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Abstract. To evaluate the frequency and distribution of land-
slides hazards over Japan, this study uses a probabilistic
model based on multiple logistic regression analysis. Study
particular concerns several important physical parameters
such as hydraulic parameters, geographical parameters and
the geological parameters which are considered to be influen-
tial in the occurrence of landslides. Sensitivity analysis con-
firmed that hydrological parameter (hydraulic gradient) is the
most influential factor in the occurrence of landslides. There-
fore, the hydraulic gradient is used as the main hydraulic pa-
rameter; dynamic factor which includes the effect of heavy
rainfall and their return period. Using the constructed spatial
data-sets, a multiple logistic regression model is applied and
landslide hazard probability maps are produced showing the
spatial-temporal distribution of landslide hazard probability
over Japan. To represent the landslide hazard in different
temporal scales, extreme precipitation in 5 years, 30 years,
and 100 years return periods are used for the evaluation.
The results show that the highest landslide hazard probabil-
ity exists in the mountain ranges on the western side of Japan
(Japan Sea side), including the Hida and Kiso, Iide and the
Asahi mountainous range, the south side of Chugoku moun-
tainous range, the south side of Kyusu mountainous and the
Dewa mountainous range and the Hokuriku region. The de-
veloped landslide hazard probability maps in this study will
assist authorities, policy makers and decision makers, who
are responsible for infrastructural planning and development,
as they can identify landslide-susceptible areas and thus de-
crease landslide damage through proper preparation.

Correspondence to:P. R. Sarukkalige
(p.sarukkalige@curtin.edu.au)

1 Introduction

Landslides are the most dangerous natural hazard in the
mountainous regions of Japan. Landslides occur in different
formats such as slope failures, mud flows, and mass move-
ments. Frequent landslides often result in significant dam-
age to people and property. Heavy rainfalls, heavy snow-
falls and earthquakes, which are frequent events in Japan,
are the leading causes increasing these damaging hazards.
Especially, torrential downpours within short time periods,
and resultant excessive increases in groundwater levels, are
conducive to extensive landslides during the heavy rainfall
season (Okimura et al., 1985; Iida, 1999). For example,
more than 2530 landslide disasters were triggered by heavy
rainfalls in 2004. This is double the annual average num-
ber of landslides in Japan (Disaster report, 2004, 2005). In
addition, steep terrains and weak geological characteristics
which are very common in Japan, lead to frequent landslides
in the mountainous regions of Japan. Due to the extensive
land use activities in Japan, some of the main infrastructure
(especially buildings, railways and highways) are located in
these mountainous regions. Therefore, the areas that are par-
ticularly at risk of landslides should be identified so as to
reduce the probability of damage in the region. Hence, land-
slide hazard assessments have become a vital subject for au-
thorities, as they can assess and predict landslide-susceptible
areas and thus decrease landslide damage through proper
preparation. It assists decision makers who are responsi-
ble for infrastructural development and environmental pro-
tection.

In this study, a probabilistic analysis approach is im-
plemented in order to evaluate the landslide vulnerability
over Japan, with consideration of the influences of external
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Figure 1. Schematic diagram for infiltration analysis to obtain the hydraulic gradient 
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Fig. 1. Schematic diagram for infiltration analysis to obtain the
hydraulic gradient.

parameters such as extreme rainfall. As rainfall is a tempo-
ral parameter, the results of this study depict the landslide
hazard probability taking annual hydrological cycle and dif-
ferent return periods into account (Fell et al., 2006; Zezere,
2002). The advantage of using rainfall as a temporal compo-
nent is not only a consideration for the cause of the landslide,
but also an assessment of spatial and temporal distribution of
landslide hazard vulnerability.

2 Methods and materials

There have been numerous studies reported in literature to
determine the landslide triggering factors. Geographical and
geological factors had been considered using aerial pho-
tographs, and remote sensing data (Kojima et al., 2003;
Tarolli and Tarboton, 2006). Rainfall has been widely con-
sidered as the main temporal landslide triggering parameter
for landslide hazrad assessments (Fell et al., 2008; Westen,
2006; Nagarajan, 2000) In this study, several identified trig-
gering factors are categorized into groups as hydraulic fac-
tors, geological factors and geographical factors. Change in
hydraulic gradient (rate of change of hydraulic head per unit
distance in a particular direction) due to rainfall is consid-
ered as hydraulic factor. The relief energy (elevation differ-
ence between highest and lowest locations), slope gradient
and topography are considered as the geographical factors.
Four commonly available geological formations in Japan col-
luvium, Paleogene sedimentary rocks, Neogene sedimentary
rocks, and granites represent the geological factors (Minato
et al., 1965).

There have been two main approaches to evaluate land-
slide hazard; deterministic and statistical approaches. Wu
and Sidle (1995), Gokceoglu and Aksoy (1996), Atkinson
and Massari (1998), Yilmazer et al. (2003), Xie et al. (2007)
presented some deterministic approaches using geotechni-
cal methods, whereas, Temesgen et al. (2001), Lee and Min
(2001), Ohlmacher and Davis (2003), Westen et al. (2003)

used statistical approaches. Couple of studies tried to com-
pare the assessments from statistical approaches and deter-
ministic approaches and discussed their advantages and dis-
advantages (Calcaterra et al., 1998; Aleotti and Chowdhury,
1999; Lee et al., 2008). Deterministic approaches are based
on slope stability analyses, and are only applicable when
the ground conditions are fairly uniform across the study
area and the landslide types are known and relatively easy
to analyze (Dai et al., 2001). On the other hand, statisti-
cal approaches are indirect hazard mapping methodologies
that involve statistical determination of the combinations of
variables that have led to landslide occurrence in the past.
Probability is the backbone of the statistical analysis. An-
other advantage of the probabilistic method is the possibil-
ity to use over a large area, where numerous natural slopes
exist (Refice and Capolongo, 2002; Guzzetti et al., 2005;
Zolfaghari and Heath, 2008; Shou et al., 2009). Thus, the
use of probabilistic methods has become an important as-
pect in assessing landslide hazard where the probability, lo-
cation, and frequency of future landslides can be predicted
using landslide hazard maps.

In this study, we have mainly followed the statistical ap-
proach for the evaluation. All interested data are obtained
in digital format with 1 km×1 km spatial resolution and are
applied to a probabilistic model based on multiple logistic
regression method, to evaluate the landslide hazard proba-
bility. Finally the results of landslide hazard probability are
portrayed in a 1 km×1 km resolution map showing the land-
slide hazard (hazard index).

2.1 Hydraulic factors

Hydraulic gradient is an affective property for initiation of
landslides. Hydraulic gradient is defined as the rate of change
of hydraulic head per unit distance in a particular direction.
Increase of hydraulic gradient in slope areas leads landslides
(Moriwaki et al., 2006). Change in hydraulic gradient as a
result of infiltration of rainfall is used as the main parameter
to reflect the hydraulic condition in this study. The hydraulic
gradient (1h/L) is derived from the phreatic line obtained by
unsaturated infiltration analysis based on Richards equation
(Richards, 1931; Ross, 1990), using soil data, slope angle
and rainfall as the main input data as shown in Fig. 1. The
infiltration analysis is used to estimate the hydraulic gradient
as described in the following sections.

2.1.1 Infiltration analysis

Unsaturated infiltration analysis is used to obtain the change
in hydraulic gradient due to rainfall (1h/L in Fig. 1). In
addition to rainfall data, soil type data and slope angle data
are used for the infiltration analysis, which are obtained
from the National Land Information data (2001) published by
Japanese Geographical Survey Institute, and Japanese Min-
istry of Land Infrastructure, Transport and Tourism.
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The governing equations and estimation steps for the infil-
tration analysis are as follows:

First the water volume contentθ can be estimated as

∂θ

∂t
= −

(
∂Vx

∂x
+
∂Vz

∂z

)
(1)

Whereθ is the water volume content,t is time interval,Vx is
the velocity in horizontal direction, andVz is the velocity in
vertical direction.

The flow velocities (Vx andVz)are obtained by of Darcy’s
equation (Eq. 2).

Vx = −Kx
∂h
∂x

Vz = −Kz
∂h
∂z

(2)

Whereh is the total hydraulic head,Kx is the unsaturated
hydraulic conductivity in horizontal direction andKz is the
unsaturated hydraulic conductivity in vertical direction.

The total hydraulic headh is the sum of the hydraulic pres-
sure headψ and elevation head. The elevation head can be
estimated using horizontal and vertical length components
(Lx andLz), as−Lx sinα−Lx cosα

Therefore total head is

h=ψ−Lx sinα−Lzcosα (3)

Combining Eqs. (1), (2) and (3), two-dimensional hydraulic
head can be obtained as (Richards, 1931)
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)
(4)

WhereC, (C(ψ)= ∂θ
/
∂ψ) is the specific moisture capac-

ity. Specific moisture capacityC can be obtained by the gra-
dient of the soil moisture characteristic curves (Gosh, 1980;
Ahuja et al., 1985) and the corresponding values for soil
types which are commonly available in Japan are obtained
from the soil moisture characteristic curves developed by
Kawakami (2003).

To solve this equation, two relationships have been used.

1. Relationship between unsaturated hydraulic conductiv-
ity K and water volume contentθ

Kx = Ksx

(
θ−θr

θs−θr

)β
Kz = Ksz

(
θ−θr

θs−θr

)β
(5)

Whereβ is a soil characteristic value

2. Relationship between pressure headψ and water vol-
ume contentθ (Bruseart, 1968).

θ = (θr −θs)

(
ψ ′

ψ0
+1

)
exp

(
−
ψ ′

ψ0

)
+θr (6)

Whereθs is the saturation water volume content,θr is
the residual water volume content andKs is the unsat-
urated hydraulic conductivity. These parameters can be
obtained from the literature (Kawakami, 2003). Four
soil types (gravel, sand, silt and clay) are taken into ac-
count for the infiltration analysis and Table 1 shows the
properties of each soil type.

Relationships expressed by Eqs. (5) and (6) are used to solve
Eqs. (2), (3) and (4), whereψ0 is used as the initial condition
(initial pressure) andψ ′ is used as the saturated condition
(saturated pressure). The convergent value of hydraulic head
is used to estimate the hydraulic gradient as1h/L. The esti-
mated hydraulic gradient will then be used as the main input
to the landslide probability model.

2.1.2 Extreme precipitation and return period

Extensive records of landslide activity in Japan show that,
landslide prediction is closely related to the probability of
exceeding threshold values of precipitation. Therefore, ex-
treme precipitation events and the return period of extreme
precipitation are in the main interest in this evaluation.

Extreme precipitation of several return periods (5 years,
30 years and 100 years) are estimated by analyzing recorded
maximum 24 h precipitation data for 20 years (1980–2000),
obtained from 1024 AMeDAS (Automated Meteorological
Data Acquisition System) meteorological observation sta-
tions. For the frequency analysis of the return period of
extreme precipitations, GEV (Generalized Extreme Value) –
distribution function is used as probability distribution, and
PWM (Probability Weight Moment) – method is used for
universal prediction method.

As the first step, PWM-method is used to obtain the prob-
ability weight momentβ as follows

β0 =
1
N

N∑
j=1

x(j)

β1 =
1

N(N−1)

N∑
j=1

(j−1)x(j)

β2 =
1

N(N−1)(N−2)

N∑
j=1

(j−1)(j−2)x(j)

(7)

WhereN is Number of sample data,j is the rank,x(j) is
the values of smaller rank in sample data, which used the
maximum daily rainfall in AMeDAS data set from 1980 to
2000. The product momentλ is obtained based on Probabil-
ity weight momentβ.λ1 = β0
λ2 = 2β1−β0
λ3 = 6β2−6β1+β0

(8)
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Table 1. Properties of four soil types used for infiltration analysis.

Soil Hydraulic Saturation Residue Soil
type conductivity water volume water volume characteristic

(cm/s) content content value

Gravel 1×10−2 0.30 – 3
Sand 1×10−3 0.40 – 3
Silt 1×10−4 0.45 0.05 5
Clay 1×10−5 0.50 0.10 20
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Figure 2. Distribution of the annual maximum daily rainfall  
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Fig. 2. Distribution of the annual maximum daily rainfall.

Population parameterk is obtained combining the Probabil-
ity weight momentβ and product momentλ as follows;

k=7.8590

(
2λ2

λ3+3λ2
−

ln(2)

ln(3)

)
+2.9554

(
2λ2

λ3+3λ2
−

ln(2)

ln(3)

)
(9)

The scale parametera and location parameterc are obtained
using the population parameterk and product momentλ.{
a=

kλ2
(1−2−k)0(1+k)

c= λ1−
(
a
k

)
[1−0(1+k)]

(10)

The CDF (Cumulative Distribution Function)F(x) of the
GEV distribution is obtained from the following equation
based on population parameterk, scale parametera and lo-
cation parameterc.

F(x)= exp

{
−

[
1−

(
k

a

)
(x−c)

]1/k
}

(11)

Extreme heavy rainfall of return periodT years is obtained
by the following equation (Eq. 12) which is the inversion to
Eq. (11).{
xT = c+

(
a
k

){
1− [−ln(p)]k

}
p= 1−(1/T )

(12)

WhereT is the return period, andp is non exceed probability.
To evaluate the spatial distribution of maximum precipi-

tation in each return period, a linear regression analysis is
used to develop the relationship between the extreme pre-
cipitation data and annual mean precipitation data. Annual
mean precipitation data are obtained from the precipitation
data base of Meteorological department of Japan, which is
called “Mesh Climate Value 2000” (Japanese Meteorological
Business Support Center, 2002). To apply the linear regres-
sion analysis the inverse distance weighted method and the
Tissen method are used to interpolate precipitation values.

Since rainfall and related change in hydraulic gradient are
the main consideration in this study, the winter precipitation
in form of snowfall should not be taken into account. There-
fore, only rainfall is considered to estimate the extreme pre-
cipitation for each return period. Widely used 2◦C thresh-
old is used to seperate the rainfall and snowfall (Singh and
Bengtsson, 2005; Kazama et al., 2008) and the regression
analysis conducted separately selecting only rainfall events
and omitting snowfall events.

Therefore, different regression coefficients should be es-
timate for different seasons (Ushiyama and Takara, 2003).
Considering that the spring rainfalls are from March to May;
the summer rainfalls are from June to August; the autumn
rainfalls are from September to November; and the winter
rainfalls are in warm days (days with average temperature
more than 2◦C) from December to February, Fig. 2 shows
the distribution of the annual maximum daily rainfall ac-
cording to the season. Mountains areas in western side of
Japan (Japan Sea side) receive the maximum rainfall during
the winter. Rest of the areas receives the maximum rainfall
during the summer and autumn. Only south islands of Japan
receive the maximum rainfall in the spring. Therefore sum-
mer and spring rainfalls are grouped to a common category
for the analysis purpose and separate regression analysis are
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Figure 3. Relationships between maximum monthly rainfall and the extreme 
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Fig. 3. Relationships between maximum monthly rainfall and the extreme precipitation for 30 years return period in each season.

carried out for areas having their maximum rainfall in au-
tumn, winter, and spring + summer.

Figure 3 shows the relationships between maximum
monthly precipitation in each season and the extreme precip-
itation for 30 years return period. It explains that the regres-
sion line between maximum monthly precipitation and the
extreme precipitation changes seasonally. Therefore regres-
sion analysis is carried our for three selected return periods
(5 years, 30 years and 100 years) considering each seasonal
data separately. Figure 4 shows the distribution of the ex-
treme precipitation over Japan in 5 years, 30 years and 100
years return periods. This map illustrates that maximum pre-
cipitation is lower in Japan Sea side as winter snowfalls are
removed from the database. Pacific Ocean side of the Japan
receives the highest extreme precipitations. Table 2 summa-
rizes the correlation between maximum monthly precipita-
tion in each season and the extreme precipitation of 5 years,
30 years and 100 years return period. The estimated maxi-
mum precipitations are used as the main hydraulic input for
the infiltration analysis.

2.2 Topographic factor – relief energy

Geographical properties of the slope effectively affect the
probability of landslide hazards. To represent geographical
features, the main topographic factor, relief energy is utilized
as an input for probability model to describe the elevation
differences in the area. Relief energy is defined as the el-
evation difference between the highest location and lowest
location. Relief energy is an index that could show the com-
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Figure 4. Distribution of the extreme precipitation in 5 years, 30 years and 100 years 

return periods 
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Fig. 4. Distribution of the extreme precipitation in 5 years, 30 years
and 100 years return periods.

plexity of geographical features considering the active devel-
opment of landform (Derbyshire et al., 1995; Crescenzo and
Santo, 2005). Therefore, in this study relief energy is defined
as the elevation difference between the highest and the low-
est elevation in each grid cell and the relief energy for each
1km×1km resolution grid cell is estimated using the digital
elevation model (DEM) data of the study area obtained from
National-land information database (2001).
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Table 2. Correlation between maximum monthly precipitation and the extreme precipitation of 5 years, 30 years and 100 years return period.

Return period Season Correlation coefficient
Regression

Coefficient Intercept

5 years
Spring, Summer 0.70 0.35 42.98
Autumn 0.77 0.60 26.68
Winter 0.71 0.36 39.91

30 years
Spring, Summer 0.68 0.49 85.96
Autumn 0.80 0.94 34.42
Winter 0.67 0.51 67.43

100 years
Spring, Summer 0.65 0.65 118.76
Autumn 0.70 1.19 52.11
Winter 0.62 0.64 89.24

Table 3. Summary of the results of the multiple logistic regression analysis.

Geological features Regression factor Hydraulic gradientσh Relief energyσr Interceptσ0

Colluviums
Coefficientσ 12.39 0.06 −28.21
Significance probability 0.03 0.04 0.05
Standard regression coefficient 2.16 1.76 –

Neogene sedimentary rocks
Coefficientσ 11.56 0.05 −29.98
Significance probability 0.03 0.03 0.04
Standard regression coefficient 1.99 1.24 –

Paleogene sedimentary rocks
Coefficientσ 10.78 0.04 −30.24
Significance probability 0.05 0.04 0.05
Standard regression coefficient 1.65 1.01 –

Granites
Coefficientσ 9.53 0.05 −31.12
Significance probability 0.04 0.05 0.04
Standard regression coefficient 0.99 0.89 –

2.3 Geological factors

Four mostly common geological formations are considered
as geological parameters for the study; colluvium, Tertiary
sedimentary rocks, and granites. Tertiary sedimentary rocks
are divided to two subgroups as Neogene sedimentary rocks
and Paleogene sedimentary rocks by considering the dif-
ferent geological formations. Geological formation data
are also obtained from the digital national land information
database (National-land information data, 2001).

2.4 Landslide hazard probability model

Landslide Hazard is expressed as probability of occurrence
within a reference period as a function of the spatial prob-
ability and the temporal probability (Westen, 2006; Zezere,
2000). In this study a stepwise logistic regression model is
constructed to find the relations among landslide probability
and the above mentioned physical parameters. The multiple

logistic regression method is preferred for this analysis, since
multiple logistic regressions allow forming a multivariate re-
gression relation between a dependent variable and several
independent variables. Also the logistic multiple regressions
are easier to use for hazard analysis when there is a mixture
of numerical and categorical regresses, because it includes
procedures for generating the necessary dummy variables au-
tomatically (Hair et al., 1998). As many variables are cat-
egorized in this landslide analysis, multiple logistic regres-
sion analysis is used and the regressions are formulated in
the form of regression coefficient. Since hydraulic gradient
is used as one temporal variable, multiple logistic analyses
are useful to use kinetic data and to simulate predicted fu-
ture data and temporal changes. For each geological lithol-
ogy type, the landslide hazard is described by the explain-
ing variables such as hydraulic gradient and relief energy.
The landslide hazard probability responding such variables
is constructed as a logistic curve with multiple regressions,

Hydrol. Earth Syst. Sci., 14, 1047–1061, 2010 www.hydrol-earth-syst-sci.net/14/1047/2010/
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Figure 5. Developed logistic curves for four geological properties 
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Fig. 5. Developed logistic curves for four geological properties.

as expressed in the following equations.

log

(
P

1−P

)
= σ0+σh×hyd+σr × relief

P =
1

1+exp
[
−(σ0+σh×hyd+σr × relief)

] (13)

WhereP is the probability of landslide occurrence,σ0 is the
interception,σh is the coefficient of hydraulic gradient,σr is
the coefficient of relief energy, “hyd” is the hydraulic gradi-
ent, and “relief” is the relief energy.

The results of the multiple logistic regressions expressing
the relationships among hydraulic gradient and relief energy
for each geological formation are summarized in Table 3. As
explained in above equations, probability of landslide occur-
rence for each geological formation depends on two explain-
ing variables; hydraulic gradient and relief energy. The dis-
tribution of each geological pattern is able to affect the prob-
ability of landslide and distort the results because the geo-
logical features are not uniformly distributed over the area.
Therefore, the probability analysis is separately constructed
for four geological features: colluvium, Paleogene sedimen-
tary rocks, Neogene sedimentary rocks, and granites. The
developed logistic curves for selected four geological forma-
tions are presented in Fig. 5. The rising position (point that
the probability>0) and the slope angle of the logistic curves

could display the risk of geological feature. When the rising
position is lower, it gives higher risk. Also when the slope
is steep, it gives high risk. Therefore, Fig. 5 shows that col-
luvium geological formation shows the highest risk. Second
highest is Neogene sedimentary rock. The least risk geo-
logical formation is granite. This order corresponds to the
hardness of geological features. Then the developed proba-
bility model is applied to each 1 km×1 km grid cell employ-
ing the hydraulic, geological and geographical properties of
each cell. This task has produced the assessment maps show-
ing the distribution of landslide hazard probability over entire
Japan.

3 Results and discussion

3.1 Landslide hazard probability

The results of the probability model, the spatial distribu-
tion of landslide hazard probability based on rainfall induced
infiltration condition, geographical conditions and geologi-
cal formations of the area are portrayed on landslide haz-
ard probability maps using Geographic Information System
(ARC/INFO-GIS). In order to evaluate the temporal changes,
the probability is estimated for changing hydraulic factors
using three different return periods of extreme precipitation;

www.hydrol-earth-syst-sci.net/14/1047/2010/ Hydrol. Earth Syst. Sci., 14, 1047–1061, 2010
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Figure 6. Developed landslide hazard Probability map; (a) For extreme precipitation 5 

years return period, (b) For extreme precipitation 30 years return period, (c) For extreme 

precipitation 100 years return period 
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Fig. 6. Developed landslide hazard probability maps;(a) for ex-
treme precipitation in 5 years return period,(b) for extreme precipi-
tation in 30 years return period,(c) for extreme precipitation in and
100 years return periods.

5 years, 30 years, 100 years. The change of the return period
could explain the temporal change of the landslide hazards
probability. Landslide hazard probability according to the
extreme precipitation for different return periods are highly
important, because return period dictates the time frames and
design guidelines for countermeasures and it also show the
order of priority in mitigation processes and financial fund
allocations.

The developed rainfall induced landslide hazard maps for
5 years, 30 years and 100 years return period are shown in
Fig 6. They clearly separate the high risk and low risk areas.
The regions where the landslide hazard probability is greater
than 95% are marked as high risk areas. Overall, the moun-
tain range on the Japan Sea side shows the highest landslide
hazard probability. Especially steep mountain regions spread
in these areas.

The most vulnerable areas are the areas having the largest
landslide hazard probability in extreme precipitation of 5
years return period map. They are (as shown in Fig. 6a);

1. Iide and Asahi mountainous ranges

2. South east side of Mt. Fuji

3. Hida and Kiso mountainous ranges

4. South side of the Kii Mountains

5. South side of the Chugoku Mountains

6. South side of the Kyusyu Mountains

To understand the impacts of heavy precipitation conditions,
landslide hazards probability maps for extreme precipitations
in different return periods are compared. It shows that ex-
treme precipitation in longer return periods make the situa-
tion more critical. Results considering extreme precipitation
for 30 years return period and 5 years return period, the maps
clearly show that the vulnerable areas further expand over
whole Chugoku mountain region. Especially, remarkable in-
crease can be observed over Shikoku region and in the Izu
islands which show over 95% of landslide hazard probability
for 30 years return period. The landslide hazard probability
for extreme precipitation in 100 years shows that the vulner-
able areas expand to the Dewa mountainous range and to the
Hokuriku region. Especially, some additional areas of over
95% probability are distributed in the southern part of the
Kyushu mountain range.

These areas should be given priority for developing miti-
gations and countermeasures. Most of these high risk areas
are relatively low populated areas. Therefore, the direct im-
pacts on human lives and properties are less in most of the
areas except in the Chugoku mountain range. Damage of
human lives and public infrastructures due to landslides is
one of the main problems in the south sides of the Chugoku
mountain range abut to an urban area. The Hiroshima pre-
fecture included in the Chugoku mountain range had land-
slides seven times since 1945 (in 1945, 1951, 1957, 1982,
1991, 1993, and 1999). The landslide hazard occurred in
1999 (29 June to 3 July in 1999) is a well known disaster
in Japan. It leaded to develop landslide hazard preventive
law (Cabinet paper on 28 March 2001, 2001). Our results
also show that south side of the Chugoku mountain range is
a high risky landslide prone area and it is one of the areas to
allocate countermeasures for landslide disasters.

Even though population densities are comparatively low,
all these mountain ranges are supplied with a large amount
of infrastructure especially dams, reservoirs, highways and
railways. Landslides in dam catchment areas bring huge
amount of sediments to reservoirs and it leads to accumu-
late the sediment in the reservoirs. Also the sediment flow
affects the water quality in the reservoirs. In the Chubu re-
gion which locates in the south east side of Mt. Fuji and the
Hida and Kiso mountains, the sediment deposits in the reser-
voir are remarkable problem (Takemura, 1999). Therefore
prediction of landslide- probability and early warning at the
design stages of the reservoirs helps the proper management
of reservoirs allowing high capacity of dead volume for sed-
iment deposits in reservoirs located in landslide prone areas.
Also it would be helpful for operational counter measures in
these dams which predict high probability of extreme precip-
itation at a short cycle. Addition to the damages of reservoirs
and dams, landslides damage the transportation infrastruc-
tures in these areas. Landslides lead to collapse of the roads,
railways and bridges, block the roads and railways which
cause serious traffic problems during heavy rainfall periods.
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Figure 7. Observed landslide locations in Tochio city 

Tochio City 
Niigata Prefecture 

Landslide locations 0 250 500(km) 

0 20 40(km) 

Fig. 7. Observed landslide locations in Tochio city.
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Figure 8. Comparison of landslide hazard probability map and observed landslides in 

Tochio City 

a) 95%  threshold 

b) 80%  threshold 
40(km) 20 0 

Probability over 95% 

Probability less than 95% 

Landslide locations 

Probability over 80% 

Probability less than 80% 

Landslide locations 
Tochio City landslide location 

Landslide locations 

Fig. 8. Comparison of landslide hazard probability map and observed landslides in Tochio city.

3.2 Model verification with historical landslide events

A key assumption using the probabilistic approach is that the
potential (occurrence possibility) of landslides will be com-
parable to the actual frequency of landslides. As independent
validation of statistical models for landslide hazard assess-
ment is very important (Remondo et al., 2003; Westen et al.,
2003), in this study, we performed a model verification using
recorded past landslide data.

Historical landslide hazard data for Tochio city, where 183
landslides were occurred in 2004, are used to compare the
developed landslide hazard maps and actual landslides. Due
to the downpour on 12 July 2000, 374 landslides were de-

tected using aerial photographs over Niigata prefecture. Out
of these, 183 disasters are concentrated in Tochio City. The
downpour event recorded 422 mm of precipitation within
24 h in the AMeDAS observation station at Tochio city. This
is the maximum extreme precipitation recorded in 530 years
return period. Distribution of the detected landslide haz-
ard areas taken from aerial photographs were converted to
vector-type spatial landslide hazard map of 1 km×1 km reso-
lution using the ARC/INFO GIS software (Yamagishi et al.,
2004). Figure 7 shows the observed landslide locations in
Tochio city.
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Figure 9. Relationship between the change in landslide hazard Probability and change in 

hydraulic gradient and relief energy for the four geological parameters 
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Fig. 9. Relationship between the change in landslide hazard probability and change in hydraulic gradient and relief energy for the four
geological parameters.

Using the developed landslide hazard probability map, two
main group of risk conditions are defined as “high risk ar-
eas” and “low risk areas”. Areas having average landslide
hazard probability of over 95% are categorized as “high risk
areas” and areas having landslide hazard probability less than
95% are categorized as “low risk areas”. The observed 183
landslide locations are overlapped on landslide hazard prob-
ability map (Fig. 8a). It shows that most of the landslides
(160 landslides) are occurred in high risk areas (where land-
slide hazard probability is over 95%). Only few landslides
(23 landslides) occurred in low risk areas, which show 88%
agreement with the model results. When comparing the re-
sults based on geological properties, it shows that colluviums
geological areas shows the best agreement with over 95%
landslides are taken place in landslide risk areas. The agree-
ment is not perfect in granite geological areas. This means
that strong geological properties (such as granite), are well
protective for landslide hazards (Table 4). If the threshold
for “landslide risk areas” and “low risk areas” is changed
to 80%, Fig. 8b shows that all observed landslides are lo-
cated inside the “landslide risk areas”. Therefore for man-
agement point of view, the areas with landslide hazard proba-

bility with more than 80% should be taken into account when
planning mitigation and countermeasures. Anyway as over-
all situation, the observed landslide records are well matches
with the analytical results.

3.3 Sensitivity analysis

3.3.1 Identification of sensitive parameters

To investigate the sensitivity of the changes in hydraulic gra-
dient and relief energy on the change in landslide hazard
probability, a sensitivity analysis is conducted. Figure 9 il-
lustrate the relationship between the change in landslide haz-
ard probability and change in hydraulic gradient and relief
energy for four geological parameters; colluvium, Paleogene
sedimentary rocks, Neogene sedimentary rocks, and gran-
ites. Here the hydraulic gradient is changed by 0.01 intervals
from 0 to 2.5, and relief energy by 1m intervals from 150 m
to 550 m. Figure 9 shows that change of probability highly
depends on hydraulic gradient than on relief energy. Change
in probability with relief energy (slope of the curve surface in
Y-direction) is almost constant. While observing the change
in probability for 150 m relief energy value, in the case of
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Table 4. Distribution of observed landslide locations and landslide hazard probability for Tochio city.

Geographical property Number of observed Number of landslides Agreement
landslide locations in risk areas ratio

All geological properties 183 160 87.4%
Colluviums 45 43 95.6%
Neogene sedimentary rocks 77 66 85.7%
Paleogene sedimentary rocks 38 34 89.5%
Granite 23 17 73.9%

colluviums condition, the landslide hazard probability sud-
denly increases by 15% when hydraulic gradient changes
from 1.2 to 1.5 relief energy. In the case of granite, this in-
crement of landslide hazard probability is 12%. Literature
shows that 350 m relief energy is high appearance frequency
in the mountainous ranges in Japan (Katsube, 2001). There-
fore, 350 m relief energy is an important value in discussion.
Change in probability with change in hydraulic gradient for
350 m relief energy is presented in Fig. 10. It clearly shows
that areas having colluviums geological conditions show the
highest influence from hydraulic gradient and areas having
granite geological conditions have the lowest influence from
hydraulic gradient. In colluviums geological areas, only 0.3
of hydraulic gradient (0.5–0.2) is able to change the landslide
hazard probability by 16%, and in granite geological areas,
0.5 of hydraulic gradient (1.5–1.0) is able to change the land-
slide hazard probability by 13%.

3.3.2 Sensitivity of the resolution of input data

Based on the resolution of the available data (specially cli-
mate and geology data), the developed landslide hazard prob-
ability distribution maps are in 1 km×1 km resolution. This
coarse resolution gives general information to identify high
risk areas. It is necessary to conduct a detailed analysis in
high probability areas using fine resolution data. Anyhow
developing fine resolution maps is time and resources con-
suming task. Also the availability of necessary data in fine
resolution is rare.

To identify the influence of data resolution on results, a
fine resolution probability map (50 m×50 m map) is devel-
oped for Niigata prefecture. Fine resolution data (soil data,
geology data and topography data) is obtained from digital
database called “Digital geographic map 50 m” (2006). Fig-
ure 11 shows the comparison of landslide hazard probabil-
ity in 50 m×50 m (R50) fine resolution map and 1 km×1 km
(R1000) coarse resolution map, for extreme precipitation in
100 years return period. It shows that the high risk areas
(areas having landslide hazard probability more than 80%)
is almost same in both maps. As indicated in Fig. 11, both
maps show the areas having more than 80% landslide hazard
probability as;
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Fig 10 Variation in landslide hazard probability with change in hydraulic gradient for 

350m relief energy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.Variation in probability Vs change in hydraulic gradient for
350 m relief energy.

1. West side of mountain range from Asahi to Iide

2. North west side of Uonuma hills

3. North west side of Mikuni mountain range

4. North side of Hida mountain range

However, several areas in the west side of the Niigata pre-
fecture, show different results between two maps. R50 map
depicts higher probability in some areas. Areas such as (e)
Echigo plain and Asahi mountain range, (f) Hills in Tsug-
awa city and Aganogawa River basin, (g) Yahiko and Kakuta
mountain range and (h) Sasagahara plateau show over 70%
landslide hazard probability in R50 map, whereas they show
about 40% landslide hazard probability in R1000 map. The
reason is that R1000 map uses average geography and to-
pography conditions while localized low and high elevation
areas are not taken into account. These local high/low eleva-
tion areas become active in R50 resolution maps as they can
be located in separate own grid cells in R50 resolution.

Taking the distribution of landslide hazard probability in
R50 map into account, Fig. 12 shows the relationship be-
tween the probability in R1000 map and average of the
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Table 5. The definitions of landform types (source: National-land information data, 2001).

Landform Relief energy Elevation Geographical features

Large relief mountain Over 500 m

Over 200 m

Mountain
Middle relief mountain 350 m–500 m
Small relief mountain 200 m–350 m
Mountainside 0 m–200 m

Large relief volcanic mountain Over 500 m

Volcanic mountain contains Quatemary deposits
Middle relief volcanic mountain 350 m–500 m
Small relief volcanic mountain 200 m–350 m
Volcanic mountain side 0 m–200 m

Large relief hill 100 m–200 m
<200 m HillslopesSmall relief hill 0 m–100 m

Plateau gravel River terrace of river or seaside
Plateau rocks River terrace of river or seaside
Alluvial fan Alluvial fan
Delta Delta
Natural levee Natural levee
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Figure 11. Comparison of 50m×50m (R50) resolution map and 1km×1km (R1000) 

resolution map developed for Niigata prefecture (for extreme precipitation in 100 years) 

 

0 50 100(km) 

Probability (%) 

Elevation (m) 

(a) Geographical properties (b) R50 Resolution (c) R1000 Resolution 

Fig. 11. Comparison of 50 m×50 m (R50) resolution map and 1 km×1 km (R1000) resolution map developed for Niigata prefecture (for
extreme precipitation in 100 years).

probability of R50 map for Niigata prefecture. Aver-
age probability in R50 (50 m×50 m) means average of the
400 probability values of 400 cells compatible with R1000
(1 km×1 km) area. Figure 12 depicts a strong correlation be-
tween two maps showing a correlation coefficient of 0.94.
Areas which have widely spread uniform geology, topogra-
phy and hydraulic conditions show similar results for both
R1000 and R50 maps whereas areas with heterogeneous con-
ditions show deviations.

Figure 13 shows the comparison of average probability in
coarse and fine resolution for different landform class. Ta-
ble 5 explains the definitions of each landform class as de-

fined by National-land information data (2001). According
to this landform classification, most of high elevated areas
(high mountains) show higher landslide probability, whereas
low elevated areas (local hills and river deltas) show lower
landslide probability in coarse resolution maps. Low lands
highlight the higher landslide probability in fine resolution
maps. Therefore high elevated areas (large relief mountains
and large relief volcanic mountains) should be given special
considerations during land developments and infrastructure
development.

These results confirm that R1000 resolution is reason-
ably enough for analyze the landslide hazard probability for
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Figure 12. Relationship between distributions of probability in R1000 map and average 

of the probability of R50 map 
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Fig. 12.Relationship between distributions of probability in R1000
map and average of the probability of R50 map.

management point of view. Therefore the developed R1000
maps can be used for management and decision making pro-
cesses. The developed landslide hazard probability maps will
assist authorities, policy makers and decision makers, who
are responsible for infrastructural planning and development,
as they can identify landslide-susceptible areas and thus de-
crease landslide damage through proper preparation.

4 Conclusions

Landslide hazards due to heavy rainfall are a common natural
hazard in Japan. To evaluate the frequency and distribution
of landslides hazards over Japan, this study uses a proba-
bilistic model based on multiple logistic regression analysis,
with particular reference to physical parameters such as hy-
draulic parameters (hydraulic gradient), geographical param-
eters (relief energy) and the four geological parameters (col-
luvium, Paleogene sedimentary rocks, Neogene sedimentary
rocks, and granites) which are considered to be influential
in the occurrence of landslides. All these physical data are
obtained in digital format and the results of landslide haz-
ard probability maps are portrayed in 1 km×1 km resolution
digital maps.

The distribution of landslide hazard probability is esti-
mated using the developed multiple logistic regression model
and it shows the spatial and temporal distribution of landslide
probability over Japan. Since the hydraulic parameter, hy-
draulic gradient is the main dynamic factor which includes
the effect of heavy rainfall and their return period, the ex-
treme precipitation of 5 years, 30 years, and 100 years re-
turn periods are used to represent the probability in different
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Figure 13. Relationship between landform class and average landslide hazard 

probability for extreme precipitation in 100 years return period for coarse and fine 

resolution maps in Niigata Prefecture 

  

 

 

 

 

 

 

Fig. 13. Relationship between landform class and average proba-
bility for extreme precipitation in 100 years return period for coarse
and fine resolution maps in Niigata Prefecture.

temporal scales. Results of the distribution of landslide haz-
ard probability show that the highest landslide hazard prob-
ability exists in the mountain range on the western side of
Japan (Japan Sea side) including Hida and Kiso mountain-
ous, Iide and Asahi mountainous range, south east side of
Mt. Fuji, south side of the Kii Mountains, south side of
Chugoku mountainous range, south side of Kyusyu moun-
tainous, Dewa mountainous range and the Hokuriku region.

To validate the developed probability maps, the collected
past landslide hazard data for in Tochio city, where lot of
landslide damages were occurred in 2004, are used to com-
pare the developed landslide hazard maps and actual land-
slides. 95% probability threshold was used to separate the
high risk and low risk areas. The validation proved that most
of the landslides occurred in areas pointed out as high risk
areas in landslide hazard probability maps, showing 88%
agreement between model results and observed landslides.
Further this study investigated the sensitivity of physical pa-
rameters on landslide hazards and confirmed that hydrolog-
ical parameters (hydraulic gradient) are the most influenc-
ing factor in the occurrence of landslides. The sensitivity
of resolution confirms that developed R1000 (1 km×1 km)
maps are capable in assisting management decisions for in-
frastructural planning and development, as they can identify
landslide-susceptible areas and thus decrease landslide dam-
age through proper preparation.

Therefore while making land development activities and
land use planning and decision making, landslide hazard
maps are very useful to take appropriate decisions and sub-
sequent measures for landslide prevention and mitigation.
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