of vm and vm , respectively). With reference to Eqs. (4) and (5), and making use of 790 

Eqs. (19) and (21) lead to the following equations of the mean and standard deviation of hk791 

and hk  :   792 
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Similarly, the mean and standard deviation of vm and vm are thus: 797 
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     







 22 1ln

2

1
1ln

2

1
lnexp

vvvvv mmummm D                                                     (B.19) 798 

     11lnexp 2 
vvvv mmumm D                                                                               (B.20) 799 

     







 

22 1ln
2

1
1ln

2

1
lnexp

vvvvv mmsmmm D                                                     (B.21) 800 

     11lnexp 2   vvvv mmsmm D                                                                               (B.22) 801 

Substituting Eqs. (B.11) and (B.12) into Eqs. (B.3) and (B.5) lead to the following equations 802 

of  and 2

 : 803 
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lnln
2

1
exp
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kk

k

hh
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




                                                                  (B.23) 804 
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kk

k
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hh
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
                                                                                  (B.24) 805 

Again substituting Eqs. (B.13) and (B.14) into Eqs. (B.4) and (B.6) gives: 806 
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
                                                                                  (B.26) 808 

Finally, the statistics (i.e., ln , 2

ln  , 
vmln and 

2

ln
vm ) of the underlying normally 809 

distributed ln  and 
vmln can be obtained from the obtained values of  , 2

 , 
vm

 and 810 

2

vm by using Eqs. (2) and (3). 811 

All six requested parameters (i.e., 
hkln

 , 
vmln ,  ln , 

vm
 ln , 2

ln  and 
2

ln
vm

 ) are now 812 

known and can be used in Eqs. (42) and (43) for the estimation of )(*ln tU and 2

)(*ln tU . Using 813 
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the developed semi-analytical relationships, the procedure for calculating )(*ln tU and 2

)(*ln tU814 

can be summarized as follows: 815 

1. Determine all constant parameters involved in the RBSA–G2C1 (i.e., C, a, b, g, h, 816 

 
hkuD ,  

hksD


 ,  
vmuD and  

vmsD


 );  817 

2. Calculate 
hkln

 and 
vmln from Eqs. (B.1) and (B.2); 818 

3. Calculate μlnW , 2

lnW , μlnV and 2

lnV using Eqs. (B.7)˗(B.10); 819 

4. Calculate
hk

 ,
hk

 , 
hk 

 , 
hk 

 , 
vm , 

vm , 
vm  and 

vm   using Eqs. (B.15)˗(B.22), then 820 

determine 
hk

 , 
hk 

 , 
vm and  

vm  ; 821 

5. Calculate μW and μV using Eqs. (B.11) and (B.13); 822 

6. Using the values of μlnW , 2

lnW , μW, μlnV , 2

lnV , μV, 
hk

 , 
hk 

 , 
vm and 

vm  obtained in 823 

Steps 3˗5, calculate  , 2

 , 
vm

 and 
2

vm from Eqs. (B.23)˗(B.26);  824 

7. Use Eqs. (2) and (3) to determine 2

ln  , ln , 
2

ln
vm and 

vmln  from the obtained 825 

values of  , 2

 , 
vm

 and 
2

vm in Step 6; and 826 

8. Evaluate )(*ln tU  and 2

)(*ln tU  by substituting
hkln

 , 
vmln , ln  and 

vmln  in Eq. (42), 827 

and 2

ln and
2

ln
vm in Eq. (43). 828 

 829 

Appendix C. RBSA model considering permeability as the only random variable 830 

 831 

G1C2: RBSA model considering kh as continuous random variables over the entire unit cell 832 

and mv deterministic 833 

The spatial variability of mv is generally much less than that of kh. Therefore, it is not 834 

unlikely to encounter soil with no or very little variability in mv. For such condition, mv can be 835 
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considered as spatially constant without significantly affecting the final results. Treating kh as 836 

spatially random and mv as spatially constant, the C parameter in Eq. (23) is transformed to: 837 

vmwve mr

t
C

2

2
                                                                                                                   (C.1) 838 

The expressions for )(*ln tU  and 2

)(*ln tU given in Eqs. (33) and (34) are then reduced to: 839 

 2

)*(ln 1ln
2

1
lnln

hh kktU C                                                                                         (C.2) 840 

   22

)(*ln 1ln
hh kktU D                                                                                                     (C.3) 841 

 842 

G2C2: RBSA model considering kh and
hk   as independent random variables and mv 843 

deterministic 844 

 845 

By considering kh and hk   as independent random variables and volume compressibility as 846 

spatially constant, the C parameter in Eq. (37) now becomes: 847 

vmvwe mr

t
C

2

2
                                                                                                                    (C.4) 848 

The equations for )(*ln tU  and 2

)(*ln tU given in Eqs. (42) and (43) are then reduced to: 849 

 lnln)(*ln ln 
hktU C                                                                                                    (C.5) 850 

2

ln

2

)(*ln  tU         
                                                                                                                (C.6) 851 

The three unknown parameters:
hkln

 ,  ln  and 2

ln  in Eqs. (C.5) and (C.6) are already 852 

determined during the course of the development of the RBSA–G2C1 model as presented in 853 

Appendix B and can be readily used for estimation of )(*ln tU  and 2

)(*ln tU . 854 

 855 

  856 
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Figure Captions: 932 

Fig. 1. Schematic diagram of soil consolidation with prefabricated vertical drain: (a) 933 

cylindrical unit cell; (b) equivalent square geometry with FE mesh discretization 934 

Fig. 2. Comparison between FEMC and RBSA–G1C1 for the effect of: (a) υ on μlnU* for θ = 935 

0.5m (b) θ on μlnU* for 
hk = 200%, 

vm = 20% (c) υ on σlnU* for θ = 0.5m and (d) θ on σlnU* 936 

for 
hk = 200%, 

vm = 20% 937 

Fig. 3. Comparison between FEMC and RBSA–G1C1 for the effect of: (a) υ on P[U ≥ U90] 938 

for θ = 0.5m (b) θ on P[U ≥ U90] for 
hk = 200%, 

vm = 20% 939 

Fig. 4. Comparison between FEMC and RBSA–G2C1 for the effect of: (a) υu on µlnU* at fixed 940 

value of 
hk   = 100%, 

vm = 10%, u = s = 1.0m; (b) υs on µlnU* at fixed value of 
hk  = 100%, 941 

vm = 10%, u = s = 1.0m 942 

Fig. 5. Comparison between FEMC and RBSA–G2C1 for the effect of: (a) θu on µlnU* at fixed 943 

value of 
kk =

hk  = 200%, 
vm =

vm = 20%, θs = 0.25m; (b) θs on µlnU* at fixed value of 
kk =944 

hk  = 200%, 
vm =

vm = 20%, θu = 0.25m 945 

Fig. 6. Comparison between FEMC and RBSA–G2C1 for the effect of: (a) υu on σlnU* at fixed 946 

value of 
hk   = 100%, 

vm = 10%, u = s = 1.0m; (b) υs on σlnU* at fixed value of 
hk  = 100%, 947 

vm = 10%, u = s = 1.0m 948 

Fig. 7. Comparison between FEMC and RBSA–G2C1 for the effect of: (a) θu on σlnU* at fixed 949 

value of 
kk =

hk  = 200%, 
vm =

vm = 20%, θs = 0.25m; (b) θs on σlnU* at fixed value 
kk =

hk 950 

= 200%, 
vm =

vm = 20%, θu = 0.25m 951 

Fig. 8. Comparison between FEMC and RBSA–G2C1 for the effect of: (a) υu on P[U ≥ U90] 952 

at fixed value of 
hk   = 100%, 

vm = 10%, u = s = 1.0m; (b) υs on P[U ≥ U90] at fixed value 953 

of 
hk  = 100%, 

vm = 10%, u = s = 1.0m 954 
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Fig. 9. Comparison between FEMC and RBSA–G2C1 for the effect of: (a) θu on P[U ≥ U90] 955 

at fixed value of 
kk =

hk  = 200%, 
vm =

vm = 20%, θs = 0.25m (b) θs on P[U ≥ U90] at fixed 956 

value 
kk =

hk  = 200%, 
vm =

vm = 20%, θu = 0.25m 957 

Fig. 10. Comparison between (a) μlnU* (b) σlnU* and (c) P[U ≥ U90] obtained from FEMC and 958 

RBSA methods for a unit cell having L/S = 5 and anisotropic θ 959 
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Fig. 1. Schematic diagram of soil consolidation with prefabricated vertical 

drain: (a) cylindrical unit cell; (b) equivalent square geometry with FE mesh 

discretization 
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Fig. 2. Comparison between FEMC and RBSA–G1C1 for the effect of: (a) υ on μlnU* for θ = 0.5m (b) θ on μlnU* for 
hk = 200%, 

vm = 20% (c) υ on σlnU* for θ = 0.5m and (d) θ on σlnU* for 
hk = 200%, 

vm = 20% 
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Fig. 3. Comparison between FEMC and RBSA–G1C1 for the effect of: (a) υ on P[U ≥ U90] for θ 

= 0.5m (b) θ on P[U ≥ U90] for 
hk = 200%, 

vm = 20% 
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Fig. 4. Comparison between FEMC and RBSA–G2C1 for the effect of: (a) υu on µlnU* at fixed 

value of 
hk   = 100%, 

vm = 10%, u = s = 1.0m; (b) υs on µlnU* at fixed value of 
hk  = 100%, 

vm = 10%, u = s = 1.0m 
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Fig. 5. Comparison between FEMC and RBSA–G2C1 for the effect of: (a) θu on µlnU* at fixed 

value of 
kk =

hk  = 200%, 
vm =

vm = 20%, θs = 0.25m; (b) θs on µlnU* at fixed value of 
kk =

hk 

= 200%, 
vm =

vm = 20%, θu = 0.25m 
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Fig. 6. Comparison between FEMC and RBSA–G2C1 for the effect of: (a) υu on σlnU* at fixed 

value of 
hk   = 100%, 

vm = 10%, u = s = 1.0m; (b) υs on σlnU* at fixed value of 
hk  = 100%, 

vm = 10%, u = s = 1.0m 
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Fig. 7. Comparison between FEMC and RBSA–G2C1 for the effect of: (a) θu on σlnU* at fixed 

value of 
kk =

hk  = 200%, 
vm =

vm = 20%, θs = 0.25m; (b) θs on σlnU* at fixed value 
kk =

hk  = 

200%, 
vm =

vm = 20%, θu = 0.25m 
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Fig. 8. Comparison between FEMC and RBSA–G2C1 for the effect of: (a) υu on P[U ≥ U90] at 

fixed value of 
hk   = 100%, 

vm = 10%, u = s = 1.0m; (b) υs on P[U ≥ U90] at fixed value of 
hk  

= 100%, 
vm = 10%, u = s = 1.0m  
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Fig. 9. Comparison between FEMC and RBSA–G2C1 for the effect of: (a) θu on P[U ≥ U90] at 

fixed value of 
kk =

hk  = 200%, 
vm =

vm = 20%, θs = 0.25m (b) θs on P[U ≥ U90] at fixed value 

kk =
hk  = 200%, 

vm =
vm = 20%, θu = 0.25m 
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Fig. 10. Comparison between (a) μlnU* (b) σlnU* and (c) P[U ≥ U90] obtained from FEMC and 

RBSA methods for unit cell having L/S = 5 and anisotropic θ  
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