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Abstract 

 

In this paper, we consider the numerical solutions of homogeneous Helmholtz 

equations of the second order. The Quarter-Sweep Modified Successive 

Over-Relaxation (QSMSOR) iterative method is applied to solve linear systems 

generated form discretization of the second order homogeneous Helmholtz 

equations using quarter sweep finite difference (FD) scheme. The formulation and 

implementation of the method are also discussed. In addition, numerical results by 

solving several test problems are included and compared with the conventional 

iterative methods. 

 

Keywords: Helmholtz equations; Quarter-sweep iteration; Finite Difference; 

Modified Successive Over-Relaxation 

 

 

1 Introduction 
 

   Many problems in engineering and science involve Helmholtz equation, occur 

in real time application. On the other hand, the applications of Helmholtz equation 

are encountered in many fields such as time harmonic acoustic and 

electromagnetic fields, optical waveguide, acoustic wave scattering, noise 

reduction in silencer, water wave propagation, radar scattering and lightwave 

propagation problems (Muthuvalu et al., 2014a; Nabavi et al., 2007; Kassim et al., 

2006; Yokota and Sugio, 2002). There is a high important in improving the 

performance of the methods for solving Helmholtz equation. Hence, the 

development of fast methods is essential in this research area. 

Consider the second order Helmholtz equation which is the elliptic equation 

 

 
2 2

2 2
, ,

U U
U f x y

x y


 
  

 
                                 (1) 

 

with Dirichlet boundary conditions and function f are given. Here, we assume that 

the domain is the square unit. Assume that the grid spacing is 1 nh  with 

ix ih  and jy jh  where  , 1,2, , .i j n  Eq. (1) can be approximated at 

point  ,i jx y  by the most commonly used approximation, the full-sweep FD 

approximation equation we get 

 

 2 2
1, 1, , 1 , 1 , ,4i j i j i j i j i j i jU U U U fh U h                  (2) 

 

Eq. (2) can also can be discretized using the same formula with grid spacing 2h  
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and leads to the following formula 

 2 2
2, 2, , 2 , 2 , ,4 4 4i j i j i j i j i j i jU U U U fh U h        

        (3) 

 

Eq. (5) is also known as the quarter-sweep FD approximate equation Othman and 

Abdullah (1998). Another type of approximation derived from the rotated FD 

approximate equation (Abdullah 1991; Dahlquist and Bjork, 1974) can be 

constructed by the following transformation 

 

, 1 1, 1

1, 1, 1

, 2

i j i j

i j i j

x y h

   

  

  

 

 

Therefore, the scheme of central difference using the rotated FD approximate 

equation (Dahlquist and Bjorck, 1974) can be expressed as 

 

 2 2
1, 1 1, 1 1, 1 1, 1 , ,4 2 2i j i j i j i j i j i jU U U U fh U h                 (4) 

 

The standard rotated FD approximation (4) is also called half-sweep FD 

approximate equation. The article is organized in the following form. The latter 

section of this article will discuss the formulations of the Full-Sweep Modified 

Successive Over-Relaxation (FSMSOR), Half-Sweep Modified Successive 

Over-Relaxation (HSMSOR) and QSMSOR iterative methods in solving the SLE 

obtained from discretization of the two-dimensional Helmholtz equations. The 

computational complexity analysis will be shown in Section 4 to assert the 

performance of the proposed methods. Then, the numerical results and discussion 

are given in the final section 

 

2 Point MSOR Methods 
 

2. 1 FSMSOR Method for Helmholtz Equation 

 

To derive the FSMSOR point iterative method, we use full-sweep approach, in 

which the domains are divided into two types of points (i.e.,  and ) as shown 

in Fig. 1. By applying MSOR method (Akhir et al., 2011a; Kincaid and Young, 

1972; De Vogelaere, 1958) into Eq. (2), we will obtain the FSMSOR method for 

Helmholtz equation as 

 

              1 1 1, 2
, 1, 1, , 1 , 1 , , ,

0

1
k k k k k kr b

i j i j i j i j i j i j r b i jU U U U fU h U





  

               (5) 
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Fig. 1 FSMSOR algorithm domain for n=10. 

 

  
Fig. 2 HSMSOR algorithm domain for n=10. 

 

     
                    Fig. 3 QSMSOR algorithm domain for n=10. 
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where 
2

0
4 h   . Eq. (5) allows us to iterate through all of the points, lying on 

the h -grid. It can be observed that Eq. (5) involves points of type  and . 

Therefore the iteration can be carried out independently involving only this types 

of point. The algorithm of FSMSOR method is display in Algorithm 2.1: 

 

Algorithm 2.1 

Discretize the solution domain into point of two types  and  as shown in 

Fig. 1. 

Step 1: The iterations (using Eq. (5)) implemented on the red point first using 

       the relaxation parameter r .  

Step 2: After the red points sweep are completed, the iterations are done on the  

       black points using the relaxation parameter b . 

Step 3: Check the convergence. If converge go to Step 4, otherwise repeat the 

       iteration cycle, (i.e Step 1). 

Step 4: Display approximate solutions. 

 
2.2 HSMSOR Method for Helmholtz Equation 

 
To derive the HSMSOR iterative method, we use half-sweep approach, in which 

the domains are divided into three type of points (i.e., ,  and ) as shown 

in Fig. 2. By applying MSOR method (Akhir et al., 2011b, 2011c) into Eq. (4), we 

get the HSMSOR method for Helmholtz equation as

   

              1 1 1, 2
, 1, 1 1, 1 1, 1 1, 1 , , ,

1

2 1
k k k k k kr b

i j i j i j i j i j i j r b i jU U U U fU h U





  

                 

                                                                               (6) 

 

where 
2

1
4 2h   . Eq. (6) allows us to iterate through half of the points, lying 

on the 2h -grid.  Again, it can be observed that Eq. (6) involves points of type 

 and . Therefore the iteration can be carried out autonomously involving 

only this type of point. The algorithm of HSMSOR method is display in 

Algorithm 2.2: 

 

Algorithm 2.2 

Discretize the solution domain into point of three types , and  as shown 

in Figure 2. 

Step 1. The iterations (using Eq. 6)) implemented on the red point first using 

        the relaxation parameter r .  

Step 2. After the red points sweep are completed, the iterations are done on the 
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black points using the  relaxation parameter  b . 

Step 3. Check the convergence. If converge go to Step 4, otherwise repeat the  

        iteration cycle, (i.e  Step 1).  

Step 4. Evaluate the solutions at the remaining points type  using the full- 

        sweep FD approximate formula (3) on the grid h (Akhir et al., 2012a, b; 

        2011b, c). 

 

       

 2
, 1, 1, , 1 , 1 ,

0

1
i j i j i j i j i j i jU U U U fU h


        

 
Step 5. Display approximate solutions. 

 

2.3 QSMSOR Method for Helmholtz Equation 

 

To derive the QSMSOR iterative method, we use quarter-sweep approach, in 

which the domains are divided into four type of points (i.e., , ,  and )  

as shown in Fig. 3. By applying MSOR method (Akhir et al., 2012b) into Eq. (3), 

we will obtain the QSMSOR method for Helmholtz equation as 

 

 

              1 1 1, 2
, 2, 2, , 2 , 2 , , ,

2

1
k k k k k kr b

i j i j i j i j i j i j r b i jU U U U fU h U





  

              (7) 

 

where 
2

2
4 4h   . Eq. (7) allows us to iterate through quarter of the points, 

lying on the 2h -grid.  Again, it can be observed that Eq. (7) involves points of 

type  and . Therefore, the

 

iteration can be carried out autonomously 

involving only this type of point. The algorithm of QSMSOR method is display in 

Algorithm 2.3: 

Algorithm 2.3 

The solution domain must be labeled for the four types of points (i.e., , ,  
and ), as shown in Fig. 3.  

Step 1. The iterations (using Eq. (7)) implemented on the red point first using 

        the relaxation parameter r .  

Step 2. After the red points sweep are completed, the iterations are done on the  

        black points using the relaxation parameter  b . 

Step 3. Check the convergence. If converge go to Step 4, otherwise repeat the  

        iteration cycle, (i.e Step 1).  

Step 4. Evaluate the solutions at the remaining points according to the following  

        sequence. (Aruchuan et al.,2014; Akhir et al., 2012b; Othman and 

        Abdullah, 1998). 
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a. points of type  using the full-sweep FD approximate formula (7) 

on the grid 2h . 
2

, 1, 1 1, 1 1, 1 1, 1 ,2i j i j i j i j i j i jU U U U fU h            

 

b. points of type   using the full-sweep FD approximate formula  

 (3) on the grid h. 

 

 2
, 1, 1, , 1 , 1 ,

0

1
i j i j i j i j i j i jU U U U fU h


        

 

Step 6. Display approximate solutions. 

 

3 Numerical Results 

 
In this section, we exemplify two numerical examples to illustrate the 

effectiveness of the methods prescribed in previous section. The algorithms were 

tested on the following model problems: 

 

Problem 1 (El-Sayed and Kaya, 2004) 

 
2 2

2 2
0

U U
U

x y

 
  

 
 

with boundary conditions 

  

   

   

,0 , ,1 exp( ) 1.543 , 0 1.

0, , 1, 2.718 cosh( ), 0 1.

U x x U x x x x

U y y U y y y y

    

    
 

 

and exact solution of this problem is 

 

 , exp( ) cosh( )x y y x x yU   

 

Problem 2 (El-Sayed and Kaya, 2004) 

 
2 2

2 2
5 0

U U
U

x y

 
  

 
 

 

with boundary conditions 
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     

     

,0 0, ,1 3.627sin 3 , 0 1.

0, 0, 1, 0.141sinh 2 . 0 1.

U x U x x x

U y U y y y

   

   
 

 

and exact solution of this problem is 

 

 , sin(3 )sinh(2 )x y x yU   

 

Throughout the experiments, there are three important parameters to be measured, 

such as the number of iterations (k), maximum absolute error (Abs. Error) and 

execution time (in seconds) (t). All the methods were tested on several mesh sizes 

i.e 64, 128, 256 and 512; and the convergence test used was the maximum 

absolute error (Abs. Error) tolerance by taking 
1010 .   Each experiment is 

implemented by choosing ,r b  value close to the optimal parameter   of the 

corresponding SOR iterative method.  

The relaxation parameter ,r b  was chosen to within 0.01 that gave the 

minimum number of iterations. The computer language used for the programming 

is C++, and the program performed on a personal PC Intel(R) Core (TM) i7 CPU 

860@3.00Ghz, 6.00GB RAM. The operation system used was Window 7 with the 

installation Borland C++ compiler version 5.5. The numerical results of the 

experiment for different value of mesh size are given in Tables 1 and 2, 

respectively 

 

 

4 Computational Complexity Analysis of MSOR Methods for  

  Helmholtz Equation 
 

The computational effort measured by number of computer operations needed to 

obtain a solution by the three methods discussed for solving problem (1) can be 

assessed. Undertake the solution domain is large with 2m number of internal 

mesh points with 1m n  . In their iterative manner, the FSMSOR and 

HSMSOR methods require  
2

1m  and  
2

1 2m   internal mesh points 

respectively. However QSMSOR method require  
2

1 4m   internal mesh points. 

Note that our valuation on this computational complexity is based on the 

arithmetic operations performed per iteration and execution time for the 

additions/subtraction (ADD/SUB) and multiplications/divisions (MUL/DIV) 

operations. Therefore the number of operations of operations required (excluding 

red and black equations, convergence test and direct solution) for FSMSOR, 

HSMSOR and QSMSOR methods as described in Section 3 are correspondingly 

given as follows in Table 3 

mailto:860@3.00Ghz
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Table 1 Number of iterations, execution time and maximum absolute error for the 

proposed iterative methods in solving Problem 1. 

 

n Method r


 

b
 

k t Abs. Error 

 

FSMSOR 1.91 1.91 254 0.14 2.1637e-6 

64 HSMSOR 1.87 1.27 198 0.11 2.1651e-6 

  QSMSOR 1.82 1.83 137 0.05 8.6474e-6 

 

FSMSOR 1.95 1.96 529 0.52 5.4143e-7 

128 HSMSOR 1.93 1.93 412 0.4 5.4075e-7 

  QSMSOR 1.91 1.92 282 0.15 2.1637e-6 

 

FSMSOR 1.98 1.97 991 3.57 1.3299e-7 

256 HSMSOR 1.97 1.97 880 3.29 3.3532e-7 

  QSMSOR 1.95 1.96 579 1.07 5.4058e-7 

 

FSMSOR 1.99 1.98 2855 40.95 2.1701e-8 

512 HSMSOR 1.98 1.98 1971 34.65 2.9851e-8 

  QSMSOR 1.98 1.99 1355 10.67 1.3529e-7 

k is the number of iterations; t is the computation timings. 

 

 

 

Table 2 Number of iterations, execution time and maximum absolute error for the 

proposed iterative methods in solving Problem 2. 

 

n Method r


 

b
 

k t Abs. Error 

 

FSMSOR 1.92 1.92 283 0.19 2.2777e-4 

64 HSMSOR 1.89 1.89 221 0.13 2.7964e-4 

  QSMSOR 1.85 1.86 162 0.07 9.0996e-4 

 

FSMSOR 1.96 1.96 565 0.56 5.6953e-5 

128 HSMSOR 1.94 1.94 498 0.49 6.9883e-5 

  QSMSOR 1.92 1.93 315 0.19 2.7227e-4 

 

FSMSOR 1.98 1.99 1694 6.57 1.4239e-5 

256 HSMSOR 1.97 1.97 921 3.55 1.7471e-5 

  QSMSOR 1.96 1.97 625 1.21 5.6952e-5 

 

FSMSOR 1.98 1.99 4215 65.63 3.5391e-6 

512 HSMSOR 1.99 1.99 2561 45.89 4.3674e-6 

  QSMSOR 1.98 1.99 1272 10.25 1.4239e-5 

k is the number of iterations; t is the computation timings. 
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Table 3 The total computing costs for the three MSOR methods. 

 

Methods 

Arithmetic Operation 

Per Iteration 

(ADD/SUB) (MULT/DIV) 

FSMSOR  2
6 24 24n n k    2

6 24 24n n k   

HSMSOR  2
3 12 12n n k    2

3 12 12n n k   

QSMSOR   2
3 2 6 6n n k     2

3 2 6 6n n k   

Methods 
After Convergence 

(ADD/SUB) (MULT/DIV) 

FSMSOR - - 

HSMSOR   2
5 2 10 10n n     2

5 2 10 10n n   

QSMSOR   2
5 4 15 15n n     2

5 4 15 15n n   

k is the number of iterations; 2m n  . 

                                                                                                                                   

 

5 Discussions of Results  
 

In Section 5, three types of pointwise MSOR methods are applied into a 

Helmholtz equation model to check the execution times and number of iterations. 

From the numerical result, QSMSOR methods is the fastest method among the 

other two MSOR methods (HSMSOR and FSMSOR) if we compare with either 

number of iterations or execution time. This can also be verified if we compared 

the computational complexity of all three MSOR methods where QSMSOR 

method has the least computational complexity. 

It can be pragmatic that the accuracies of the QSMSOR methods remain as 

good as the HSMSOR and FSMSOR methods but they oblige lesser number of 

iterations and computing timing to attain the result. For example, the number of 

iterations of QSMSOR is merely about 22-31% and 22-39% as well as 46-52% 

and 43-70% compared to HSMSOR and FSMSOR methods in Problems 1 and 2, 

respectively. Again, the execution times of QSMSOR are much faster just about 

15-21% and 30-32% along with 64-73% and 63-84% compared to HSMSOR and 

FSMSOR methods in Problems 1 and 2 respectively. 

 Experimental results also show promising results that make them as 

alternative to conventional FD scheme. From the number of iterations and timing 

obtained, it can be seen that among three MSOR iterative methods presented, the 

QSMSOR method requires the least time for all n compared with the other two 

MSOR iterative methods. This is due to the fact that among the three methods, the  
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QSMSOR method requires least number of numbers of iterations and 

computational operations. This is reflected by total arithmetic operations required 

by the method given in Table 3.  

Moreover, the accuracy are significantly good, since all the method used the 

descriptive stencil  2O h . Overall, the numerical results show that the QSMSOR 

method is superior than HSMSOR and FSMSOR methods. This is mainly because 

of computational complexity of the QSMSOR method which is approximately 

50% and 75% less than HSMSOR and FSMSOR methods respectively. For future 

works, the capability of octo-sweep iteration (Akhir et al., 2012d) should be 

scrutinized for solving homogeneous (El-Sayed and Kaya, 2004) and 

nonhomogeneous Helmholtz equations (Akhir et al., 2012c). Also, advance 

studies for innumerable point block iterative methods can be also scrutinized 

(Akhir et al., 2012e). 
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