
A Survey on Network Game Cheats and P2P Solutions1
Steven Daniel Webb and Sieteng Soh

Curtin University of Technology
Department of Computing
Perth, Western Australia

+61 8 9266 7680

1 An earlier version of this paper was presented at DIMEA’07 [36]. This is an author prepared version. The final version appeared in

Australian Journal of Intelligent Information Processing Systems, Vol. 9, No. 4, pp. 34-43, 2007 (published 2008).

 {steven.webb@postgrad, S.Soh@}.curtin.edu.au

Abstract - The increasing popularity of Massively
Multiplayer Online Games (MMOG) – games involving
thousands of players participating simultaneously in a
single virtual world - has highlighted the scalability
bottlenecks present in centralised Client/Server (C/S)
architectures. Researchers are proposing Peer-to-Peer
(P2P) game technologies as a scalable alternative to C/S;
however, P2P is more vulnerable to cheating as it
decentralises the game state and logic to un-trusted peer
machines, rather than using trusted centralised servers.
Cheating is a major concern for online games, as a minority
of cheaters can potentially ruin the game for all players. In
this paper we present a review and classification of known
cheats, and provide real-world examples where possible.
Further, we discuss counter measures used by C/S game
technologies to prevent cheating. Finally, we discuss
several P2P architectures designed to prevent cheating,
highlighting their strengths and weaknesses.

Keywords
Cheating, client/server, networked computer games,
peer-to-peer.

1. Introduction
Massively Multiplayer Online Games (MMOG) differ from
traditional network games as they present a single universe
in which thousands or tens of thousands of players
participate simultaneously [17]. Further, the state of the
game world and player’s avatars progresses gradually,
lasting months or years. In the last five years the popularity
of MMOG has increased dramatically; enabled by the
explosive growth of the Internet and the availability of
broadband connections for home users.
Most networked computer games use a Client/Server (C/S)
architecture where all players connect into a central trusted
server that simulates and validates the game. To support the
massive number of concurrent players, the vast majority of
commercial MMOG available today use multiple co-located
servers to distribute the processing requirements of
simulating the world. C/S architectures are ubiquitous for
MMOG as they have the following benefits. Firstly, this
game technology has proven successful, an important factor
when approaching venture capitalists for funding. Secondly,

this technology is secure against most forms of cheating.
Thirdly, centralised architectures give the publisher strong
control over the game. Finally, developing centralized
architectures is easier than distributed architectures as the
communications model is simple. Unfortunately C/S
architectures have poor scalability, as the server(s) are often
a processing and/or bandwidth bottleneck [1,17,24,34].
We define the scalability of an architecture as its ability to
support a large number of concurrent players, and tolerate a
rapid increase in the number of players without dramatically
increasing the usage of centralised resources. To prevent the
servers becoming a bottleneck, publishers must provision
large amounts of hardware and bandwidth [1,17,24,34].
Furthermore, as more resources cannot be deployed rapidly,
publishers often over-provision resources, to allow for a
rapid grow in the number of players [6]. The cost of
provisioning sufficient resources often prevents small
companies from developing MMOG, and even some large
developers struggle to provision sufficient resources
[18,32].
The most common approach to solve scalability issues is
sharding [4]. A shard is a complete and independent copy of
the game world. The maximum number of concurrent
players in a shard is bounded. By adding more shards the
developer can accommodate more players; however, players
in different shards cannot interact, thus sharding works
against the concept of MMOG. Furthermore, it is frustrating
and annoying for players when shards reach their limits and
they must play on different shards with different people,
destroying the social aspect of MMOG.
World of Warcraft (WoW) is arguably the most popular
MMOG to-date, with over 8.5 million players worldwide.
The WoW universe is sharded into many mutually exclusive
worlds. Each shard is limited to several thousand concurrent
players. Despite the massive success of WoW and the huge
revenue it is generating, WoW has been plagued with
scalability issues [32]. Shards rapidly reach their player
limits, resulting in long queues of players waiting to join the
shard. Several quests that result in a large number of players
generating a large number of events have been known to
crash the server.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195651581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In recent years Peer-to-Peer (P2P) overlay networks have
become an active research topic [30], in which peers
exchange information directly, without routing it through a
central server. The primary advantage of P2P technology
over C/S is its scalability [1,8,14,15,17,24,34]. For every
node that joins the system and makes requests, the node also
provides resources to the system to handle the requests of
other nodes; hence, P2P architectures are resource growing.
There are real-world P2P systems that can scale up to
millions of concurrent users [30]. While P2P architectures
can potentially solve the bandwidth and processing power
bottlenecks of centralized architectures, games implemented
using P2P technology are more vulnerable to cheating.
Cheating is a major concern in network games as it degrades
the experience of the majority of players who are honest
[23]. This is catastrophic for games using subscription
models to generate revenue [13]. To be a viable alternative
P2P based game technologies must prevent cheating. We
define cheating as a user action that gives an advantage
over his/her opponents that is considered unfair by the
game developer. Note, cheat prevention is a subset of
security issues for online games.
In this paper we present a review and classification of
known cheats, and provide real-world examples where
possible. Further, we discuss counter measures used by C/S
architectures to prevent cheating. Finally, we discuss several
P2P architectures designed to prevent cheating, highlighting
their strengths and weaknesses.

The layout of this paper is as follows. Section 2 provides a
background into the strengths and weaknesses of C/S and
P2P architectures. Section 3 discusses related reviews and
classifications of cheating. Section 4 describes each form of
cheating, gives real-world examples, and discusses possible
countermeasures for C/S and P2P architectures. Section 5
reviews P2P architectures specifically designed to prevent
cheating, and discusses their strengths and weaknesses.
Finally, Section 6 concludes the paper. Note, “he” should be
read as “he or she” throughout this paper.

2. Client/Server and Peer-to-peer
As shown in Figure 1(a), all players/clients in Client/Server
(C/S) architectures connect to centralized servers. The
servers are centralized trusted authorities whose tasks
include: T1 - receiving player updates, T2 - simulating game
play, T3 - validating and resolving conflicts in the
simulation, T4 - disseminating updates to clients, T5 -
storing the current game state, T6 - storing the offline
player's avatar state, and T7 - authenticating players,
downloading their avatar state, and billing. Task T3 is
particularly important when preventing cheating as the
server is trusted to fairly simulate game play and detect
cheating. T7 is an important task for publishers, as billing is
a vital part of most MMOG revenue models. Finally, the
networking code for C/S application is very simple making

the game easy to develop, and avoids issues related to
firewalls.
While C/S is simple, secure, and reliable, it has limited
scalability to support a large number of players as the
servers often become a bandwidth and processing
bottleneck [1,17,18,24,34], requiring developers to
provision large amounts of hardware and bandwidth. Both
inbound and outbound bandwidth may cause a bottleneck as
the publisher must provision sufficient bandwidth for T1
and T4 at one location, which is an expensive re-occurring
cost [23]; however, outgoing bandwidth is usually more
critical as a single update from a client is often forwarded
on to multiple other players. The server’s processing power
is another potential bottleneck, as it must handle T2 and T3,
as well as calculating player’s AoI in T4. C/S architectures
also give an unfair advantage to players geographically
close to the server, as they will have lower game delay
(response time) than those situated further away [4].
Furthermore, redirecting updates through the server (T1 to
T4) increases delay while consuming bandwidth and
processing power. Finally, poor design may result in a
server being a single point of failure for the system.
The Mirrored Server (MS) architecture is an extension to
C/S that increases scalability by using multiple mirrors at
different locations connected via a well provisioned network
– low delay, high bandwidth, multicast enabled. By
distributing the mirrors across multiple locations the
bandwidth does not need to be provisioned at a single
location, reducing cost and increasing scalability; however,
the synchronization algorithm used increases the processing
bottleneck present in C/S.

 (a) Client/Server (C/S) (b) Peer-to-Peer (P2P)

Figure 1. C/S and P2P architectures.
Figure 1(b) depicts a typical P2P architecture in which there
are no servers, and all updates are passed directly between
players. Peers typically connect to other peers who posses
relevant information, forming a structured set of links on top
of the network (a network overlay). P2P architectures may
utilize servers; however, they are characterized by peers
(player machines) exchanging updates, rather than routing
them through a server. P2P has the following benefits over
C/S: (i) P2P architectures are resource growing (the
bandwidth and processing capacity increases with the
number of players) making them very scalable; (ii) delay is
minimised as updates take a direct route between players;
and (iii), there is no single point of failure. The scalability of

Server Client/Peer

P2P can potentially alleviate the high start-up cost of
provisioning large amounts of bandwidth and processing
power [23]; therefore, allowing small developers to create
MMOG. However, maintaining security in P2P
architectures is difficult as the simulation and game state is
distributed to un-trusted peer machines; consistency
algorithms are required to prevent errors in player’s game
state; and redundancy must be built in as individual player
machines have a high probability of failure. Further,
subscription based P2P network games will require a
gateway server for player authentication and billing. Several
hybrid C/S and P2P architectures that combine the security
advantage in C/S and scalability in P2P have also been
proposed [26,34].

3. Cheat Classification
The first review of cheating and cheat detection/prevention
was done by Matt Pritchard [27], one of the developers of
Age of Empires, and presents his experiences both as a
developer and player of computer games. This industry
focused article discusses specific real-world cheats, and
covers practical methods to discourage them. Pritchard
acknowledges that many of the solutions presented do not
prevent cheating, but make it far more difficult for players
to cheat. He argues that if the difficulty of cheating is
greater than the difficulty involved in playing the game
players will not cheat.
Following this industry focused article, Yan [37] provides a
theoretical review of cheats, particularly focused on online
Bridge. Of particular interest is his discussion of preventing
collusion between players. While there are several possible
counter-measures, for all practical purposes it is impossible
to completely eradicate collusion in online games.
Kabus et al. [15] discuss three different techniques that may
be used in P2P architectures to prevent/detect cheating:
mutual checking, log auditing, and trusted computing. The
principle of mutual checking is that you may not trust a
single client, but you trust the consensus of multiple
unaffiliated clients; therefore, multiple randomly selected –
and hence trusted – clients are used to validate player
actions before the game state is modified, preventing
cheating. The second approach, log auditing, does not
prevent cheating, but allows the game to detect cheating
when it has occurred – albeit much later in some games.
When cheating is detected the game performs a rollback to
undo the effects of the cheat. Log auditing is not appropriate
for all forms of games, particularly MMOG that do not have
an end state (game completion). The final solution, trusted
computing, involves using special hardware that prevents
cheaters from modifying the game or running cheating
programs. This solution is currently inappropriate for PC
users; however, it is being actively used in console games.
Unfortunately, several trusted computing solutions have
been shown to contain weaknesses allowing players to run
un-trusted programs, allowing them to cheat.

Yan and Randell [38] provide an extensive list of cheating
techniques, and formed a taxonomy with regard to the
underlying vulnerability (what is exploited?), consequence
(what type of failure can be achieved?) and the cheating
principle (who is cheating?). The authors find that
traditional methods of security in software - confidentiality,
integrity, availability, and authenticity - are necessary but
insufficient to defend against cheating. Although large and
detailed in its taxonomy, their characterization of cheating
lacks structure, and it is argued that new forms of cheating
cannot be easily integrated [24]. Note, we do not include
several categories of cheating proposed by Yan and Randell
(cheating by denying service to peer players, cheating by
compromising passwords, cheating by exploiting lack of
authentication, cheating by compromising game server,
cheating related to internal misuse, and cheating by social
engineering [38]) in our classification as they are relevant to
all secure network applications and not directly related to
game mechanics; hence, we believe they are general
security issues, not cheating issues.
Neumann et al. [24] distinguish three categories of cheating
based on the threatened game property: confidentiality,
integrity, and availability. Confidentiality requires that a
cheater cannot access state information they are not entitled
to (secret information), else they will have an unfair
advantage when selecting what actions to take. Integrity
ensures that a cheater cannot modify the game state
unfairly; hence, the integrity of the game state is
maintained. Availability requires that the entire game is
available to all players at all times, and that cheaters cannot
prevent the game from progressing fairly. Unfortunately,
this paper only provides a brief coverage of cheating; hence,
the authors only briefly discuss possible cheats and their
methods of attack.
GauthierDickey et. al. [14] proposed a cheat classification
scheme comprising four categories: game, application,
protocol, and network. Game cheats do not require any
external programs or modification and occur entirely within
the game; application cheats require using or modifying
applications; protocol cheats interfere with the game’s
communication protocol; and network cheats involve
modifying the network infrastructure over which the game
traffic is sent. The authors only consider nine forms of
cheating: denial of service, fixed delay, timestamp,
suppressed update, inconsistency, collusion, secret revealing
(information exposure), bots/reflex enhancers, breaking
game rules, and their classification scheme is slightly too
narrow to classify new forms of cheating.
Webb, et al.[34] modified the classifications scheme in [14]
to be: game, application, protocol, and infrastructure.
Infrastructure cheats involve modifying or manipulating
pieces of infrastructure that the game relies on, such as
drivers, libraries, hardware, the network, etc. Further, we
classified 15 cheats using this scheme. In [34], we also

proposed a hybrid C/S and P2P architecture that provides
security equal to that in C/S. See Section 5.5 for details.
In this paper we extend the known cheats in [34] by
including Real Money Transactions (RMT) and power
levelling (shown in Table 1). Furthermore, we include
references to real-world examples of where these cheats
have been used.

Cheat C
/S

PB
/V

A
C

2

A
S

N
E

O
/S

E
A

R
A

C
S

P2
P

R
C

Game Level

Bug

RMT/Power Levelling

Application Level
Information Exposure,

Invalid Commands

Bots/reflex enhancers

Protocol Level
Suppressed update, Timestamp

Fixed delay, Inconsistency

Collusion

Spoofing, Replay

Undo N/A N/A N/A
Blind Opponent N/A N/A N/A N/A

Infrastructure Level

Information Exposure

Proxy/Reflex Enhancers
 - solvable - not yet solved
 - not solvable N/A - not applicable

Table I. Game cheats and their possible solutions

4. Cheats, Examples, and
Countermeasures
Table 1 classifies cheats into four levels: game, application,
protocol, and infrastructure; some cheats fall into multiple
levels (e.g., Information Exposure). Note, PunkBuster (BP)
[28] and Valve Anti-Cheat (VAC2) [33] can be combined
with any of the other technologies.

4.1 Game level cheats
Game level cheats occur completely within the game
program without any modification or external influence. In
the following we describe two game level cheats: bugs and
real money transactions/power levelling.

4.1.1 Bugs
Bug cheats exploit design or implementation errors to gain
an unfair advantage. Bugs do not require an in-depth
knowledge/understanding of how/why they work, and do
not require any additional programs or modifications to use.
For example, the player ranking system in Warcraft II

contained a designed error that gave rise to the win trading
cheat; in which colluding players will repeatedly start
matches against each other and then alternately surrender to
give each of them the opponent victory points; thus,
cheaters can climb to the top positions of the ranking ladder
without playing any valid matches [37]. In Warcraft III win
trading is prevented by randomizing the participants when
creating matches; however, this only works if the pool of
players is large. Another solution involves including losses
as well as victories into the ranking function. An example of
an implementation bug occurred in Halflife, where a
specific combination of actions allowed cheaters to re-load
weapons faster than honest players [27]; a significant
advantage in First Person Shooters (FPS). This cheat was
fixed by a software patch from the developer, which is the
accepted method of preventing bug cheats. For MMOG a
database rollback to an earlier state may be required if the
cheat seriously influenced the game world. As bugs are
present in both C/S and P2P architectures neither is resistant
to this form of cheating. The accepted solution amongst the
gaming industry and players for both C/S and P2P
architectures is to release game patches to prevent the cheat;
however, [13] argue that runtime verification may be used
to prevent bug cheats.

4.1.2 Real Money Transactions / Power Levelling
A Real Money Transaction (RMT) is when a player
purchases a game item or virtual currency using a real-
world currency [19]. Many Asian MMOG use RMT as their
revenue model (free to play, but it costs money to purchase
items); however, most (but not all) western MMOG
explicitly forbid RMT in their End User License Agreement
(EULA), and the practice is considered cheating. Gold
farming is a related phenomenon where low paid workers –
usually in China – work full time playing MMOG to earn
valuable items which are sold to players [19]. RMT occur
outside of the game, often on auction sites such as e-bay, or
on dedicated message boards [31]. Most MMOG suffer
from RMT; however, WoW is one of the most highly
targeted games by gold farmers due to its massive player
base. WoW’s publisher Blizzard regularly bans tens of
thousands of players for gold farming in WoW [5]. While
the method used by Blizzard to detect gold farmers is
unknown, we suspect they use statistical analysis of log files
generated by the servers. As most P2P architectures
distribute the game state and logic to peers, retrieving the
required information to perform statistical analysis is far
more difficult or impossible in P2P than in C/S.
A similar cheat is power levelling [19], where a cheater pays
another person to play their character for them. This cheat is
common in Massively Multiplayer Role Playing Games
(MMORPG) where the objective is to gain experience and
items. This form of cheating is an alternative business
model for gold farmers; who offer this as a service.

4.2 Application level cheats
Application level cheats require either modifying the game
executable or data files, or running programs that read
from/write to the game's memory while it is running.
Developing application level cheats requires knowledge
about reverse engineering; however, using them is trivial. In
the following, we describe three application level cheats:
information exposure, bots/reflex enhancers, and invalid
commands.

4.2.1 Information Exposure
Also called secret revealing, the information exposure cheat
results in the cheaters gaining access to information that
they are not entitled to, such as their opponent’s health,
weapons, resources, troops, etc. [27]. This cheat is possible
as developers often incorrectly assume that the client
software can be trusted not to reveal secrets. Secret
information is revealed by either modifying the client or
running another program that extracts it from memory. One
of the most prolific examples is the map hack in Real Time
Strategy (RTS) games such as Warcraft III [2]. Information
exposure also occurs at the infrastructure level using
different methods of attack.
The most effective solution to prevent this cheat in C/S
architectures is using On Demand Loading (ODL) [20].
Using this technique a trusted third party (the server) stores
all secret information and only transmits it to the client
when they are entitled to it. Therefore, the client does not
have any secret information that may be exposed. P2P
architectures can only use ODL if there is a trusted third
party – such as a server – to store the secret information.
The Referee Anti-Cheat Scheme (RACS) [34] uses the
referee to store secret information.

4.2.2 Bots/reflex enhancers
This form of cheat requires modifying the game client or
running an external program to generate user input. Bots
such as WoW Glider [21] use computer AI to completely
control the player’s avatar to automate repetitive tasks,
progressing the player’s avatar through the game. Reflex
enhancers merely augment user input in reflex games to
achieve better results. FPS such as Halflife often suffer from
reflex enhancers that automatically aim at opponents [10].
Both C/S and P2P architectures are vulnerable to this form
of cheating.
To prevent bots/reflex enhancers many new games require
running a cheat detection application such as PunkBuster
(PB) [28] or Valve Anti-Cheat 2 (VAC2) [33] that scans
the player’s host memory searching for cheating
applications. These programs match checksums of running
applications against a database of known cheats to detect
cheating. PB and VAC2 can be used in both C/S and P2P
architectures. Another alternative is to use statistical
analysis to detect cheating [39]; however, by introducing

randomness into a bots aim a cheater may go undetected
[27].

4.2.3 Invalid commands
Usually implemented by modifying the game client, the
invalid command cheat results in the cheater sending
commands that are not possible with an unmodified game
client. Examples include giving the cheater's avatar great
strength or speed. This may also be implemented by
modifying the game executable or data files. Many games
suffer this form of cheating, including console games such
as Gears of War [12]. The invalid command cheat is easy to
prevent in C/S architectures or RACS as the server or
referee simulates and validates all commands, and can be
trusted to produce the correct result. However, preventing
invalid commands in P2P is difficult as there is no trusted
entity to verify the commands. The solution is to build some
form of trust amongst the peers and then use the trusted
peers to validate the simulation. For example, the validation
peer could be selected randomly, and without any vested
interest (disinterested peer) in the outcome of the
simulation. Using a group of disinterested peers achieves
better security, because if only one peer is used a griefer
may be able to disrupt the game. Cormen et. al. [8] assert
that all players in a group must agree on the membership of
a group for concepts like “majority” to make sense; further,
the group selection algorithm must be fast as group
membership is highly dynamic in multiplayer games.
Mönch et al. [22] propose using tamper resistant techniques
to prevent modifications to the game client; hence,
preventing invalid commands. Their approach uses mobile
guards; small segments of code downloaded from the game
server that validate the game client using checksums and
encrypt game data. Mobile guards are short lived; thus,
there is insufficient time for an attacker to reverse engineer
a mobile guard before it is expired. Although this does not
prevent cheating; it can make it significantly more difficult.
Furthermore, if successful this approach prevents some
forms of information exposure and proxy/reflex enhancers
(see Section 4.4.2). The cost is significant additional
processing on the clients, and developing tamper proof
software is a non-trivial task for the developer. We are not
aware of any games using this technique; therefore, it is
difficult to evaluate.

4.3 Protocol level cheats
Protocol level cheats involve interfering with the packets
sent and received by the game. Packets may be inserted,
destroyed, duplicated, or modified by an attacker. Many of
these cheats are dependent on the architecture used by the
game (C/S or P2P). In the following, we describe all nine
protocol level cheats.

4.3.1 Suppressed update
As the Internet is subject to packet loss most networked
games use dead-reckoning [1]. In the event of a lost/delayed

update the server will extrapolate (dead-reckon) the player’s
movement from their current position, creating a smooth
movement for all other players. Dead-reckoning usually
allows clients to drop up to n consecutive packets (which
are dead-reckoned) before they are disconnected. In the
suppressed update cheat, a cheater purposely does not send
up to n-1 consecutive updates, while still accepting
opponent updates. Before the nth update the cheater
calculates the optimal move using the updates from their
opponents and transmits it to the server. Thus, the cheater
knows their opponents actions before committing to their
own, allowing them to choose the optimal action. Although
we are not aware of any real world occurrences of this
cheat, it is potentially possible for most FPS, and any game
– either C/S or P2P – that uses dead reckoning.
Architectures with a trusted entity (e.g., server), such as C/S
or RACS, prevent this cheat by making the server’s dead-
reckoned state authoritative. Players are forced to follow the
dead-reckoned path in the event of lost/delayed updates.
This gives a smooth and cheat free game for all other
players; however, it will disadvantage players with slow or
lossy Internet connections. As a slow or lossy Internet
connection is already a major disadvantage [11] we believe
this will not have a significant impact.
Cronin et al. [11] propose the Sliding Pipeline (SP) protocol
to prevent this cheat in P2P architectures. In SP players
constantly monitor the delay to their opponents and compare
it with the timestamps of updates. Late updates indicate that
a player is either suffering delay, or is cheating. The authors
claim that this protocol will detect all cheaters, but
acknowledge that players with poor connectivity may be
falsely detected as cheaters (false positive).

4.3.2 Fixed delay
This form of cheat was discovered in Madden NFL Football
by Nichols and Claypool [25], but was not proposed as a
method of cheating until [14]. Fixed delay cheating involves
introducing a fixed amount of delay to all outgoing packets.
This results in the local player receiving updates quickly,
while delaying information to opponents. For fast paced
games this additional delay can have a dramatic impact on
the outcome. This cheat is usually used in P2P games when
one peer is elevated to act as the server; thus, they can add
delay to all other peers. To prevent this cheat P2P games
should use distributed event ordering and consistency
protocols to avoid elevating one peer above the rest (See
Section 5). Note, the fixed delay cheat only delays updates,
in contrast to dropping them in the suppressed update cheat.

4.3.3 Inconsistency
Specific to P2P architectures, a cheater induces
inconsistency amongst players by sending different game
updates to different opponents. An honest player attacked
by this cheat may have his game state corrupted, and hence
be removed from the game, by a cheater sending a different

update to him than was sent to all other players. This cheat
may also be used by a cheater or group of cheaters to gain
an unfair advantage, and later merged with the other
player’s game state to make it undetectable [14].
To prevent this cheat updates sent between players must be
verified by either a trusted authority, or a group of peers. In
RACS [34] the referee receives hashes of every update sent
between peers which it uses to detect the inconsistency
cheat. This is possible as the referee is a trusted entity. In
P2P protocols without a trusted 3rd party the group must
form a consensus about which updates are valid. The
consensus is achieved by voting on the hashes of updates of
all players; however, group selection is critical as several
colluding cheats could potentially bias the group vote [8].

4.3.4 Timestamp
This cheat is enabled as many games allow un-trusted
clients to timestamp their updates for event ordering. This
allows cheaters to timestamp their updates in the past, after
receiving updates from their opponents; hence, they can
perform actions with additional information honest players
do not have. C/S and RACS avoid this problem by using the
arrival order of updates to the server for time stamping
[14,34]. Alternatively the proposal [7] uses active RTT
measurements between the server and peers to detect
cheating in C/S architectures. See Section 5 for known
solutions in P2P protocols.

4.3.5 Collusion
Collusion involves two or more cheaters working together
(rather than in competition) to gain an unfair advantage.
Colluders often communicate via an external channel – over
the phone, instant messaging, VoIP, etc. Collusion is
extremely difficult or impossible to detect/prevent and has
far reaching ramifications. There are many examples of
collusion in networked computer games; however, one
common example is of players participating in an all-
against-all style match, where two cheaters will team up
(collude) against the other players. This occurs in both C/S
and P2P, and is effectively undetectable. Yan [37] proposes
several approaches to detect and prevent collusion
including: using a webcam to monitor opponents, artificial
intelligence (AI), disabling chat features, rank tracking, log
auditing, etc; however, these methods are game specific,
and cannot prevent sufficiently motivated players from
colluding.

4.3.6 Spoofing
Spoofing is a traditional network security threat where a
cheater sends a message masquerading as a different player
[8]. For example, a cheater may send an update causing an
honest player to drop all of their items. To prevent this cheat
in both C/S and P2P, updates should be either digitally
signed or encrypted. With either technique the receiver can
validate the senders identity. We are not aware of any real-

world games where this has occurred, even though most
games are vulnerable to spoofing.

4.3.7 Replay
If a cheater receives digitally signed/encrypted copies of an
opponent’s updates he may be able to disadvantage an
opponent by resending them (replay) at a later time [8]. As
the updates are correctly signed or encrypted they will be
assumed valid by the receiver. To prevent this in C/S and
P2P updates should include a nonce (unique number), such
as a round number or sequence number. When an update is
received the receiver should check to ensure the nonce is
fresh (has not been used before). While many games are
vulnerable to replay attacks, we are not aware of any
examples where this cheat has been used.

4.3.8 Blind opponent
A cheater may purposely drop updates to opponents,
blinding them about the cheaters actions, while still
accepting updates from opponents [34]. This cheat is only
possible in some P2P protocols [26]. A tit-for-tat scheme
where players stop sending updates to cheaters - effectively
blinding the cheater as well - is an insufficient solution for
this cheat as there are instances where dropping updates
would still give the cheater an advantage, such as if they
need to make a retreat. We are not aware of any real world
instances where this cheat has been used. P2P solutions are
discussed in Section 5.

4.3.9 Undo
Some P2P protocols [1,8,14] use a commit/reveal scheme to
prevent the suppressed update, fixed delay, timestamp, and
blind opponent cheats; however, if the reveal step is not
enforced (as in [8,14]) it is possible for a cheater to reveal
their opponent’s move and asses it, before deciding if they
will reveal their move. If a cheater does not reveal their
move they effectively undo the move. P2P protocols that
require all updates to be revealed (e.g., Lockstep and AS) or
do not use the commit/reveal process (e.g., RACS) are
immune. This cheat was first discussed in [34].

4.4 Infrastructure level cheats
Infrastructure cheats involve modifying or interfering with
the software (e.g., display drivers) or hardware (e.g., the
network infrastructure) that the game is using. In the
following we describe two examples of infrastructure level
cheats: information exposure and proxy/reflex enhancers.

4.4.1 Information Exposure
Information exposure (infrastructure level) is applicable to
both C/S and P2P and is enabled by modifying either the
client’s network or display drivers. If data is broadcast
across the network, (e.g., when using a non-switching hub)
a cheater can use a different host to sniff network traffic
intended for his host, which it then displays to the cheater.
ShowEQ [29] is one example that captures and interprets

Everquest traffic. Alternatively, by modifying the display
drivers to render the world differently, such as with
transparent walls, a cheater gains access to secret
information such as the locations of opponents.
As sniffing network traffic is entirely passive and does not
take place on the cheater’s computer it is impossible to
detect packet sniffing. However, PunkBuster [28] and
VAC2 [33] can be used to detect modified drivers by
scanning them for modifications; this solution can be used
in both C/S and P2P architectures. As previously described,
On Demand Loading (ODL) is the most effective
countermeasure against information exposure in both
application and infrastructure levels.

4.4.2 Proxy/Reflex Enhancers
Reflex enhancers are implemented at the infrastructure level
by deploying a proxy between the client and the server to
modify the client’s packets. As commands pass through the
proxy it will insert or modify commands to improve the
cheaters actions. Quake was one of the first games to suffer
from aiming proxies, where the proxy inserts a movement
command immediately preceding all shoot commands to
aim at the nearest opponent [27].
This cheat effects both C/S and P2P, and there is no
complete solution. One proposal is to compare checksums
of the client and server states; however, as many games use
UDP this is often not possible. Alternatively encryption can
be used; however, the client cannot be trusted to keep the
key secret; therefore, the encryption will be broken.

5. P2P Cheat Prevention Protocols
Several P2P protocols have been proposed to prevent
cheating. In this section we discuss the strengths and
weaknesses of each.

5.1 Age of Empires
Age of Empires (AoE) was one of the first commercial
games using a P2P architecture [27]. All peers are equal and
each update is unicast to all other players.
Peers perform mutual checking to prevent the use of a
modified client application (invalid command cheat). All
invalid commands are dropped by the receiver; further,
periodically peers exchange hashes of their game state. As
the cheater’s game state will differ from all other players,
cheaters can be detected and removed. Note, it may be
possible for a malicious player to remove honest players
from the game using this mechanism.
To prevent information exposure, AoE encrypts all game
data in memory and only decrypts it when performing
operations, making it far more difficult to locate critical
values using a debugger. This does not prevent information
exposure; however, the increased difficulty is a deterrent
against cheating [27].

5.2 Lockstep
Lockstep [1] divides game time into rounds and requires
that every player in the game submit their move for that
round before the next round is allowed to begin. To prevent
cheating, all players commit to a move, and once all players
have committed, each player reveals their move. A player
commits to a move by transmitting either the hash of a
move or an encrypted copy of a move, and it is revealed by
sending either the move or encryption key respectively.
Lockstep is provably secure against all protocol level cheats
except the inconsistency cheat, as it does not use digital
signatures to authenticate updates; hence, the cheat cannot
be verified. Lockstep is also unacceptably slow for many
fast paced games, with a worst-case delay of 3d; where d is
the delay between the two slowest players

5.3 Asynchronous Synchronization
Asynchronous Synchronization (AS) [1] relaxes the
constraints of Lockstep, only requiring players to work in
Lockstep with the other players within their AoI. This
greatly increases the speed the game can progress; however,
AS is still slow, with the round length being at least twice
the delay between the two slowest players within each
other’s AoI, and upper bounded by three times the delay.
Furthermore, it is also possible for a griefer to increase the
delay intentionally to reduce the game play experience of
other players. As with Lockstep, AS prevents all protocol
level cheats except the inconsistency cheat.

5.4 Sliding Pipeline
The Sliding Pipeline (SP) [11] protocol is another extension
of Lockstep, allowing updates to be pipelined and dead-
reckoning to be used; thus, improving the smoothness of the
game. SP works by constantly monitoring the delay between
players to determine the maximum allowable delay for an
update without allowing timestamp cheating. Unfortunately,
SP cannot differentiate between players suffering delay and
cheaters (false positives). Further, the worst case scenario
remains at 3d, where d is the delay between the two slowest
players. SP solves the timestamp, suppressed update cheats,
and blind opponent cheats.

5.5 NEO/SEA
The New Event Ordering (NEO) protocol [14] explicitly
bounds the round length to 2d. Players must be able to send
updates to more than half of the group within d time to have
the update accepted as valid. Any late updates are discarded.
Players then transmit their key in the second half of the
round. To increase responsiveness rounds may be pipelined.
NEO is effective in preventing malicious players eroding
the game-play experience beyond a pre-defined limit (2d),
and also provides functionality to re-negotiate the round
length, increasing the responsiveness of the game. The
Secure Event Agreement protocol (SEA) [8] is an update to
NEO with modified cryptographic techniques. The authors
of SEA demonstrate that NEO is still vulnerable to several

forms of cheating (replay attack, spoofing, and
inconsistency), and improve the security and performance
by changing the cryptography. Both NEO and SEA are
bounded by 2d. As NEO and SEA do not force players to
reveal moves that have been committed, both protocols are
vulnerable to the undo cheat. SEA is secure against all other
protocol level cheats.
The Secure Group Agreement (SGA) protocol [9]
complements SEA by providing a selection mechanism to
form verification groups. Peers in the verification group use
SEA to agree on events in the game. SGA ensures, with any
desired probability, that the percentage of corrupt members
in the group is no greater than a selected limit [9]. Note that
SGA does not consider a peer’s resources or its location in
the network when forming groups.

5.6 Referee Anti-Cheat Scheme
Webb, et al. [34] propose the Referee Anti-Cheat Scheme
(RACS), a C/S and P2P hybrid that increases the scalability
of C/S without reducing its security. RACS uses a trusted
central server (the referee) to receive, simulate, and validate
all client updates to prevent cheating. To increase scalability
RACS allows peers to exchange updates directly, reducing
the referees outgoing bandwidth and processing
requirements. Furthermore, as updates are not routed
through the referee the delay between peers is minimized;
thus, improving responsiveness. RACS uses two
communication models: Peer-Referee-Peer (PRP) and Peer-
Peer (PP). In PRP mode all updates are routed through the
referee – as in C/S. In PP mode updates are sent directly
between peers and a copy to the referee. RACS penalizes
cheaters and slow players by forcing them to use PRP mode,
increasing their delay. Note that a delayed packet may be
coming from a slow player (due to network delay) or from a
cheater (fixed delay or suppressed update cheat), and is
arguably difficult to differentiate [1]. Even though RACS
cannot differentiate between a cheater and a slow player,
this penalty in essence is equivalent to the cheating-evident
systems of [8,11,14]. RACS directly prevents the following
cheats: information exposure, invalid commands,
suppressed update, timestamp, fixed delay, inconsistency,
replay, spoofing, and blind opponent. To be effective the
game developer must also release updates to prevent bug
cheats; combine RACS with PunkBuster or VAC2 to
prevent bots/reflex enhancers; and use the referee’s log files
to detect RMT and power levelling. However, preventing
collusion and proxy/reflex enhancers is impossible in C/S,
RACS, or P2P. While RACS increases the scalability of C/S
by reducing the outgoing bandwidth and lowering the
number of AoI calculations; the referee may still be a
bottleneck as it must receive all player updates and simulate
the entire world. Furthermore, the referee is a single point of
failure for the system.

5.7 Cheat-Resistant P2P Gaming System
The cheat resistant system proposed by Kabus et al [16]
(column P2P RC in Table I) is similar to RACS as it
prevents information exposure and invalid commands by
using trusted third parties. While an individual peer cannot
be trusted, multiple unaffiliated peers can be trusted to
simulate the game correctly. In their system the virtual
world is divided into regions, and every region is controlled
by multiple Region Controllers (RCs). RCs use voting to
establish the majority consensus of the game state, which is
authoritative. To maximise responsiveness, votes are tallied
by the peers.
To prevent information exposure, secret information is only
transmitted to the RCs. To prevent RCs colluding or
exposing secret information they must be selected such that
there is no affiliation between RCs, and such that RCs do
not have an invested interest in the region they control.
Secure RC selection is not covered in their work.

6. Conclusion
We have shown that cheating is prevalent, wide spread, and
evolving in online games. Cheating is a major obstacle that
must be prevented for an online game to be successful. We
have extended the classification of cheating in [30] to
include new forms of cheating, and to include real-world
examples. Finally we have surveyed state of the art P2P
game technologies that prevent cheating.
While the referee concept in RACS has proved successful in
reducing the server’s outgoing bandwidth, it does not
address the incoming bandwidth or processing bottlenecks.
Reference [35] uses mirrored referees to address the
incoming bandwidth issue. Distributing referees to peers
(similar to [16]) will greatly increase RACS scalability. This
approach will minimise the referee resource requirements
while maintaining security equal to C/S. This will require
addressing referee selection, load balancing, and
synchronization.

7. References
[1] Baughman, N. E., Liberatore, M., & Levine, B. N.,

“Cheat-Proof Playout for Centralized and Peer-to-Peer
Gaming,” IEEE/ACM Trans. Networking, vol. 22, pp.
1-17, Jan 2007.

[2] Blizzard, “Map Hack,” Web page,
http://www.blizzard.com/support/?id=nNews054p,
Aug. 2002.

[3] Blizzard, “World of Warcraft: The Burning Crusade
continues record-breaking sales pace,” Press release,
http://www.blizzard.com/press/070307.shtml, 2007.

[4] Brandt, D, “Networking and Scalability in EVE
Online,” Slide Show, http://www.research.ibm.com/
netgames2005/papers/brandt.pdf, Oct. 2005.

[5] Caldwell, P, “Blizzard bans 59,000 WOW accounts,”
Article, GameSpot AU, http://au.gamespot.com/news/
6154708.html, Jul 2006.

[6] Chambers, C., Feng, W., Sahu, S., & Saha, D.,
“Measurement-based characterization of a collection of
on-line games,” IMC'05, Berkeley, CA, USA. pp. 1-14.

[7] Chen, B., Maheswaran, M., “A cheat controlled
protocol for centralized online multiplayer games,”
Proc. ACM Netgames 2004, pp. 139-143, 2004

[8] Corman, A. B., Douglas, S., Schachte, P., & Teague,
V., “A Secure Event Agreement (SEA) protocol for
peer-to-peer games,” Proc. ARES'06, pp. 34-41, 2006.

[9] Corman, A., Schachte, P., Teague, V., “A Secure Group
Agreement (SGA) Protocol for Peer-to-Peer
Applications,” Proc AINAW’07, pp. 24-29, 2007.

[10] Counter Hack, “HalfLife,” Web page.
http://wiki.counter-hack.net/halflife, Mar. 2007.

[11] Cronin, E., Filstrup, B., & Jamin, S., “Cheat-Proofing
Dead Reckoned Multiplayer Games,” Proc. Int. Conf
Appl. Development of Computer Game, 2003.

[12] Davis, S, “Next-Gen Hacking / Last-Gen Weaknesses -
Part 1 - Gears of War for the Xbox 360,” Web page,
http://playnoevil.com/serendipity/index.php?/archives/1
123-Next-Gen-Hacking-Last-Gen-Weaknesses-Part-1-
Gears-of-War-for-the-Xbox-360.html. Feb 2007.

[13] DeLap, M., et al., “Is runtime verification applicable to
cheat detection?,” Proc. ACM NetGames '04, pp. 134-
138, 2004.

[14] GauthierDickey, C., Zappala, D., Lo, V., & Marr, J.,
“Low-Latency and Cheat-proof Event Ordering for
Distributed Games,” Proc. NOSSDAV '04, pp. 134-139,
2004.

[15] Kabus, P., Terpstra, W. W., Cilia, M., & Buchmann, A.
P., ”Addressing cheating in distributed MMOGs,”
Proc. NetGames '05, pp. 1-6, 2005.

[16] Kabus, P., Buchmann, A., “Design of a Cheat-Resistant
P2P Online Gaming System,” Proc DIMEA’07, pp.
113-120, 2007.

[17] Knutsson, B., Lu, H., Xu, W., & Hopkins, B., “Peer-to-
Peer Support for Massively Multiplayer Games,” Proc.
INFOCOM '04, Hong Kong, pp. 7-11, 2004.

[18] Kushner, D, “Engineering EverQuest: online gaming
demands heavyweight data centers,” IEEE Spectrum,
vol. 42, pp. 34-39, July 2005.

[19] Lee, J., “Wage Slaves,” Article, 1UP.com.
http://www.1up.com/do/feature?cId=3141815, May,
2005.

[20] Li, K., Ding, S., McCreary, D., & Webb, S., “Analysis
of state exposure control to prevent cheating in online
games,” Proc. ACM NOSSDAV '04, pp. 140-145, 2004

[21] MDY Industries, “Glider,” Web page,
http://www.wowglider.com/. 2007.

[22] Mönch, C., Grimen, G, and Midtstraum R, “Protecting
online games against cheating,” Proc. ACM
Netgames’06, pp. 1-11, 2006.

[23] Mulligan, J., & Patrovsky, B. Developing Online
Games: An Insider's Guide. New Riders Publishing,
2003.

[24] Neumann, C., Prigent, N., Varvello, M., & Suh, K., “
Challenges in peer-to-peer gaming,” ACM SIGCOMM
Computer Communication Review, vol. 37, pp. 79-82,
Jan 2007.

[25] Nichols, J., & Claypool, M, “The effects of latency on
online Madden NFL football,” Proc. ACM
NOSSDAV’04, pp. 146-151, 2004.

[26] Pellegrino, J. D. & Dovrolis, C., “Bandwidth
requirement and state consistency in three multiplayer
game architectures,” Proc. ACM NetGames '03, pp. 52-
59, 2003

[27] Pritchard, M., “How to Hurt the Hackers,” Game
Developer Magazine, pp. 28-30, Jun. 2000.

[28] PunkBuster, “PunkBuster for players, Quake 4 edition,”
http://www.punkbuster.com/publications/q4-
pl/index.htm, Oct. 2005.

[29] ShowEQ. http://www.showeq.net/.
[30] Stutzbach, D., Stutzbach, R., & Sen, S., “

Characterizing Unstructured Overlay Topologies in
Modern P2P File-Sharing Systems,” IMC'05, Berkeley,
CA, USA. pp. 49-62, 2005.

[31] Terdiman, D., “Virtual good, real scams,” Article,
ZDNet, http://news.zdnet.com/2100-1040_22-
5859069.html, Sep 2005.

[32] Terdiman, D., “'World of Warcraft' battles server
problems,” Article, CNET News.com,
http://news.com.com/World+of+Warcraft+battles+serv
er+problems/2100-1043_3-6063990.html, Apr. 2006.

[33] Valve, “Valve Anti-Cheat System (VAC),” Web page,
http://support.steampowered.com/cgi-bin/
steampowered.cfg/php/enduser/std_adp.php?p
faqid=370, Apr. 2007.

[34] Webb, S., Soh, S., & Lau, W., “RACS: a Referee Anti-
Cheat Scheme for P2P gaming,” Proc. ACM NOSSDAV
’07, pp. 34-42, June 2007.

[35] Webb, S., Soh, S., & Lau, W., “Enhanced mirrored
servers for network games,” Proc. ACM NetGames ‘07,
pp. 117-122, Sept. 2007.

[36] Webb, S., Soh, S., “Cheating in networked computer
games - A review,” Proc DIMEA’07, pp. 105-112,
2007.

[37] Yan, J., “Security Design in Online Games,” Proc.
IEEE ACSAC '03, pp. 286-295, 2003.

[38] Yan, J. & Randell, B., “A systematic classification of
cheating in online games,” Proc. ACM NetGames '05,
pp. 1-9, 2005.

[39] Yeung, S., Lui, J., Liu, J., & Yan, J., “Detecting
cheaters for multiplayer games: theory, design and
implementation,” Proc IEEE CCNC’06, vol. 2, pp.
1178-1182, 2006.

