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Bayesian sequential track formation
Ángel F. García-Fernández, Mark R. Morelande, Jesús Grajal

Abstract—This paper presents a theoretical framework for
track building in multiple target scenarios from the Bayesian
point of view. It is assumed that the number of targets is fixed
and known. We propose two optimal methods for building tracks
sequentially. The first one uses the labelling of the current
multitarget state estimate that minimises the mean square la-
belled optimal subpattern assignment error. This method requires
knowledge of the posterior density of the vector-valued state. The
second assigns the labelling that maximises the probability that
the current multitarget state estimate is optimally linked with
the available tracks at the previous time step. In this case, we
only require knowledge of the random finite set posterior density
without labels.

Index Terms—Target labelling, multiple target tracking,
Bayesian framework, random finite sets

I. INTRODUCTION

Multitarget tracking systems should solve two basic prob-
lems. The first one is to estimate the number of targets and
their states at the current time. The second one is to connect
target state estimates that belong to the same target along
time to form tracks. Classic approaches to multitarget tracking
that perform these aims are, for example, multiple hypothesis
tracking (MHT) [1] and joint probabilistic data association
(JPDA) [2]. The random finite set (RFS) framework is another
approach to perform these tasks. However, most of the de-
veloped algorithms within the RFS framework have focused on
the first problem and do not deal with the second problem from
a theoretically sound perspective, e.g., probability hypothesis
density (PHD) filter, cardinalised PHD (CPHD) filter or the
multitarget multi-Bernoulli (MeMBer) filter [3], [4].

In the Bayesian approach, all the information of interest
about target states at all time steps is contained in its joint
probability density function (PDF) given the measurements
[5], which we refer to as the trajectory posterior PDF. This
suggests that principled approaches to track building should
be obtained from this PDF. Nevertheless, most approaches to
multiple target tracking focus on filtering posterior density
computation because of the difficulty of approximating the
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trajectory posterior PDF. Therefore, the usual approach to track
building, which will also be adopted here, is based on filtering
posteriors.

Using these filtering posteriors, the conventional approach to
track building involves adding a label to each target state. This
way we can directly provide labelled multitarget estimates,
which form the tracks. Labels were used for track formation
in [6] using a vector-based formulation and in [7], [8] using
the RFS framework. The approaches of [6] and [7], [8] are
equivalent due to a bijection between both representations
[9, Appendix B]. For the same reason, for fixed and known
number of targets, modelling the multitarget state as a vector
is equivalent to a labelled set. However, the tracks produced by
these algorithms are sometimes of poor quality. For example,
when targets move in close proximity for an extended period
of time, tracks based on the maximum a posteriori (MAP)
estimator switch uncontrollably between the target states and,
tracks based on the minimum mean square error (MMSE)
estimator do not provide meaningful target state estimates
[10]. An ad-hoc solution to provide jitter-free tracks, based
on the minimum mean square optimal subpattern assignment
(MSOSPA) estimator [11], [12], was proposed in [13]. This
method is not of general applicability as is restricted to MHT.

In this paper, we address this theoretical gap and develop
principled approaches to track building in the Bayesian frame-
work for fixed and known number of targets based on the
(filtering) posterior PDF. We wish to clarify that it is not
the purpose of this paper to consider methods of posterior
PDF approximation, e.g., algorithms such as MHT, JPDA or
PHD filters. Rather, we assume the availability of the posterior
PDF at each time step and develop the tools required for
building optimal tracks. As there are in the literature optimal
approaches to (unlabelled) target state estimation, e.g., based
on minimising the MSOSPA error, we set aside this problem
and assume that we are given a collection of single target state
estimates at each time step. Track building in this context
consists of labelling these target state estimates such that a
link between target state estimates along time is established.
We develop principled approaches to this problem of general
applicability. The results can be used whenever it is desired
to build tracks given a sequence of target state estimates.
There are many practical applications where this is desired,
such as radar, sonar and video surveillance. Our theory of
optimal track building only requires a metric that accounts
for the labels apart from the posterior PDF. We use the
labelled optimal subpattern assignment (LOSPA) metric [14]
with some given parameters due to simplified mathematical
expressions but other metrics for labelled sets could be used
in principle. Algorithms based on these criteria, along with
their relationships to existing work, are discussed briefly in
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the following paragraphs.
In the first algorithm to optimal track building, we minimise

the mean square LOSPA (MSLOSPA) error. Therefore, in
this approach, the objective is to choose the labelling of the
estimate that is closest to the true multitarget state, according
to LOSPA. For low penalty of labelling error in LOSPA,
the MSLOSPA error can be decomposed into two terms,
the MSOSPA error, which does not take labels into account,
plus the mean labelling error cost (MLEC). Considering this
decomposition, the labelling of the multitarget estimate that
minimises the MSLOSPA error is the one that minimises
the MLEC. The MLEC depends on the optimal labelling
probabilities. These are simply calculated using probability
theory and the definition of optimal labelling of a multitar-
get state estimate. They also provide useful information, for
instance, if it is necessary to distinguish between friendly and
enemy vehicles that get in close proximity and then separate
[15]. Although many papers use the concepts of labelling and
labelling probabilities, these concepts have not been clearly
defined in the literature yet. To the authors’ knowledge, the
fact that the (optimal) labelling probabilities depend on an
estimate and a metric was first indicated in [9, Sec. 5.3] for a
two-target case. In general, this has been usually overlooked in
the literature [15]–[18]. In [19], the labelling probabilities for
a two-target case are those previously indicated in [9, Sec.
5.3]. In [20], the authors provide a definition of labelling
probabilities. However, a proper definition of optimal target
labelling probabilities should first define what optimal target
labelling is and the probabilities should just be calculated using
probability theory.

In some cases, we are interested in minimising track switch-
ing rather than obtaining the labelling of the estimate that is
closest to the true multitarget state, e.g, as in [13]. In this
paper, we formulate this problem in a principled approach as
the selection of the labelling of the estimate that maximises
the probability that the current multitarget state is optimally
linked with the tracks available at the previous time step. On
the whole, this method of track building outperforms the one
based on the MSLOSPA error. As opposed to the conventional
approach, we show that this track building procedure does not
require a labelled state, i.e., we can use an unlabelled set to
represent the multitarget state. As we explain in the paper, this
result is of great utility in the design of multitarget tracking
algorithms.

The remainder of the paper is organised as follows. In
Section II, we formulate the problem. The first procedure
for track formation based on labelled states is explained in
Section III. The second procedure for track building, which
minimises track switching and does not require a labelled
state, is explained in Section IV. Both approaches to track
building are compared in Section V. A numerical example
that illustrates the ideas put forward in this paper is given in
Section VI. Finally, conclusions are drawn in Section VII.

II. PROBLEM FORMULATION

The multitarget state vector at time k is Xk =[(
xk1
)T
,
(
xk2
)T
, ...,

(
xkt
)T ]T ∈ Rtnx where xkj ∈ Rnx is

the state vector at time k for target j ∈ {1, ..., t}, t is the
known target number and T denotes transpose. The mul-
titarget state can be equivalently represented by a labelled

set
{[(

xk1
)T
, l1

]T
,
[(

xk2
)T
, l2

]T
, ...,

[(
xkt
)T
, lt

]T}
where

lj ∈ R represents the jth label. Labels are unique, assigned
deterministically and do not change with time. This implies
that vector and labelled set notations are equivalent for fixed
and known number of targets. The labels of the labelled set
are implicit in the ordering inherent in the multitarget state
vector components.

The multitarget state along time is modelled as a Markov
process with a transition density f

(
·
∣∣Xk−1

)
. At time k, the

multitarget state vector is observed through noisy measure-
ments, which are usually represented as a vector zk ∈ Rnz,1

[6] or as a set Zk ⊂ Rnz,2 [3]. We use zk to denote the
measurements in the rest of the paper but our paper is general
and we can use Zk instead. The likelihood of Xk after
observing zk is denoted by `

(
zk
∣∣Xk

)
.

In Bayesian filtering, all the information of interest about
Xk is included in the posterior PDF πk (·) of the state given
the sequence z1:k =

(
z1, z2, ..., zk

)
of measurements up to

time k. Given a prior π0 (·) at time 0, the transition density
and the likelihood at every time step, the posterior PDF can
be calculated recursively in two stages: prediction and update
[21].

This recursion is usually intractable so it must be approx-
imated. For instance, particle filters (PFs) can be applied for
any type of transition density and likelihood function as PFs
are general Bayesian filtering algorithms. If there is a point
detection measurement model, in which there is a collection of
measurements and each measurement can be originated from
clutter or a target [3], [5], more specific algorithms such as
MHT or JPDA [2] can be used.

However, this paper does not deal with posterior PDF
approximation but with how to extract target labelling in-
formation and build tracks in a principled way regardless of
measurement function or the approximation we perform. We
therefore assume that the posterior πk (·) is known although,
in practice, the track building procedures indicated in this
paper can be carried out using an arbitrary posterior PDF
approximation. In the rest of this section, we formulate the
problem of track formation.

Track formation

Multitarget tracking systems should estimate target states
and link target state estimates over time to form tracks. The
first goal is attained by providing individual target state estim-
ates, which can be represented by sets X̂k =

{
x̂k1 , x̂

k
2 , ..., x̂

k
t

}
k = 0, 1, 2, ..., where x̂kj ∈ Rnx j ∈ {1, ..., t} is an individual
target state estimate at time k. There are in the literature
optimal methods to obtain X̂k, e.g., based on minimum mean
square OSPA (MMSOSPA) estimator (p = 2, c = ∞ and
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Euclidean distance)1 [11] or an approximation [15], [22], [23].
In this paper, we set aside this problem, which is already

solved theoretically, and develop optimal approaches to link
these optimal target state estimates to form tracks. In this
context, track formation consists of selecting the labels, i.e.,
the order in the elements of X̂k, to build the multitarget
state estimate X̂k. The sequence of multitarget state estimates
X̂k k = 0, 1, 2, ... forms the tracks as it provides the target
estimates that belong to the same target at different time steps.

This paper is especially concerned with providing two
methods for sequential track building. That is, we have the
tracks up to a certain time k − 1, which are given by X̂l

l = 0, 1, 2, ..., k − 1. When the measurement at time k is
received, we assume we obtain X̂k at time k. Sequential
track building consists of labelling X̂k without modifying the
available tracks. This implies that track building is performed
while filtering and we directly provide tracks as output.

III. TRACKS THAT MINIMISE MSLOSPA ERROR

In this section we indicate how to build tracks by selecting
the labelling of the multitarget state set estimate X̂k that
minimises the MSLOSPA error under the approximation of
low penalty of labelling error. Before explaining this in Section
III-D, we first review the LOSPA metric in Section III-A,
define the notion of optimal labelling in Section III-B and
explain how to calculate the optimal labelling probabilities in
Section III-C.

A. Labelled OSPA metric

In order to build tracks, we use the OSPA metric for
labelled sets defined in [14]. We represent the permutations
of vector [1, ..., t]

T as vectors φi = [φi,1, ..., φi,t]
T
i ∈

{1, ..., t!}. Then, the LOSPA distance between multitarget

vectors Ak =
[(

ak1
)T
,
(
ak2
)T
, ...,

(
akt
)T ]T ∈ Rtnx and

Bk =
[(

bk1
)T
,
(
bk2
)T
, ...,

(
bkt
)T ]T ∈ Rtnx is [24]

d
(
Ak,Bk

)
=1

t
min

i∈{1,...,t!}

 t∑
j=1

bp
(
akj ,b

k
φi,j

)
+ αpδ [j − φi,j ]

1/p

(1)

where δ [·] is the complement of the Kronecker delta, i.e.,
δ [j] = 0 if j = 0 and δ [j] = 1 otherwise, α > 0, 1 ≤ p <∞
and b (·, ·) is a metric on the space Rnx . In [14] the authors
include another parameter p′, we set p′ = p for simplicity.

1The square OSPA metric (OSPA to the power of two) with p = 2, c =∞
and Euclidean distance is equivalent to the OSPA metric with p = 1, c =
∞ and square Euclidean distance as base metric. Therefore, X̂k is also the
minimum mean OSPA estimator for the OSPA with p = 1, c =∞ and square
Euclidean distance. In this paper, we always refer to the case p = 2, c =∞
and Euclidean distance. Nevertheless, the whole paper can be rewritten using
the OSPA with p = 1, c =∞ and square Euclidean distance.

Table I: LOSPA between X̂k and Xk = [−10, 0, 10]T

Estimate X̂k LOSPA (α = 0.1) LOSPA (α = 1)

[−10.1, 0.1, 10.1]T 0.1 0.1
[0.1,−10.1, 10.1]T

√
0.12 + 0.02/3

√
0.12 + 2/3

[10.1,−10.1, 0.1]T
√

0.12 + 0.03/3
√

0.12 + 3/3

Illustrative example: We illustrate how the LOSPA metric
works in a simple example. Let us assume there are three
unidimensional targets and the multitarget state is Xk =
[−10, 0, 10]T . That is, target 1 is at -10, target 2 is at 0 and
target 3 is at 10. We use the Euclidean metric for b (·, ·) with
p = 2. The LOSPA distance between Xk and several estimates
X̂k, which only differ in their labelling, are given in Table I.
As all the estimates only differ in their labelling, they have the
same OSPA distance, which is 0.1. This implies that all the
estimates have the same accuracy as regards where the targets
are. However, the first estimate is closer in the LOSPA sense
than the rest. The higher α is, the more the metric penalises
wrong labelling/ordering.

B. Optimal labelling of a multitarget state estimate

In this section, we provide the definition of optimal la-
belling of a multitarget state estimate. Then, we derive one
of its properties and provide an illustrative example. Let

Γφi

(
Xk
)

=

[(
xkφi,1

)T
,
(
xkφi,2

)T
, ...,

(
xkφi,t

)T]T
be the

permutation of Xk indicated by φi over single target states,
e.g., for t = 2, φ1 = [1, 2]

T and φ2 = [2, 1]
T , Γφ1

(
Xk
)

=[(
xk1
)T
,
(
xk2
)T ]T

and Γφ2

(
Xk
)

=
[(

xk2
)T
,
(
xk1
)T ]T

.

Definition 1. The optimal labelling of a multitarget state

estimate X̂k =
[(

x̂k1
)T
,
(
x̂k2
)T
, ...,

(
x̂kt
)T ]T

at time k is the

vector φ̃ =
[
φ̃1, ..., φ̃t

]T
such that

φ̃ = φi? : i? = arg min
i∈{1,...,t!}

d
(
X̂k,Γφi

(
Xk
))
. (2)

As proved in Appendix A, the optimal labelling corresponds
to the labels of X̂k that minimise the LOSPA between Xk and
X̂k.

The following property is met for the optimal labelling of
multitarget state estimates:

Lemma 2. The optimal labelling of the multitarget state
estimate does not depend on α and can be written as

φ̃ = φi? : i? = arg min
i∈{1,...,t!}

1

t

t∑
j=1

bp
(
x̂kj ,x

k
φi,j

)1/p

.

Lemma 2 is proved in Appendix B and indicates that the
optimal labelling is the order of the true multitarget state that
determines the OSPA.

It should be noted that the estimated labelling of X̂k is
always [1, ..., t]

T (the labelling of a vector is implicit in the
order of its components). Therefore, we make the following
definition
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Table II: Optimal labelling of several multitarget state estimates for
Xk = [−10, 0, 10]T

Estimate X̂k Optimal labelling φ̃ Ñ

[−10.1, 0.1, 10.1]T [1, 2, 3]T 3
[0.1,−10.1, 10.1]T [2, 1, 3]T 1
[10.1,−10.1, 0.1]T [3, 1, 2]T 0

Definition 3. The multitarget state estimate X̂k has the correct
labelling if φ̃ = [1, 2, ..., t]

T (or equivalently i? = 1) and the
estimate of the jth target in X̂k has the correct labelling if
φ̃j = j.

We also say that X̂k and the jth target estimate of X̂k have
the wrong labelling if they do not have the correct labelling.

Illustrative example: To illustrate the idea of optimal la-
belling we use the same example as in Section III-A. The
optimal labelling of several multitarget state estimates are
given in Table II, where Ñ denotes the number of target
estimates with the correct labelling. The optimal labelling
of X̂k = [−10.1, 0.1, 10.1]T is φ̃ = [1, 2, 3]

T which means
that all targets have the correct labelling. However, if X̂k =
[0.1,−10.1, 10.1]T , the optimal labelling is φ̃ = [2, 1, 3]

T as
target 1 estimate is closer to target 2 and target 2 estimate is
closer to target 1. Only target 3 has the correct labelling.

C. Optimal labelling probabilities
According to Definition 1, the optimal labelling of a multit-

arget state estimate requires knowledge of the true multitarget
state. In practice, the true multitarget state is unknown and
what we know is its posterior PDF. This gives rise to the
calculation of the optimal labelling probabilities. That is, using
the posterior PDF and Definition 1, in this section, we indicate
how to calculate the probability P k

X̂k
(i) that the estimate X̂k

has optimal labelling φi for i ∈ {1, ..., t!}.
Let Si

(
X̂k
)

denote the region that includes the values of

the multitarget state Xk such that the optimal labelling of X̂k

is φi:

Si
(
X̂k
)

=

{
Xk : i = arg min

l∈{1,...,t!}
d
(
X̂k,Γφl

(
Xk
))}

(3)

where we have used Definition 1. Because of (3) and Lemma
2, regions Si

(
X̂k
)
i ∈ {1, ..., t!} constitute the Voronoi

diagram given the points Γφi

(
X̂k
)
i ∈ {1, ..., t!} [25] and⋃t!

i=1 Si
(
X̂k
)

= Rtnx .
Equation (3) is quite useful because P k

X̂k
(i) is just the

probability that the target state Xk belongs to region Si
(
X̂k
)

.
As a result, the optimal labelling probabilities become

P k
X̂k (i) =

ˆ
Si(X̂k)

πk
(
Xk
)
dXk i ∈ {1, ..., t!} . (4)

Using Definition 3, it is clear that the correct labelling
probability (CLP) of X̂k is simply P k

X̂k
(1). For example,

for t = 2, if P k
X̂k

(1) = 1 and P k
X̂k

(2) = 0, X̂k has the
correct labelling with probability 1. This means that there is
no confusion at all about target labelling given the sequence
of measurements z1:k.

D. Labelling with the lowest MSLOSPA error

In this section, we indicate how to select the labelling
of a multitarget state set estimate X̂k that minimises the
MSLOSPA under the approximation of low penalty of la-
belling error (small α). The MSLOSPA of X̂k is

MSLOSPA
(
X̂k
)

=E
[
d2
(
Xk, X̂k

)]
(5)

where d2 (·, ·) is the square LOSPA and this expectation is
done w.r.t. πk (·). As shown in Appendix C, using p = 2, we
get

MSLOSPA
(
X̂k
)
≤ MSOSPA

(
X̂k
)

+ MLEC
(
X̂k
)

(6)

where MSOSPA
(
X̂k
)

and MLEC
(
X̂k
)

denote the

MSOSPA error and MLEC of X̂k, respectively, and the
inequality is tight for α → 0. The MSOSPA error of X̂k

(without cut-off distance and p = 2) is

MSOSPA
(
X̂k
)

=E

1

t
min

i∈{1,...,t!}

t∑
j=1

b2
(
xkj , x̂

k
φi,j

) . (7)

The MLEC of X̂k is given by

MLEC
(
X̂k
)

=
α2

t

t!∑
i=2

NiP
k
X̂k (i) (8)

Ni =

t∑
j=1

δ [j − φi,j ] (9)

where Ni is the number of targets with wrong labelling in
labelling vector φi.

In most applications it may be expected that localising tar-
gets will have higher priority than labelling. In such cases the
selected labelling cost α should be small so that localisation er-
rors are penalised more heavily than labelling errors. Then, the
MSLOSPA estimator corresponds to the minimum MSOSPA
estimator with the labelling that minimises the MLEC. In other
words, under the approximation of small α, we can minimise
the MSLOSPA estimator based on the minimium MSOSPA
estimator with the labelling that minimises the MLEC. Given
a multitarget state set estimate X̂k, all its possible labellings
Γφi

(
X̂k
)
i = 1, ..., t! have the same MSOSPA error, as

MSOSPA is not affected by labelling. Therefore, Equation
(6) is important because the labelled multitarget state estimate
Γφj?

(
X̂k
)

with lowest MSLOSPA error, for small α, is the
one with lowest MLEC:

j? = arg min
j∈{1,...,t!}

t!∑
i=2

NiP
k
Γφj (X̂k) (i) (10)

which is a linear combination of the optimal labelling prob-
abilities. It should be noted that if α is not small, (10) still
minimises an upper bound on the MSLOSPA error.
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Figure 1: Illustrative example of target labelling and estimation. We show
the contour plot of the posterior PDF, the unlabelled MMSOSPA estim-
ates and LMMSOSPA estimate X̂k

lo. We also show regions S1
(
X̂k

lo

)
and S2

(
X̂k

lo

)
.

Illustrative example: Let us assume the posterior PDF at
time k of two one-dimensional targets is

πk
(
Xk
)

=0.7N
(
Xk; [8, 11]

T
, 0.25I2

)
+ 0.3N

(
Xk; [11, 8]

T
, 0.25I2

)
(11)

where N
(
Xk; X̂k,Pk

)
is the Gaussian PDF with mean X̂k

and covariance matrix Pk evaluated at Xk. A posterior PDF
with this form approximately appears in a tracking scenario
with probability of detection one and no clutter after the
targets have moved in close proximity and then separated. This
situation is chosen for illustrative purposes as the proposed
labelling approach is not restricted to such scenarios. The
contour plot of the posterior PDF is shown in Figure 1. This
figure also includes the MMSOSPA estimate {8, 11}, labelled
MMSOSPA (LMMSOSPA) estimate X̂k

lo, which corresponds
to the MMSOSPA estimate with labelling (10), as well as
regions S1

(
X̂k
lo

)
and S2

(
X̂k
lo

)
.

The MMSOSPA estimate minimises the MSOSPA error.
However, this estimate is unlabelled so it must be labelled
either with X̂k

o = [8, 11]
T or Γφ2

(
X̂k
o

)
to form tracks. As

indicated in Section III-D, the LMMSOSPA provides the best
labelling of the MMSOSPA estimate based on minimising the
MLEC. For two targets, the labelling that minimises the MLEC
comes down to the labelling that has the highest CLP. The CLP
of X̂k

o is P k
X̂k

o

(1), which can be calculated integrating (11) in

S1

(
X̂k
o

)
, which is the area xk2 > xk1 , as shown in Figure 1.

The CLP for Γφ2

(
X̂k
o

)
corresponds to the integral of (11)

in S1

(
Γφ2

(
X̂k
o

))
= S2

(
X̂k
o

)
, which is the area xk2 < xk1 .

As a result, the CLPs of X̂k
o and Γφ2

(
X̂k
o

)
are 0.7 and 0.3,

respectively, so X̂k
lo = X̂k

o .

IV. TRACKS THAT MINIMISE SWITCHING

In the previous section, we proposed a way to build tracks
based on assigning the best labelling of X̂k in the MSLOSPA

sense. The aim of this section is to develop a way to form
tracks sequentially such that the current multitarget state
estimate is optimally linked with the available tracks, i.e., that
minimises track switching/jittering. This is done in Section
IV-B. In order to get this result, first we indicate how to
calculate the probability that a multitrack, i.e., a multitarget
track, is optimally linked in Section IV-A.

A. Linked multitrack probability

In this section, we work with the multitrack state estimate

X̂0:k =
[(

x̂0:k
1

)T
,
(
x̂0:k

2

)T
, ...,

(
x̂0:k
t

)T ]T
where x̂0:k

j =[(
x̂0
j

)T
,
(
x̂1
j

)T
, ...,

(
x̂kj
)T ]T

is the track estimate for the jth
target. We calculate the probability that each track estimate
corresponds to the same target, i.e., the probability that the
track estimate has the same optimal labelling but it does not
matter what labelling. We refer to this probability as linked
multitrack probability (LMP) as all the tracks are optimally
linked, i.e., they correspond to the same target.

An important difference with the previous section is that
optimal labelling probabilities only require knowledge of the
(filtering) posterior PDF at the current time while LMPs
require the trajectory posterior PDF π0:k (·).

Definition 4. Multitrack estimate X̂0:k has optimal labelling
φi if X̂m has optimal labelling φi for m ∈ {0, ..., k}.

In the same way we did in Section III-B, it is useful to
define region

Li
(
X̂0:k

)
=
{

X0:k : d
(
X̂m,Γφi

(Xm)
)

< d
(
X̂l,Γφl

(Xm)
)
l 6= i,m ∈ {0, ..., k}

}
that indicates all the true multitrack states X0:k such that X̂0:k

has optimal labelling φi. It should be noted that Li
(
X̂0:k

)
=

Si
(
X̂0
)
× Si

(
X̂1
)
× ... × Si

(
X̂k
)

where × denotes the
Cartesian product.

Definition 5. Multitrack estimate X̂0:k is optimally linked if
it has an optimal labelling φi for some i ∈ {1, ..., t!}.

If multitrack estimate X̂0:k has an optimal labelling φi
for some i ∈ {1, ..., t!}, all the track estimates x̂0:k

1 , ..., x̂0:k
t

are optimally linked as they have the same optimal label at
every time step. Using Definition 5, the probability that X̂0:k

is (optimally) linked, i.e., the LMP, is the probability that
X0:k ∈

⋃t!
i=1 Li

(
X̂0:k

)
. As these regions are disjoint, the

LMP becomes

P 0:k
X̂0:k =

t!∑
i=1

ˆ
Li(X̂0:k)

π0:k
(
X0:k

)
dX0:k. (12)

In the rest of the paper, unlabelled RFS densities are used.
Their argument is a set and we use the symbol ˇ to denote
them. It is proved in Appendix D that (12) can be written as

P 0:k
X̂0:k =

ˆ
L1(X̂0:k)

π̌0:k
({

x0:k
1 ,x0:k

2 , ...,x0:k
t

})
dX0:k (13)
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where the RFS density over the trajectories is [26]

π̌0:k
({

x0:k
1 ,x0:k

2 , ...,x0:k
t

})
=

t!∑
i=1

π0:k
(
Γφi

(
X0:k

))
. (14)

The most interesting result of LMPs is that they can be
calculated using the RFS posterior density over the trajectories.
We should bear in mind that computing or approximating the
RFS posterior density over the trajectories is quite different
to approximating the filtering RFS density, which is the usual
approach in the RFS framework. In practice, approximating an
RFS density can imply important advantages with respect to
approximating a vector valued density. This issue is addressed
in Section V-C. It should be noted that we can obtain the
linked multitrack probability of a part of the track estimate
X̂m:n, where 0 ≤ m and m < n ≤ k, by substituting m for
0 and n for k in (12) and (13).

We also want to highlight that Definition 5 and the LMPs
of Equation (13) enable us to approach the track building
problem in a batch fashion based on the RFS density over
the trajectories. Even though this method is not the main
purpose of the paper as the paper mainly deals with sequential
ways of track building, we think it is insightful and is worth
mentioning. As in Section II, let us assume we have the col-
lection of multitarget state estimates X̂k =

{
x̂k1 , x̂

k
2 , ..., x̂

k
t

}
k = 0, 1, 2, ... The estimate at time 0 can be labelled arbitrarily.
Then, we can in principle evaluate the LMPs using (13) for all
the possible labellings of X̂k =

{
x̂k1 , x̂

k
2 , ..., x̂

k
t

}
k = 1, 2, ....

The labelling with highest LMP represents the multitrack with
highest probability of being optimally linked.

Illustrative example: Here we extend the example analysed
in Section III-D to illustrate the concept of linked multitrack
probability. The posterior PDF at time k is given by (11). We
assume that the transition density is

f
(
Xk+1

∣∣Xk
)

= N
(
xk+1

1 ;xk1 , σ
2
)
N
(
xk+1

2 ;xk2 , σ
2
)
. (15)

We also assume that at time k+1, the measurement is quite
uninformative, such that the posterior PDF at time k + 1 can
be approximated as the prior at time k+1. Then, the posterior
PDF of the trajectory in the interval k : k + 1 is

πk:k+1
(
Xk:k+1

)
=N

(
xk+1

1 ;xk1 , σ
2
)
N
(
xk+1

2 ;xk2 , σ
2
)
πk
(
Xk
)

=0.7N
(
xk:k+1

1 ; xk:k+1
1 ,Pk+1:k

)
· N

(
xk:k+1

2 ; xk:k+1
2 ,Pk+1:k

)
+ 0.3N

(
xk:k+1

1 ; xk:k+1
2 ,Pk+1:k

)
· N

(
xk:k+1

2 ; xk:k+1
1 ,Pk+1:k

)
where xk:k+1

i =
[
xki , x

k+1
i

]T
, xk:k+1

1 = [8, 8]
T , xk:k+1

2 =

[11, 11]
T and

Pk+1:k =

[
0.25 0.25
0.25 0.25 + σ2

]
. (16)

For simplicity, we analyse the case where σ2 → 0. The
multitrack state estimate is X̂k:k+1 = [8, 8, 11, 11]

T , i.e., we
estimate that target 1 is in position 8 at time k and k+ 1 and
target 2 is in position 11 at time k and k+ 1. Note that this is
equivalent to using the LMMSOSPA estimator at time k and
time k + 1. Using (12), the LMP is

P k:k+1

X̂k:k+1
=

ˆ
L1(X̂k:k+1)

πk:k+1
(
Xk:k+1

)
dXk:k+1

+

ˆ
L2(X̂k:k+1)

πk:k+1
(
Xk:k+1

)
dXk:k+1

=

ˆ
xk
1<x

k
2 ,x

k+1
1 <xk+1

2

πk:k+1
(
Xk:k+1

)
dXk:k+1

+

ˆ
xk
1>x

k
2 ,x

k+1
1 >xk+1

2

πk:k+1
(
Xk:k+1

)
dXk:k+1

≈ 0.7 + 0.3

= 1. (17)

As indicated in Section III-D, the optimal labelling probab-
ilities of the estimate at time k are 0.7 and 0.3 and they remain
unchanged at time k + 1. This indicates that we do not know
with high certainty which target estimate corresponds to each
target at both time steps. Nevertheless, the LMP (17) indicates
that the track estimate X̂k:k+1 is optimally linked with a
probability that is approximately 1, i.e., the estimate [8, 8]

T

belongs to a target and the estimate [11, 11]
T to another target.

This information cannot be obtained just from the posterior
πk (·) at time k, we need the trajectory posterior πk:k+1 (·) or
the RFS trajectory posterior, see (13).

B. Sequential linking of multitarget state estimates

In this section, we study the problem of optimally link-
ing multitarget state estimates sequentially. This means that
the current multitarget estimate is optimally linked with the
previous tracks so track switching is minimised. We use the
following assumption
• A1:

`
(
zk
∣∣Xk

)
= `

(
zk
∣∣Γφi

(
Xk
))

i ∈ {1, ..., t!}

(18)

f
(
Xk
∣∣Xk−1

)
=

t∏
i=1

g
(
xki
∣∣xk−1
i

)
(19)

where g (· |· ) is the transition density for the individual
targets.

Assumption A1 implies that measurements do not provide any
information about labelling and targets move independently
with the same dynamic model. These are usual assumptions
in multiple target tracking [3].

We assume that at time k we know the posterior PDF πk (·)
and have an estimate X̂k of the state at time k. We also
assume we have a set estimate Γφi

(
X̂k+1

)
i ∈ {1, ..., t!}

of the current multitarget state. The optimal sequential linking
is performed by selecting the labelling φ̌ of X̂k that maximises
the linked multitrack probability of

X̂k:k+1
i =

[(
X̂k
)T

,
(

Γφi

(
X̂k+1

))T]T
.

which is abbreviated as P k:k+1
i . That is,

φ̌ = φi? : i? = arg max
i∈{1,...,t!}

P k:k+1
i (20)
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where

P k:k+1
i =

ˆ
L1(X̂k:k+1

i )
π̌k:k+1

({
xk:k+1

1 , ...,xk:k+1
t

})
dXk:k+1

(21)
and we have used (13). We refer to P k:k+1

i as sequential linked
multitrack probability (SLMP).

It is shown in Appendix E that, under Assumption A1, (21)
can be written as

P k:k+1
i =1/ρ

ˆ
L1(X̂k:k+1

i )
`
(
zk+1

∣∣Xk+1
)

f
(
Xk+1

∣∣Xk
)
π̌k
({

xk1 , ...,x
k
t

})
dXk:k+1 (22)

where the normalising constant is given by

ρ =
1

t!

ˆ
`
(
zk+1

∣∣Xk+1
)
f
(
Xk+1

∣∣Xk
)

π̌k
({

xk1 , ...,x
k
t

})
dXk:k+1. (23)

The main conclusion of (22) is that, given an estimate at
time k and a set estimate at time k+1, the labelling of the set
estimate at time k + 1 that maximises the SLMP (minimises
track jittering) only depends on the likelihood, the transition
density and the RFS posterior density at time k. This implies
that the usual RFS formulation, which does not include labels,
can also be used to optimally link multitarget state estimates
sequentially from the Bayesian point of view. However, this
optimal linking has to be done sequentially and we cannot
obtain the optimal labelling probabilities. Using RFS densities
instead of vector densities implies several benefits that are
explained in Section V-C.

LMP approximation: If we are performing Bayesian filter-
ing, we cannot calculate the LMP P k1:k2

X̂k1:k2
, which indicates the

probability that the partial track estimate X̂k1:k2 is optimally
linked, for k2 > k1 + 1 because P k1:k2

X̂k1:k2
requires the posterior

PDF of the trajectory. This is not available in Bayesian filtering
as Bayesian filtering is only interested in the posterior PDF
at the current time step. In fact, if we calculated the posterior
PDF of the whole trajectory, it would also make sense to re-
estimate the target trajectory X̂k1:k2 to take into account the
current value of the measurement to update the trajectory. This
is Bayesian smoothing rather than filtering.

We suggest using

PX̂k1:k2 (k1, k2) =

k2−1∏
j=k1

P j:j+1

X̂j:j+1
(24)

as an approximation to P k1:k2
X̂k1:k2

in a filtering set-up. The
benefits of calculating PX̂k1:k2 (k1, k2) instead of P k1:k2

X̂k1:k2
are:

• Once we have estimated the multitarget state at a time
step between k1 and k2, we do not have to re-estimate
them once a new measurement is received.

• They are reasonably easy to compute while the computa-
tional complexity of calculating P k1:k2

X̂k1:k2
grows exponen-

tially if k2 increases.
• We can use the RFS framework without labels.

V. COMPARISON BETWEEN BOTH APPROACHES TO TRACK
BUILDING

In this section, we summarise some of the results obtained
before and indicate the main benefits and drawbacks of cal-
culating the optimal labelling probabilities and SLMPs. In
this comparison, we use Assumption A1. We also sketch the
benefits of using RFS densities in Section V-C.

A. Tracks that minimise MSLOSPA error

The objective is to label the multitarget state estimate at
the current time step to minimise the MSLOSPA error (for
small α). Therefore, we optimally link the current multitarget
state estimate at the current time step with the true labelled
multitarget state. Selecting the labelling of the estimate that
minimises the MLEC involves the calculation of t! integrals
of a PDF with a state of dimension tnx.
• The main benefit of computing the optimal labelling

probabilities is
– They indicate the probability that a multitarget la-

belled state estimate corresponds to a given multit-
arget labelling. This is important in some scenarios
[15].

• The drawbacks are
– In practice, once the targets have been in close prox-

imity for a sufficiently long time and then separated,
the optimal labelling probabilities become even and
do not change irrespective of what the targets do.
This is due to the fact that the posterior PDF finally
becomes permutation invariant [16]. Therefore, we
already know that they will not convey useful inform-
ation in the future. In addition, we cannot build tracks
based on them in a rigorous way as any labelling of
the target state estimates is optimal.

– We need to keep a multimodal posterior PDF approx-
imation with up to t! modes due to target state per-
mutations after t targets have been in close proximity
and separated. This is computationally expensive,
especially, for particle filter implementations [15].

B. Tracks that minimise switching

The objective is to label the multitarget state estimate at
the current time step to maximise the SLMP. Therefore, we
optimally link the multitarget state estimate at the current time
step with the labelled multitarget state estimate at the previous
time step. In other words, we minimise track switching.
Selecting the labelling of the estimate that minimises the
SLMP involves the calculation of t! integrals of a PDF with
a state of dimension 2tnx.
• The main benefits of computing the SLMPs are

– They are always useful and carry important in-
formation, even if the targets have been in close
proximity for a long time and then separated. We
can always create tracks based on them and estimate
the probability that a part of a track or a whole track
is (optimally) linked. This implies that they have the
ability to tell us about track confusion from a new
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reference time. This is particularly useful if we want
to know if there is a new confusion in the tracks
after a target crossing, i.e., we do not care about
what happened to the tracks in the past and we want
to know if track confusion will appear again in the
future.

– We only need the RFS posterior density, which
implies some advantages as indicated in Section V-C.

• The drawback is
– They require the calculation of an integral over the

posterior of the multitrack state at time steps k and
k + 1. The dimension 2tnx of this integral is twice
the dimension tnx of the integrals usually calculated
in filtering, which are done with respect to the state
at the current time.

C. Benefits of using RFS densities

We have proved that we can build tracks sequentially using
the RFS posterior density and that we can calculate LMPs
using the RFS posterior density over the trajectories using
(13). These findings can have a major impact on how tracking
algorithms are designed. Based on the results of this paper,
tracking algorithms can provide tracks based on solid theor-
etical grounds while exploiting the benefits of approximating
RFS densities rather than vector-valued densities (either for the
set of target states at time k or the set of target trajectories).
The benefits are sketched in the following but we refer the
reader to [26].

A vector density νk (·) belongs to the RFS family of
π̌k ({·}) if [26]

π̌k
({

xk1 , ...,x
k
t

})
=

t!∑
i=1

νk
(
Γφi

(
Xk
))

Any vector density that belongs to an RFS family contains
the same information as the RFS density. Therefore, the RFS
density can be approximated by any νk (·) that belongs to
its family. Under Assumption A1, if we use νk (·) instead
of πk (·) in the prediction and update steps, the resulting
posterior νk+1 (·) belongs to the RFS family of π̌k+1 ({·}) [26,
Proposition 3]. Importantly, some νk (·) are more convenient
to approximate than others, e.g., they are less multimodal.
Therefore, at every time step, we can choose the νk (·) within
the RFS family that suits us. This can have an important effect
on performance. An example for Gaussian approximations is
provided in [26] but it can be generalised for any type of
approximation.

VI. NUMERICAL EXAMPLE

In this section, we illustrate the concepts of CLP and
SLMP and the building of tracks based on them in a two-
target tracking filtering case. In Section VI-A, we compare
different track building procedures when two-targets get in
close proximity. In Section VI-B, we analyse the effect of
changing the process and measurement noise on the CLP and
SLMP.

The state of the jth target at time k is xkj =[
xkj , ẋ

k
j , y

k
j , ẏ

k
j

]T
where

[
xkj , y

k
j

]T
is the position vector and[

ẋkj , ẏ
k
j

]T
is the velocity vector. The targets follow a nearly

constant velocity model [27]:

g
(
xk+1
j

∣∣xkj ) = N
(
xk+1
j ; Fxkj , Q

)
(25)

F = I2 ⊗
(

1 τ
0 1

)
(26)

Q = σ2
uI2 ⊗

(
τ3/3 τ2/2
τ2/2 τ

)
(27)

where j ∈ {1, 2}, N (x; x, Q) is the Gaussian PDF evaluated
at x with mean x and covariance matrix Q, τ is the sampling
period, σ2

u is the continuous-time process noise intensity and
⊗ is the Kronecker product.

The PDF of the measurement given the state is

`
(
zk
∣∣Xk

)
=

1

2
N
(
zk; H1X

k,R
)

+
1

2
N
(
zk; H2X

k,R
)

(28)
where R is the covariance matrix of the measurement noise,

H1 =I2 ⊗ L

H2 =

[
0 1
1 0

]
⊗ L

L =

[
1 0 0 0
0 0 1 0

]
.

That is, we have position measurements of the targets without
knowing the measurement-to-target association, there are no
false alarms and the probability of detection is one. This is
equivalent to measuring the set

{
zk1 , z

k
2

}
where zkj is the

position measurement of one of the targets.

A. Comparison between different track building procedures

We evaluate the CLPs and the SLMPs for three different
track building procedures. Estimator 1 (E1) selects the mean of
the component with highest weight in the posterior Gaussian
mixture. It should be noted that E1 is a widely used track
building procedure in MHT, i.e., it is the posterior mean
conditional on the most likely hypothesis [1]. Estimator 2 (E2)
selects the labelling of E1 that maximises the CLP (minimises
MLEC) as indicated in Section III. Estimator 3 (E3) selects
the labelling of E1 that maximises the SLMP as indicated in
Section IV. E1 does not take into account the optimal track
building properties derived in this paper but E2 and E3 do.
Therefore, the tracks provided by E2 and E3 are better than
the tracks of E1.

The scenario has 79 time steps with parameters σu =
1.8m/s3/2, τ = 0.5 s, R = σ2

rI2, σ2
r = 1 m2, and the target

trajectories shown in Figure 2. The trajectory of target one
is fixed but the trajectory of target two is moved depending
on a parameter called dx. When dx = 0 m, both target states
from time step 30 to 50 are exactly the same but they differ
before time step 30 and after time step 50. We analyse the
cases dx = 0 m and dx = 6 m. The prior PDF at time 0
is the one in [15]. The posterior PDF is a Gaussian mixture,
which can be computed analytically in principle. However, the
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Figure 2: Scenario of the simulations: (a) Target trajectories for dx =
6m. Each target is identified at the beginning of its trajectory by a label.
The trajectories have an asterisk to indicate the target position every ten
time steps. (b) Distance between targets against time for dx = 0m and
dx = 6m.

posterior PDF has an ever-increasing number of components
so we use the joining algorithm in [28] to control the number
of components of the mixture. With this algorithm, before the
targets get close to each other, the average number of posterior
mixture components is one for dx = 0 m and dx = 6 m. After
they separate, it is two.

The averaged CLP and SLMP against time for dx = 0 m
and dx = 6 m using 1000 Monte Carlo runs are shown in
Figure 3. The CLP can be obtained in closed-form and the
SLMP is approximated using Monte Carlo integration with
20000 samples. For dx = 0 m, the CLP at the end of the
simulation is approximately 0.5 for all the estimators in all
Monte Carlo runs. This means that we do not know which
estimate corresponds to target 1 and target 2. It should be
noted that once the CLP is 0.5, it does not convey any new
information. However, the SLMP is always meaningful. As
of time step 60, the CLP remains unchanged but the SLMP
indicates that the multitarget estimates at consecutive times
are (optimally) linked with probability 1. The interpretation
is that the targets are now separated enough such that the
tracks after this time step belong to the same target with
probability one although the association with the tracks before
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Figure 3: Correct labelling probabilities and sequential linked multitrack
probabilities against time a) dx = 0 m b) dx = 6 m. In the legend,
CPSLMP stands for the cumulative product of SLMP.

the target crossing is unknown. E3 has a higher probability
that two consecutive estimates are linked. This is because it
maximises the SLMP. For dx = 6 m, the CLP at the end of the
simulation is different for the estimators as the posterior is not
permutation invariant. E1 and E2 have the highest probability
of correct labelling.

In general, if we are interested in determining where target
1 and target 2 are, we should use E2. However, if we are more
interested in building (optimally) connected tracks sequentially
with minimum jitter, it is better to use E3. This is illustrated in
Figure 4 where the resulting tracks of the estimators for four
time steps are plotted for an exemplar run (dx = 0 m). As
E3 maximises the SLMP, the resulting four-time-step tracks
are more reasonable. E1 and E2 show a jump in the linking
of target state estimates. This behaviour happens often as the
averaged cumulative product of the SLMPs over the time steps
51, ..., 54 considered in Figure 4 are, using the results shown
in Figure 3 (a): 0.37 for E1, 0.48 for E2 and 0.71 for E3.
These results indicate that E3 provides the best tracks, in the
sense of minimising switches, followed by E2 and then E1.

B. Process and measurement noise analysis
In this section, we analyse how the CLP and SLMP for

the three estimators change depending on the process and



10

315 320 325 330 335 340 345 350
365

370

375

380

385

390

395

400

x position (m)

y 
po

si
tio

n 
(m

)

(a)

315 320 325 330 335 340 345 350
365

370

375

380

385

390

395

400

x position (m)

y 
po

si
tio

n 
(m

)

(b)

Figure 4: Track formation for (a) E1 and E2, which have the same output
in this exemplar run, (b) E3. The blue circles represent the true target
states at time steps k ∈ {51, 52, 53, 54}. The true target states that
belong to the same target are linked by a blue line. The red crosses
indicate the target state estimate for a target. The black crosses indicate
the target state estimate for the other target. The red and black lines
indicate how the target state estimates are linked to form tracks. E3,
which maximises the SLMP, provides more reasonable tracks than E1
and E2.

measurement noise parameters. The prior PDF at time 0 is

π0
(
X0
)

=N
(
x0

1; x0
1,P

0
)
N
(
x0

2; x0
2,P

0
)

where x0
1 = [0, 4, 0,−1]

T , x0
2 = [0, 4,−5, 1]

T and P0 is a
diagonal matrix whose entries are 0.1 with international system
units. The number of time steps in the trajectory is 18 and
τ = 0.5 s. In order to provide a more general analysis than in
the previous case that only focused on a particular trajectory,
we generate a new multitarget trajectory in each Monte Carlo
run.

First, we set σr = 1 m and evaluate the CLP and SLMP for
σu ∈ {0.1, 1, 10}

(
m/s3/2

)
. To indicate what the trajectories

generated from this dynamic model look like, we plot the
trajectories used for σu = 0.1 m/s3/2 in Figure 5. The CLP
and SLMP against time averaged over all Monte Carlo runs
are shown in Figure 6. For σu = 0.1 m/s3/2, CLP and SLMP
are nearly one at all time steps. However, as σu increases,
CLP decreases. This implies that it gets more and more
difficult to label the multitarget state estimates properly as
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Figure 5: Target trajectories in each Monte Carlo run for σu =
0.1m/s3/2. Target one trajectories are shown in blue and target two
trajectories in red.

the process noise increases. The SLMP gets also lower as σu
increases and the minimum of the SLMP is attained earlier
for σu = 10 m/s3/2 than σu = 1 m/s3/2. This is due to the
fact that with higher process noise, the targets are likely to get
closer together earlier. It should be noted that SLMP for all
σu and all estimators is nearly one as of time step 10. This
means that the tracks formed as from this time step belong
to the same targets with probability close to one. We want to
remark that this information is not contained in the posterior
density πk (·) but in πk:k+1 (·)

Now, we set σu = 1 m/s3/2 and evaluate the CLP and
SLMP for σr ∈ {0.5, 1, 2} (m). The CLP and SLMP against
time averaged over all Monte Carlo runs are shown in Figure
7. For σr = 0.5 m, CLP and SLMP are approximately one
at all time steps, which indicate that the built tracks belong
to the same targets with probability approximately one. As
happened with the process noise, performance deteriorates as
σr increases. This is because the sensor has less capability to
separate the states of the two targets so they get mixed up
more easily. As expected, the SLMP is always higher for E3
than for E1 and E2 in all simulations.

VII. CONCLUSIONS

In this paper, we have presented an analysis on how we
can build optimal tracks from the Bayesian point of view.
We have proposed two alternatives. The first method takes
the customary approach of labelling the states and finding the
best labelling of the multitarget estimate in the MSLOSPA
sense (with small α). The second method does not require
the labelling of the state and builds tracks by labelling the
current multitarget state estimate to maximise the probability
that is optimally linked with the multitarget state estimate
at the previous time step, i.e., it minimises track jittering.
The first approach shows some important drawbacks after the
targets have moved in close proximity for a long time and then
separated. The second approach does not have this drawback
and only requires knowledge of the RFS posterior density.

The results of this paper can have wide applications. First,
we can in principle modify commonly used (unlabelled) RFS
algorithms, which currently do not build tracks, such that they
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Figure 6: CLP and SLMP against time using σr = 1m. As σu increases,
performance deteriorates.

build tracks in a sound, well-defined fashion. Second, we can
in principle modify classic algorithms like MHT such that they
provide jitter-free tracks based on first principles. In general,
as explained in the paper, multiple target tracking algorithms
should consider exploiting the advantage of only requiring the
RFS posterior density or the RFS trajectory posterior in the
smoothing problem to build tracks.

An interesting line of future research is to generalise this
analysis to a variable and unknown number of targets.

APPENDIX A

In this appendix, we prove why Definition 1 denotes the
optimal labelling of a target. To do so, we use the random set
notation as it explicitly includes the labels. The true labelled
multitarget state set is

Xk =

{[(
xk1
)T
, 1
]T
,
[(

xk2
)T
, 2
]T
, ...,

[(
xkt
)T
, t
]T}

(29)
where we have assumed that the true labels are [1, ..., t]

T

without loss of generality.
A labelled multitarget state set estimate is

X̂k =

{[(
x̂k1
)T
, l̂1

]T
,
[(

x̂k2
)T
, l̂2

]T
, ...,

[(
x̂kt
)T
, l̂t

]T}
(30)
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Figure 7: CLP and SLMP against time using σu = 1m/s3/2. As σr
increases, performance deteriorates.

where the label vector estimate
[
l̂1, l̂2, ...l̂t

]T
can be any

permutation of [1, ..., t]
T .

Definition 6. The optimal labelling φ̃
′

=
[
φ̃′1, ..., φ̃

′
t

]T
of the

labelled multitarget state set estimate is the label vector that
minimises the LOSPA distance between (29) and (30):

φ̃
′

= φl? : l?

= arg min
l∈{1,...,t!}

d

(
Xk,

{[(
x̂k1
)T
, φl,1

]T
, ...,

[(
x̂kt
)T
, φl,t

]T})

= arg min
l∈{1,...,t!}

min
i∈{1,...,t!}

 t∑
j=1

bp
(
xkj , x̂

k
φi,j

)
+αpδ

[
j − Γφi

(φl)j

]]
(31)

where Γφi
(φl)j is the jth component of vector Γφi

(φl).
In the following we prove that Definitions 1 and 6 are

equivalent, i.e., φ̃ = φ̃
′
. We make the change of indices (i

is changed by n) such that

φn = Γφi
(φl) (32)

which implies that

φi = Γφn

(
φ−1
l

)
(33)
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where φ−1
l is the vector that indicates the inverse permutation

of φl. Then, (31) becomes

l? = arg min
l∈{1,...,t!}

min
n∈{1,...,t!}

 t∑
j=1

bp
(

xkj ,Γφ−1
l

(
X̂k
)
φn,j

)
+αpδ [j − φn,j ]

]
= arg min
l∈{1,...,t!}

d
(
Xk,Γφ−1

l

(
X̂k
))

= arg min
l∈{1,...,t!}

d
(

Γφl

(
Xk
)
, X̂k

)
.

We get that φ̃ = φ̃
′

using (2).

APPENDIX B

In this appendix, we prove Lemma 2. We define vector φ? =
[φ?1, ..., φ

?
t ]
T as

φ? = φi? : i? = arg min
i∈{1,...,t!}

1

t

t∑
j=1

bp
(
x̂kj ,x

k
φi,j

)1/p

.

(34)
In the following, we show that φ? = φ̃ where φ̃ is the

optimal labelling of X̂k. Using (2), we can write

φ̃ = φl? : l?

= arg min
l∈{1,...,t!}

d
(
X̂k,Γφl

(
Xk
))

= arg min
l∈{1,...,t!}

min
i∈{1,...,t!}

 t∑
j=1

bp
(
x̂kj ,Γφl

(
Xk
)
φi,j

)
+αpδ [j − φi,j ]

]
(35)

where Γφl

(
Xk
)
φi,j

denotes the state vector of target j in the
ith permutation of the multitarget state vector Γφl

(
Xk
)
. Let

φ?n n ∈ {1, ..., t!} denote the permutations of vector φ?, which
is given by (34). We can write (35) as

φ̃ = φ?n? : n?

= arg min
n∈{1,...,t!}

d
(
X̂k,Γφ?

n

(
Xk
))

= arg min
n∈{1,...,t!}

min
i∈{1,...,t!}

 t∑
j=1

bp
(
x̂kj ,Γφ?

n

(
Xk
)
φi,j

)
+αpδ [j − φi,j ]

]
.

The argument of the minimum (in variable i) of the first
term isolated is a function of n and is denoted as i?1 (n) and
the argument of the minimum (in variable i) of the second term
isolated is i?2 (n) = 1 regardless of n. If there exists n∗ such
that the two arguments of the minima coincide, i.e., i?1 (n∗) =
1 then, the whole expression is minimised and n∗ is obtained.
For n = 1, the multitarget state vector Γφ?

n

(
Xk
)

is ordered
according to φ? (as φ?1 = φ?) and, therefore, the argument of
the minimum of the first term is i? (1) = 1 because of (34).
Consequently, φ̃ = φ?.

APPENDIX C

In this appendix, we prove Equation (6). Using (5), we get

MSLOSPA
(
X̂k
)

= E
[
d2
(
Xk, X̂k

)]
=

ˆ
1

t
min

l∈{1,...,t!}

 t∑
j=1

b2
(
xkj , x̂

k
φl,j

)
+ α2δ [j − φl,j ]


πk
(
Xk
)
dXk

=

ˆ
S1(X̂k)

1

t

t∑
j=1

b2
(
xkj , x̂

k
φ1,j

)
πk
(
Xk
)
dXk

+
1

t

t!∑
i=2

ˆ
Si(X̂k)

min
l∈{1,...,t!}

t∑
j=1[

b2
(
xkj , x̂

k
φl,j

)
+ α2δ [j − φl,j ]

]
πk
(
Xk
)
dXk

It is met that

min
l∈{1,...,t!}

t∑
j=1

[
b2
(
xkj , x̂

k
φl,j

)
+ α2δ [j − φl,j ]

]
≤

t∑
j=1

[
b2
(
xkj , x̂

k
φi,j

)
+ α2δ [j − φi,j ]

]
for Xk ∈ Si

(
X̂k
)

and the inequality is tight for α → 0

because of (3). Then,

MSLOSPA
(
X̂k
)

≤
ˆ
S1(X̂k)

1

t

t∑
j=1

b2
(
xkj , x̂

k
φ1,j

)
πk
(
Xk
)
dXk

+
1

t

t!∑
i=2

ˆ
Si(X̂k)

t∑
j=1

[
b2
(
xkj , x̂

k
φi,j

)
+ α2δ [j − φi,j ]

]
πk
(
Xk
)
dXk

= MSOSPA
(
X̂k
)

+ MLEC
(
X̂k
)

where MLEC
(
X̂k
)

is the mean labelling error cost (MLEC)

of the estimate X̂k, see (8), and MSOSPA
(
X̂k
)

is the mean

square OSPA distance of the estimate X̂k, see (7).

APPENDIX D

In this appendix, we prove (13). We make the change
of variables Ym = Γφi

(Xm)
(
Xm = Γ−1

φi
(Ym)

)
in each

integral in (12) noting that

X0:k ∈ Li
(
X̂0:k

)
←→ Y0:k ∈ L1

(
X̂0:k

)
(36)

because

d
(
X̂m,Γφi

(Xm)
)
< d

(
X̂l,Γφl

(Xm)
)
l 6= i,m ∈ {0, ..., k}

←→ d
(
X̂m,Ym

)
< d

(
X̂l,Γφl

(Ym)
)
l 6= 1,m ∈ {0, ..., k} .
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Then, (12) becomes

P 0:k
X̂0:k =

t!∑
i=1

ˆ
Li(X̂0:k)

π0:k
(
X0:k

)
dX0:k

=

t!∑
i=1

ˆ
L1(X̂0:k)

π0:k
(

Γ−1
φi

(
X0:k

))
dX0:k

=

ˆ
L1(X̂0:k)

π̌0:k
({

x0:k
1 ,x0:k

2 , ...,x0:k
t

})
dX0:k (37)

where the RFS density over the trajectories
π̌0:k

({
x0:k

1 , ...,x0:k
t

})
is given by (14).

APPENDIX E

In this appendix we prove (22). The RFS trajectory posterior
density from k to k + 1 can be written as

π̌k:k+1
({

xk:k+1
1 , ...,xk:k+1

t

})
=

t!∑
i=1

πk:k+1
(
Γφi

(
Xk:k+1

))
=

t!∑
i=1

1

ρi
`
(
zk+1

∣∣Γφi

(
Xk+1

))
f
(
Γφi

(
Xk+1

) ∣∣Γφi

(
Xk
))
πk
(
Γφi

(
Xk
))

(38)

where

ρi =

ˆ
`
(
zk+1

∣∣Γφi

(
Xk+1

))
f
(
Γφi

(
Xk+1

) ∣∣Γφi

(
Xk
))

πk
(
Γφi

(
Xk
))
dXk:k+1. (39)

We apply a change of variables in (39) using the function
Γ−1
φi

(·) as in Appendix D. Under Assumption A1, we can use
(18) and (19), and we get:

π̌k:k+1
({

xk:k+1
1 , ...,xk:k+1

t

})
=

∑t!
i=1 `

(
zk+1

∣∣Xk+1
)
f
(
Xk+1

∣∣Xk
)
πk
(
Γφi

(
Xk
))

´
` (zk+1 |Xk+1 ) f (Xk+1 |Xk )πk (Xk) dXk:k+1

=
`
(
zk+1

∣∣Xk+1
)
f
(
Xk+1

∣∣Xk
)
π̌k
({

xk1 , ...,x
k
t

})
´
` (zk+1 |Xk+1 ) f (Xk+1 |Xk )πk (Xk) dXk:k+1

=
`
(
zk+1

∣∣Xk+1
)
f
(
Xk+1

∣∣Xk
)
π̌k
({

xk1 , ...,x
k
t

})
ρ

(40)

where the normalising constant ρ is given by (23). Substituting
(40) into (21), we get

P k:k+1
i =1/ρ

ˆ
L1(X̂k:k+1

i )
`
(
zk+1

∣∣Xk+1
)

f
(
Xk+1

∣∣Xk
)
π̌k
({

xk1 , ...,x
k
t

})
dXk:k+1.
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