
© 2010 IEEE. Personal use of this material is permitted. Permission 
from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising 
or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195651621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


201O 2nd International Conforence on Education Technology and Computer (ICETC) 

Comparing Simulations and Graphical Representations of Complexities of 

Benchmark and Large-Variable Circuits 

Prasad P.W.c. 
Charles Sturt University, 

Sydney Study Centre, 
NSW, Australia 

c.withana@sga.edu.au 

AzamBeg 
College of Infonnation 

Technology 
UAE University, AI-Ain, 

United Arab Emirates 
abeg@uaeu.ac.ae 

Abstract: In this work, we analyzes the relationship between 
randomly generated Boolean function complexity and the 
number of nodes in benchmark circuits using the Binary 
Decision Diagrams (BDD). We generated BDDs for several 

ISCAS benchmark circuits and derived the area complexity 
measure in terms of number of nodes. We demonstrate that 
the benchmarks and randomly generated Boolean functions 
behave similarly in terms of area complexity. The experiments 

were extended to a large number of variables to verify the 
complexity behavior. It was confirmed that the rise of the 
complexity graph is only important to calculate the circuit 
com plexities. 
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I. INTRODUCTION AND LITERATURE REVIEW 

BDD and its derivatives based on Boolean 
decomposition such as Davio [1], Shannon [2], Read­
Muller[3], Kronecker [4] etc., require the inputs and outputs 
to be in tenns of bit levels. Therefore, these representations 
can be quite time consuming. However, representation of 
multiple output functions has important applications in 
areas such as logic simulation and testing [5]. As the circuit 
sizes continue to grow, the need for fast evaluation becomes 
even more significant. The continuous increase of 
integration level of modem digital circuits imposes high 
and growing requirements for methods and algorithms used 
in VLSICAD design verification and testing [5] [6]. 
According to Moore's law [7], the number of transistors on 
a single chip doubles every year, and it has withstood the 
test of time since Gordon Moore made this observation in 
1965. Boolean function representation has a direct influence 
on the computation time and space requirements of digital 
circuits and most of the problems in VLSIICAD designs 
can be fonnulated in tenns of Boolean functions. The 
efficiency of any method used depends on the complexity 
of Boolean functions [8] . Research on the complexity of 
Boolean functions in non-unifonn computation models is 
now part of one of the most interesting and important areas 
in theoretical computer science [8]- [10]. Rapid increases in 
the design complexity and the need to reduce time-to­
market have resulted in a need for computer-aided design 
(CAD) tools that could help make important design 
decisions early in the design process. Area complexity is 
one of the most important criterion that has to be taken into 
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account while making these decisions. However, to be able 
to make these decisions early, there is a need for methods to 
estimate the area complexity and power consumption from 
a design description of the circuit at a high level of 
abstraction [11]. 

In 1949, Shannon [2], studied area complexity, 
measured in tenns of the number of relay elements used in 
building a Boolean function (switch-count). In that paper, 
Shannon proved that the asymptotic complexity of Boolean 
functions is exponential to the number of inputs, and that 
for large, almost every Boolean function is exponentially 
complex. In 1956, Muller demonstrated the same result for 
Boolean functions implemented [3] using logic gates (gate­
count measure). A key result of his work is that a measure 
of complexity based on gate-count is independent of the 
nature of the library used for implementing the function. 
Several researchers have also reported results on the 
relationship between area complexity and entropy of a 
Boolean function. In 1990 Cheng et aI., empirically [12] 
demonstrated the relation between entropy and area 
complexity, with area complexity measured as literal count. 
They showed that randomly generated Boolean functions 
have a complexity exponential in, and proposed to use that 
model as an area predictor for logic circuits. However the 
circuits tested were very small, typically having less ilian 
ten inputs. As one tries to apply that model to realistic very 
large scale integration (VLSI) circuits, it quickly breaks 
down due to the exponential dependence, leading to 
unrealistically large predictions of circuit area. For example, 
when applied to a circuit with 32 inputs (having been tuned 
to inputs), this model predicts an area of million gates, 
whereas the circuit can in reality be implemented with only 
84 gates. [11]. In 1999, Nemani and Najm, proposed an 
area and power estimation capability, given only a 
functional view of the design, such as when a circuit is 
described only with Boolean equations. In this case, no 
structural infonnation is known and the lower level (gate­
level or lower) description of this function is not available. 
The methods proposed in Wu [13] and Kurdahi [14] both 
make use of the sum-of-products (SOP) representation of a 
function, and estimate the area based on the total number of 
AND and OR gates required in this representation. 
Typically, the actual number of gates required will be much 
smaller than this number after optimization. 
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The use of logic verification and optimization 
algorithms in VLSI CAD systems requires efficient 
representation and manipulation of Boolean functions [5]. 
During the last two decades, BDDs have gained great 
popularity as successful method for the representation of 
Boolean functions [6], [15]. The ever-increasing complexity 
of circuit designs is directly related to the complexity of 
parameters that describe the Boolean function. Over the 
years, the number of nodes in a BDD became a major 
concern since it is proportional to the complexity of the 
Boolean circuit [16]. Over the past two decades most of the 
problems in the synthesis, design and testing of 
combinational circuits, have been solved using various 
mathematical methods [17], [IS]. Researchers in this area 
are actively involved in developing mathematical models 
that predict the number of nodes in a BDD in order to 
predict the complexity of the design in terms of the time 
needed to optimize it and verify its logic. 

The main objective of this paper is to extend the work 
done by the same authors on the BDD complexity for the 
benchmark circuits and analyze its overall behavior. The 
remaining of this paper is divided as follows: in the second 
section, we review the previous work done on estimation by 
the authors. Section three provides the comparison for the 
ISCAS benchmark [19] results for BDD area complexity 
derived from Colorado University Decision Diagram 
(CUDD) [20] and the results extracted from the complexity 
graphs. The complexity behavior for higher number of 
variables and how to exploit those results for ISCAS 
benchmark circuit complexity verification were explained 
in section four, followed by the conclusions. 

II. PREVIOUS WORK BY THE AUTHORS 

In this section, we briefly describe authors' previous 
work completed and results achieved in the area of the 
estimation of BDD complexity. 

The complexity of the ROBDD mainly depends on the 
number of their nodes. Simulations have been performed in 
[21], [22] to analyze the complexity variation in ROBDDs 
i.e. the relation between the number of product terms and 
the number of nodes for any number of variables. 

We carried out experiments using CUDD [20] package 
to analyze the exact complexity variation of an ROBDD, 
i.e., the relation between the number of product terms and 
the number of nodes for any number of variables. For each 
variable count n between 1 and 14 inclusive and for each 
term count between 1 and 2n -1, 100 SOP terms were 
randomly generated and the CUDD) package was used to 
determine the area complexity in number of nodes. This 
process was repeated until the average size of the area 
complexity (i.e. number of nodes) became 1. Then the 
graphs for area complexity (Fig. 1) were plotted against the 
product term count for each number of variables. 

The Fig. 1 graph indicates that the BDD complexity in 
general increases as the number of product terms 
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Fig l. BDD complexity variation results for 10 variables 

increases. This is clear from the rising edge of the curve. At 
the end of the rising edge, the graph reaches a maximum 
complexity. Apart from that the peak also specifies the 
number of product terms (critical limit) of a Boolean 
function that leads to the maximum BDD complexity for 
any Boolean function with 10 variables. If the number of 
product terms increases above the critical limit, as expected, 
the product terms starts to simplify and the BDD 
complexity will reduce. The BDD complexity graph shown 
in Fig. 2 indicates that as the number of product terms 
increases the complexity of the BDD decreases at a slower 
rate and ultimately reaches 1 node. 

III. V ALIDA TION OF THE GRAPHICAL 
REPRESENTATION OF BOOLEAN FUNCTION 

COMPLEXITIES 

The graphical predictions for BDD complexity for 
selected ISCAS benchmark circuits are tabulated in Table 1. 
The actual results for ISCAS benchmark circuits were 
obtained on an XS6 PC running on Linux environment. 

The 1 SI column indicates the ISCAS benchmark circuit 
name and the 2nd and 3rd columns are for the input variables 
and number of outputs for the respective benchmark circuit. 
In column 4, the actual BDD complexity for the benchmark 
circuits have been calculated using CUDD package. For the 
graphical prediction calculation, each benchmark circuits 
were extracted to fmd the total number of SOPs. These SOP 
terms consist of different number of variables and product 
terms. Therefore the calculations were done from different 
variable graphs. The graphical predictions for benchmark 
circuits are tabulated in column 5. 

Although the benchmark circuits considered had up to 
47 inputs, no output depended on more than 14 of those 
inputs. The circuits for all outputs were measured. It was 
observed that the term-variable count combinations were 
almost all to the left of the peak complexity, and thus still in 
region of logarithmic complexity. So, empirically the most 
important part of the model is the logarithmic rise, and it 
was this part that has been validly tested by the benchmark 
circuit analysis. This part of the model also has the 
strongest theoretical grounding. 
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Fig 2. BOD complexity variation results for 18 variables 

IV. GRAPHICAL REPRESENTATION FOR 
HIGHER NUMBER OF VARIABLES 

Fig. 3 illustrates the results for higher number of 
variables. Note that only the left part of the full graph is 
shown; it is because of the long simulation times. Since this 
curve represents a small number of data points, it is hard to 
conclude whether the general behavior of the BDD 
complexity for these variables remains the same or changes. 
We are in the process of collecting more data points in 
order to get the average of the complexity for a given 
number of product terms, which will make it easy to 
compare all the graphs behaviors on the same scale. It is 
obvious that curves are more difficult to generate for larger 
number of variables because of the higher number of SOP 
terms it generates as random Boolean functions. As the 
number of variable increases, the random generated 
Boolean function complexity of the SOP functions 
increases exponentially (2"). Therefore, the hardware 
resources used for actual benchmark complexity calculation 
will not be sufficient to complete the simulations for higher 
number of SOP. This can be the main cause for not getting 
the complete graph for higher number of variables. 
However it cannot be a critical factor for the proposed 
graph prediction method as discussed in previous paragraph. 
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Fig 3. BOD complexity variation results for 20 variables 

From Fig 3, it can be inferred that the difference 
between this graph and previous were only due to lack of 
samples in order to get more simplified data points. 

According to this graph for 20 variables, those data points 
will come only after 5400 product terms. However those 
product terms could not produce the output due to 
complexities of those randomly generated product terms. 
Figs 4-6 illustrate the graphical representation of BDD 
complexity for 28, 45 and 60 variables, respectively . 
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Fig 4. BOD complexity variation results for 28 variables 
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Fig 5. BOD complexity variation results for 45 variables 
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Fig 6. BOD complexity variation results for 60 variables 

V. CONCLUSION 

In this work, we have analyzed the relationship between 
actual results and the results calculated from graphical 
representation for a larger selection of ISCAS benchmark 
circuits. An advantage of this model is that it is a single 
integrated model for different number of variables and 
number of product terms. 
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Table 1 
Complexity estimation results for ISCAS benchmark circuits 

Circuit Inputs Outputs BOD Complexity 
Actual Graphical 

Apex4 9 19 1452 1286 
apex7 10 8 325 344 
bl 3 2 12 12 
BI2 16 9 94 97 
B9 42 21 225 230 
C1355 41 32 64075 67437 
CI7 5 2 10 10 
CI908 33 25 18062 19681 
C432 36 7 2470 2493 
C499 41 32 60434 62923 
C8 28 18 139 149 
Cc 21 20 124 105 
cht 47 36 181 192 
clip 9 45 368 394 
cm138a 6 6 48 56 
cml50a 21 I 31 34 
cml52a 11 8 23 28 
Cm162a 14 5 47 56 
cml63a 9 8 49 59 
cm42a 4 10 50 50 
cm82a 5 12 16 19 
cm85a 10 16 41 42 
cmb 16 4 54 59 
Comp 32 3 294 312 
coni 5 5 17 18 
count 35 16 216 229 
cu 14 11 79 89 
decod 5 I 87 96 
F51m 14 8 66 74 
II 26 13 74 81 
i6 5 6 408 413 
i7 6 5 510 493 
Misexl 8 7 87 89 
misexl 6 6 66 69 
Misex2 25 18 177 171 
Mux 21 1 64 69 
My_ adder 33 17 681 693 
Pml 16 13 77 80 
rd53 5 16 23 24 
rd73 7 64 33 38 
rd84 8 162 51 54 
S5378 36 49 85 89 
Sa02 10 4 113 131 
sct 19 15 169 177 
Sqrt8 8 4 30 43 
Squar5 5 8 56 57 
t481 16 16 31 31 
terml 34 10 53 57 
ttt2 24 21 117 117 
vra 25 8 190 194 
X2 10 7 60 68 
Z4m1 7 4 36 32 

The illustrated results show that the graphical 
calculation of the benchmark complexity was very closer to 
the actual results and also the importance of the graphical 
data up to the peak of the graph. We also concluded that the 

graphical representations for higher number of variables are 
computationally harder and they will only be useful for 
justifying the BDD complexity behavior and not much 
importance on the calculation of the benchmark 
complexities. 
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