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Abstract - The increasing popularity of Massively 
Multiplayer Online Games (MMOG) – games involving 
thousands of players participating simultaneously in a 
single virtual world - has highlighted the scalability 
bottlenecks present in centralised Client/Server (C/S) 
architectures. Researchers are proposing Peer-to-Peer 
(P2P) game technologies as a scalable alternative to C/S; 
however, P2P is more vulnerable to cheating as it 
decentralises the game state and logic to un-trusted peer 
machines, rather than using trusted centralised servers. 
Cheating is a major concern for online games, as a minority 
of cheaters can potentially ruin the game for all players. In 
this paper we present a review and classification of known 
cheats, and provide real-world examples where possible. 
Further, we discuss counter measures used by C/S game 
technologies to prevent cheating. Finally, we discuss 
several P2P architectures designed to prevent cheating, 
highlighting their strengths and weaknesses. 

Keywords 
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1. Introduction 
Massively Multiplayer Online Games (MMOG) differ from 
traditional network games as they present a single universe 
in which thousands or tens of thousands of players 
participate simultaneously [17]. Further, the state of the 
game world and player’s avatars progresses gradually, 
lasting months or years. In the last five years the popularity 
of MMOG has increased dramatically; enabled by the 
explosive growth of the Internet and the availability of 
broadband connections for home users.  
Most networked computer games use a Client/Server (C/S) 
architecture where all players connect into a central trusted 
server that simulates and validates the game. To support the 
massive number of concurrent players, the vast majority of 
commercial MMOG available today use multiple co-located 
servers to distribute the processing requirements of 
simulating the world. C/S architectures are ubiquitous for 
MMOG as they have the following benefits. Firstly, this 
game technology has proven successful, an important factor 
when approaching venture capitalists for funding. Secondly, 

this technology is secure against most forms of cheating. 
Thirdly, centralised architectures give the publisher strong 
control over the game. Finally, developing centralized 
architectures is easier than distributed architectures as the 
communications model is simple. Unfortunately C/S 
architectures have poor scalability, as the server(s) are often 
a processing and/or bandwidth bottleneck [1,17,24,34].  
We define the scalability of an architecture as its ability to 
support a large number of concurrent players, and tolerate a 
rapid increase in the number of players without dramatically 
increasing the usage of centralised resources. To prevent the 
servers becoming a bottleneck, publishers must provision 
large amounts of hardware and bandwidth [1,17,24,34]. 
Furthermore, as more resources cannot be deployed rapidly, 
publishers often over-provision resources, to allow for a 
rapid grow in the number of players [6].  The cost of 
provisioning sufficient resources often prevents small 
companies from developing MMOG, and even some large 
developers struggle to provision sufficient resources 
[18,32].  
The most common approach to solve scalability issues is 
sharding [4]. A shard is a complete and independent copy of 
the game world. The maximum number of concurrent 
players in a shard is bounded. By adding more shards the 
developer can accommodate more players; however, players 
in different shards cannot interact, thus sharding works 
against the concept of MMOG. Furthermore, it is frustrating 
and annoying for players when shards reach their limits and 
they must play on different shards with different people, 
destroying the social aspect of MMOG.  
World of Warcraft (WoW) is arguably the most popular 
MMOG to-date, with over 8.5 million players worldwide. 
The WoW universe is sharded into many mutually exclusive 
worlds. Each shard is limited to several thousand concurrent 
players. Despite the massive success of WoW and the huge 
revenue it is generating, WoW has been plagued with 
scalability issues [32]. Shards rapidly reach their player 
limits, resulting in long queues of players waiting to join the 
shard. Several quests that result in a large number of players 
generating a large number of events have been known to 
crash the server. 
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In recent years Peer-to-Peer (P2P) overlay networks have 
become an active research topic [30], in which peers 
exchange information directly, without routing it through a 
central server. The primary advantage of P2P technology 
over C/S is its scalability [1,8,14,15,17,24,34]. For every 
node that joins the system and makes requests, the node also 
provides resources to the system to handle the requests of 
other nodes; hence, P2P architectures are resource growing. 
There are real-world P2P systems that can scale up to 
millions of concurrent users [30]. While P2P architectures 
can potentially solve the bandwidth and processing power 
bottlenecks of centralized architectures, games implemented 
using P2P technology are more vulnerable to cheating. 
Cheating is a major concern in network games as it degrades 
the experience of the majority of players who are honest 
[23]. This is catastrophic for games using subscription 
models to generate revenue [13]. To be a viable alternative 
P2P based game technologies  must prevent cheating. We 
define cheating as a user action that gives an advantage 
over his/her opponents that is considered unfair by the 
game developer. Note, cheat prevention is a subset of 
security issues for online games. 
In this paper we present a review and classification of 
known cheats, and provide real-world examples where 
possible. Further, we discuss counter measures used by C/S 
architectures to prevent cheating. Finally, we discuss several 
P2P architectures designed to prevent cheating, highlighting 
their strengths and weaknesses. 

The layout of this paper is as follows. Section 2 provides a 
background into the strengths and weaknesses of C/S and 
P2P architectures. Section 3 discusses related reviews and 
classifications of cheating. Section 4 describes each form of 
cheating, gives real-world examples, and discusses possible 
countermeasures for C/S and P2P architectures. Section 5 
reviews P2P architectures specifically designed to prevent 
cheating, and discusses their strengths and weaknesses. 
Finally, Section 6 concludes the paper. Note, “he” should be 
read as “he or she” throughout this paper. 

2. Client/Server and Peer-to-peer 
As shown in Figure 1(a), all players/clients in Client/Server 
(C/S) architectures connect to centralized servers. The 
servers are centralized trusted authorities whose tasks 
include: T1 - receiving player updates, T2 - simulating game 
play, T3 - validating and resolving conflicts in the 
simulation, T4 - disseminating updates to clients, T5 - 
storing the current game state, T6 - storing the offline 
player's avatar state, and T7 - authenticating players, 
downloading their avatar state, and billing. Task T3 is 
particularly important when preventing cheating as the 
server is trusted to fairly simulate game play and detect 
cheating. T7 is an important task for publishers, as billing is 
a vital part of most MMOG revenue models. Finally, the 
networking code for C/S application is very simple making 

the game easy to develop, and avoids issues related to 
firewalls.  
While C/S is simple, secure, and reliable, it has limited 
scalability to support a large number of players as the 
servers often become a bandwidth and processing 
bottleneck [1,17,18,24,34], requiring developers to 
provision large amounts of hardware and bandwidth. Both 
inbound and outbound bandwidth may cause a bottleneck as 
the publisher must provision sufficient bandwidth for T1 
and T4 at one location, which is an expensive re-occurring 
cost [23]; however, outgoing bandwidth is usually more 
critical as a single update from a client is often forwarded 
on to multiple other players. The server’s processing power 
is another potential bottleneck, as it must handle T2 and T3, 
as well as calculating player’s AoI in T4. C/S architectures 
also give an unfair advantage to players geographically 
close to the server, as they will have lower game delay 
(response time) than those situated further away [4]. 
Furthermore, redirecting updates through the server (T1 to 
T4) increases delay while consuming bandwidth and 
processing power. Finally, poor design may result in a 
server being a single point of failure for the system. 
The Mirrored Server (MS) architecture is an extension to 
C/S that increases scalability by using multiple mirrors at 
different locations connected via a well provisioned network 
– low delay, high bandwidth, multicast enabled. By 
distributing the mirrors across multiple locations the 
bandwidth does not need to be provisioned at a single 
location, reducing cost and increasing scalability; however, 
the synchronization algorithm used increases the processing 
bottleneck present in C/S. 

 
            (a) Client/Server (C/S)          (b) Peer-to-Peer (P2P) 

Figure 1. C/S and P2P architectures. 
Figure 1(b) depicts a typical P2P architecture in which there 
are no servers, and all updates are passed directly between 
players. Peers typically connect to other peers who posses 
relevant information, forming a structured set of links on top 
of the network (a network overlay). P2P architectures may 
utilize servers; however, they are characterized by peers 
(player machines) exchanging updates, rather than routing 
them through a server. P2P has the following benefits over 
C/S: (i) P2P architectures are resource growing (the 
bandwidth and processing capacity increases with the 
number of players) making them very scalable; (ii) delay is 
minimised as updates take a direct route between players; 
and (iii), there is no single point of failure. The scalability of 
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P2P can potentially alleviate the high start-up cost of 
provisioning large amounts of bandwidth and processing 
power [23]; therefore, allowing small developers to create 
MMOG. However, maintaining security in P2P 
architectures is difficult as the simulation and game state is 
distributed to un-trusted peer machines; consistency 
algorithms are required to prevent errors in player’s game 
state; and redundancy must be built in as individual player 
machines have a high probability of failure. Further, 
subscription based P2P network games will require a 
gateway server for player authentication and billing. Several 
hybrid C/S and P2P architectures that combine the security 
advantage in C/S and scalability in P2P have also been 
proposed [26,34]. 

3. Cheat Classification  
The first review of cheating and cheat detection/prevention 
was done by Matt Pritchard [27], one of the developers of 
Age of Empires, and presents his experiences both as a 
developer and player of computer games.  This industry 
focused article discusses specific real-world cheats, and 
covers practical methods to discourage them. Pritchard 
acknowledges that many of the solutions presented do not 
prevent cheating, but make it far more difficult for players 
to cheat. He argues that if the difficulty of cheating is 
greater than the difficulty involved in playing the game 
players will not cheat. 
Following this industry focused article, Yan [37] provides a 
theoretical review of cheats, particularly focused on online 
Bridge. Of particular interest is his discussion of preventing 
collusion between players. While there are several possible 
counter-measures, for all practical purposes it is impossible 
to completely eradicate collusion in online games. 
Kabus et al. [15] discuss three different techniques that may 
be used in P2P architectures to prevent/detect cheating:  
mutual checking, log auditing, and trusted computing. The 
principle of mutual checking is that you may not trust a 
single client, but you trust the consensus of multiple 
unaffiliated clients; therefore, multiple randomly selected – 
and hence trusted – clients are used to validate player 
actions before the game state is modified, preventing 
cheating. The second approach, log auditing, does not 
prevent cheating, but allows the game to detect cheating 
when it has occurred – albeit much later in some games. 
When cheating is detected the game performs a rollback to 
undo the effects of the cheat. Log auditing is not appropriate 
for all forms of games, particularly MMOG that do not have 
an end state (game completion). The final solution, trusted 
computing, involves using special hardware that prevents 
cheaters from modifying the game or running cheating 
programs. This solution is currently inappropriate for PC 
users; however, it is being actively used in console games. 
Unfortunately, several trusted computing solutions have 
been shown to contain weaknesses allowing players to run 
un-trusted programs, allowing them to cheat. 

Yan and Randell [38] provide an extensive list of cheating 
techniques, and formed a taxonomy with regard to the 
underlying vulnerability (what is exploited?), consequence 
(what type of failure can be achieved?) and the cheating 
principle (who is cheating?). The authors find that 
traditional methods of security in software - confidentiality, 
integrity, availability, and authenticity - are necessary but 
insufficient to defend against cheating. Although large and 
detailed in its taxonomy, their characterization of cheating 
lacks structure, and it is argued that new forms of cheating 
cannot be easily integrated [24]. Note, we do not include 
several categories of cheating proposed by Yan and Randell 
(cheating by denying service to peer players, cheating by 
compromising passwords, cheating by exploiting lack of 
authentication, cheating by compromising game server, 
cheating related to internal misuse, and cheating by social 
engineering [38]) in our classification as they are relevant to 
all secure network applications and not directly related to 
game mechanics; hence, we believe they are general 
security issues, not cheating issues. 
Neumann et al. [24] distinguish three categories of cheating 
based on the threatened game property: confidentiality, 
integrity, and availability. Confidentiality requires that a 
cheater cannot access state information they are not entitled 
to (secret information), else they will have an unfair 
advantage when selecting what actions to take. Integrity 
ensures that a cheater cannot modify the game state 
unfairly; hence, the integrity of the game state is 
maintained. Availability requires that the entire game is 
available to all players at all times, and that cheaters cannot 
prevent the game from progressing fairly. Unfortunately, 
this paper only provides a brief coverage of cheating; hence, 
the authors only briefly discuss possible cheats and their 
methods of attack.  
GauthierDickey et. al. [14] proposed a cheat classification 
scheme comprising four categories: game, application, 
protocol, and network. Game cheats do not require any 
external programs or modification and occur entirely within 
the game; application cheats require using or modifying 
applications; protocol cheats interfere with the game’s 
communication protocol; and network cheats involve 
modifying the network infrastructure over which the game 
traffic is sent. The authors only consider nine forms of 
cheating: denial of service, fixed delay, timestamp, 
suppressed update, inconsistency, collusion, secret revealing 
(information exposure), bots/reflex enhancers, breaking 
game rules, and their classification scheme is slightly too 
narrow to classify new forms of cheating. 
Webb, et al.[34] modified the classifications scheme in [14] 
to be: game, application, protocol, and infrastructure. 
Infrastructure cheats involve modifying or manipulating 
pieces of infrastructure that the game relies on, such as 
drivers, libraries, hardware, the network, etc. Further, we 
classified 15 cheats using this scheme. In [34], we also 



proposed a hybrid C/S and P2P architecture that provides 
security equal to that in C/S. See Section 5.5 for details. 
In this paper we extend the known cheats in [34] by 
including Real Money Transactions (RMT) and power 
levelling (shown in Table 1). Furthermore, we include 
references to real-world examples of where these cheats 
have been used. 
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Game Level       

Bug          

RMT/Power Levelling       

Application Level       
Information Exposure, 

Invalid Commands       

Bots/reflex enhancers       

Protocol Level       
Suppressed update, Timestamp 

Fixed delay, Inconsistency       

Collusion       

Spoofing, Replay       

Undo N/A    N/A N/A 
Blind Opponent N/A  N/A N/A  N/A 

Infrastructure Level       

Information Exposure       

Proxy/Reflex Enhancers       
 - solvable  - not yet solved 
 - not solvable N/A - not applicable 

Table I. Game cheats and their possible solutions 

4. Cheats, Examples, and 
Countermeasures 
Table 1 classifies cheats into four levels: game, application, 
protocol, and infrastructure; some cheats fall into multiple 
levels (e.g., Information Exposure). Note, PunkBuster (BP) 
[28] and Valve Anti-Cheat (VAC2) [33] can be combined 
with any of the other technologies. 

4.1 Game level cheats 
Game level cheats occur completely within the game 
program without any modification or external influence. In 
the following we describe two game level cheats: bugs and 
real money transactions/power levelling. 

4.1.1 Bugs 
Bug cheats exploit design or implementation errors to gain 
an unfair advantage. Bugs do not require an in-depth 
knowledge/understanding of how/why they work, and do 
not require any additional programs or modifications to use. 
For example, the player ranking system in Warcraft II 

contained a designed error that gave rise to the win trading 
cheat; in which colluding players will repeatedly start 
matches against each other and then alternately surrender to 
give each of them the opponent victory points; thus, 
cheaters can climb to the top positions of the ranking ladder 
without playing any valid matches [37]. In Warcraft III win 
trading is prevented by randomizing the participants when 
creating matches; however, this only works if the pool of 
players is large. Another solution involves including losses 
as well as victories into the ranking function. An example of 
an implementation bug occurred in Halflife, where a 
specific combination of actions allowed cheaters to re-load 
weapons faster than honest players [27]; a significant 
advantage in First Person Shooters (FPS). This cheat was 
fixed by a software patch from the developer, which is the 
accepted method of preventing bug cheats. For MMOG a 
database rollback to an earlier state may be required if the 
cheat seriously influenced the game world. As bugs are 
present in both C/S and P2P architectures neither is resistant 
to this form of cheating. The accepted solution amongst the 
gaming industry and players for both C/S and P2P 
architectures is to release game patches to prevent the cheat; 
however, [13] argue that runtime verification may be used 
to prevent bug cheats. 

4.1.2 Real Money Transactions / Power Levelling 
A Real Money Transaction (RMT) is when a player 
purchases a game item or virtual currency using a real-
world currency [19]. Many Asian MMOG use RMT as their 
revenue model (free to play, but it costs money to purchase 
items); however, most (but not all) western MMOG 
explicitly forbid RMT in their End User License Agreement 
(EULA), and the practice is considered cheating. Gold 
farming is a related phenomenon where low paid workers – 
usually in China – work full time playing MMOG to earn 
valuable items which are sold to players [19]. RMT occur 
outside of the game, often on auction sites such as e-bay, or 
on dedicated message boards [31]. Most MMOG suffer 
from RMT; however, WoW is one of the most highly 
targeted games by gold farmers due to its massive player 
base. WoW’s publisher Blizzard regularly bans tens of 
thousands of players for gold farming in WoW [5]. While 
the method used by Blizzard to detect gold farmers is 
unknown, we suspect they use statistical analysis of log files 
generated by the servers. As most P2P architectures 
distribute the game state and logic to peers, retrieving the 
required information to perform statistical analysis is far 
more difficult or impossible in P2P than in C/S. 
A similar cheat is power levelling [19], where a cheater pays 
another person to play their character for them. This cheat is 
common in Massively Multiplayer Role Playing Games 
(MMORPG) where the objective is to gain experience and 
items. This form of cheating is an alternative business 
model for gold farmers; who offer this as a service.  



4.2 Application level cheats 
Application level cheats require either modifying the game 
executable or data files, or running programs that read 
from/write to the game's memory while it is running. 
Developing application level cheats requires knowledge 
about reverse engineering; however, using them is trivial. In 
the following, we describe three application level cheats: 
information exposure, bots/reflex enhancers, and invalid 
commands.  

4.2.1 Information Exposure 
Also called secret revealing, the information exposure cheat 
results in the cheaters gaining access to information that 
they are not entitled to, such as their opponent’s health, 
weapons, resources, troops, etc. [27]. This cheat is possible 
as developers often incorrectly assume that the client 
software can be trusted not to reveal secrets. Secret 
information is revealed by either modifying the client or 
running another program that extracts it from memory. One 
of the most prolific examples is the map hack in Real Time 
Strategy (RTS) games such as Warcraft III [2]. Information 
exposure also occurs at the infrastructure level using 
different methods of attack. 
The most effective solution to prevent this cheat in C/S 
architectures is using On Demand Loading (ODL) [20]. 
Using this technique a trusted third party (the server) stores 
all secret information and only transmits it to the client 
when they are entitled to it. Therefore, the client does not 
have any secret information that may be exposed.  P2P 
architectures can only use ODL if there is a trusted third 
party – such as a server – to store the secret information. 
The Referee Anti-Cheat Scheme (RACS) [34] uses the 
referee to store secret information. 

4.2.2 Bots/reflex enhancers 
This form of cheat requires modifying the game client or 
running an external program to generate user input. Bots 
such as WoW Glider [21] use computer AI to completely 
control the player’s avatar to automate repetitive tasks, 
progressing the player’s avatar through the game. Reflex 
enhancers merely augment user input in reflex games to 
achieve better results. FPS such as Halflife often suffer from 
reflex enhancers that automatically aim at opponents [10]. 
Both C/S and P2P architectures are vulnerable to this form 
of cheating. 
To prevent bots/reflex enhancers many new games require 
running a cheat detection application such as PunkBuster 
(PB) [28] or Valve Anti-Cheat 2 (VAC2)  [33] that scans 
the player’s host memory searching for cheating 
applications. These programs match checksums of running 
applications against a database of known cheats to detect 
cheating. PB and VAC2 can be used in both C/S and P2P 
architectures. Another alternative is to use statistical 
analysis to detect cheating [39]; however, by introducing 

randomness into a bots aim a cheater may go undetected 
[27]. 

4.2.3 Invalid commands 
Usually implemented by modifying the game client, the 
invalid command cheat results in the cheater sending 
commands that are not possible with an unmodified game 
client. Examples include giving the cheater's avatar great 
strength or speed. This may also be implemented by 
modifying the game executable or data files. Many games 
suffer this form of cheating, including console games such 
as Gears of War [12]. The invalid command cheat is easy to 
prevent in C/S architectures or RACS as the server or 
referee simulates and validates all commands, and can be 
trusted to produce the correct result. However, preventing 
invalid commands in P2P is difficult as there is no trusted 
entity to verify the commands. The solution is to build some 
form of trust amongst the peers and then use the trusted 
peers to validate the simulation. For example, the validation 
peer could be selected randomly, and without any vested 
interest (disinterested peer) in the outcome of the 
simulation. Using a group of disinterested peers achieves 
better security, because if only one peer is used a griefer 
may be able to disrupt the game. Cormen et. al. [8] assert 
that all players in a group must agree on the membership of 
a group for concepts like “majority” to make sense; further, 
the group selection algorithm must be fast as group 
membership is highly dynamic in multiplayer games.  
Mönch et al. [22] propose using tamper resistant techniques 
to prevent modifications to the game client; hence, 
preventing invalid commands. Their approach uses mobile 
guards; small segments of code downloaded from the game 
server that validate the game client using checksums and 
encrypt game data. Mobile guards are short lived; thus, 
there is insufficient time for an attacker to reverse engineer 
a mobile guard before it is expired. Although this does not 
prevent cheating; it can make it significantly more difficult. 
Furthermore, if successful this approach prevents some 
forms of information exposure and proxy/reflex enhancers 
(see Section 4.4.2). The cost is significant additional 
processing on the clients, and developing tamper proof 
software is a non-trivial task for the developer. We are not 
aware of any games using this technique; therefore, it is 
difficult to evaluate. 

4.3 Protocol level cheats 
Protocol level cheats involve interfering with the packets 
sent and received by the game. Packets may be inserted, 
destroyed, duplicated, or modified by an attacker. Many of 
these cheats are dependent on the architecture used by the 
game (C/S or P2P). In the following, we describe all nine 
protocol level cheats. 

4.3.1 Suppressed update 
As the Internet is subject to packet loss most networked 
games use dead-reckoning [1]. In the event of a lost/delayed 



update the server will extrapolate (dead-reckon) the player’s 
movement from their current position, creating a smooth 
movement for all other players. Dead-reckoning usually 
allows clients to drop up to n consecutive packets (which 
are dead-reckoned) before they are disconnected.  In the 
suppressed update cheat, a cheater purposely does not send 
up to n-1 consecutive updates, while still accepting 
opponent updates. Before the nth update the cheater 
calculates the optimal move using the updates from their 
opponents and transmits it to the server. Thus, the cheater 
knows their opponents actions before committing to their 
own, allowing them to choose the optimal action. Although 
we are not aware of any real world occurrences of this 
cheat, it is potentially possible for most FPS, and any game 
– either C/S or P2P – that uses dead reckoning. 
Architectures with a trusted entity (e.g., server), such as C/S 
or RACS, prevent this cheat by making the server’s dead-
reckoned state authoritative. Players are forced to follow the 
dead-reckoned path in the event of lost/delayed updates. 
This gives a smooth and cheat free game for all other 
players; however, it will disadvantage players with slow or 
lossy Internet connections. As a slow or lossy Internet 
connection is already a major disadvantage [11] we believe 
this will not have a significant impact. 
Cronin et al. [11] propose the Sliding Pipeline (SP) protocol 
to prevent this cheat in P2P architectures. In SP players 
constantly monitor the delay to their opponents and compare 
it with the timestamps of updates. Late updates indicate that 
a player is either suffering delay, or is cheating. The authors 
claim that this protocol will detect all cheaters, but 
acknowledge that players with poor connectivity may be 
falsely detected as cheaters (false positive). 

4.3.2 Fixed delay 
This form of cheat was discovered in Madden NFL Football 
by Nichols and Claypool [25], but was not proposed as a 
method of cheating until [14]. Fixed delay cheating involves 
introducing a fixed amount of delay to all outgoing packets. 
This results in the local player receiving updates quickly, 
while delaying information to opponents. For fast paced 
games this additional delay can have a dramatic impact on 
the outcome. This cheat is usually used in P2P games when 
one peer is elevated to act as the server; thus, they can add 
delay to all other peers. To prevent this cheat P2P games 
should use distributed event ordering and consistency 
protocols to avoid elevating one peer above the rest (See 
Section 5). Note, the fixed delay cheat only delays updates, 
in contrast to dropping them in the suppressed update cheat.  

4.3.3 Inconsistency 
Specific to P2P architectures, a cheater induces 
inconsistency amongst players by sending different game 
updates to different opponents. An honest player attacked 
by this cheat may have his game state corrupted, and hence 
be removed from the game, by a cheater sending a different 

update to him than was sent to all other players. This cheat 
may also be used by a cheater or group of cheaters to gain 
an unfair advantage, and later merged with the other 
player’s game state to make it undetectable [14].  
To prevent this cheat updates sent between players must be 
verified by either a trusted authority, or a group of peers. In 
RACS [34] the referee receives hashes of every update sent 
between peers which it uses to detect the inconsistency 
cheat. This is possible as the referee is a trusted entity. In 
P2P protocols without a trusted 3rd party the group must 
form a consensus about which updates are valid. The 
consensus is achieved by voting on the hashes of updates of 
all players; however, group selection is critical as several 
colluding cheats could potentially bias the group vote [8].  

4.3.4 Timestamp 
This cheat is enabled as many games allow un-trusted 
clients to timestamp their updates for event ordering. This 
allows cheaters to timestamp their updates in the past, after 
receiving updates from their opponents; hence, they can 
perform actions with additional information honest players 
do not have. C/S and RACS avoid this problem by using the 
arrival order of updates to the server for time stamping 
[14,34]. Alternatively the proposal [7] uses active RTT 
measurements between the server and peers to detect 
cheating in C/S architectures. See Section 5 for known 
solutions in P2P protocols. 

4.3.5 Collusion 
Collusion involves two or more cheaters working together 
(rather than in competition) to gain an unfair advantage. 
Colluders often communicate via an external channel – over 
the phone, instant messaging, VoIP, etc. Collusion is 
extremely difficult or impossible to detect/prevent and has 
far reaching ramifications. There are many examples of 
collusion in networked computer games; however, one 
common example is of players participating in an all-
against-all style match, where two cheaters will team up 
(collude) against the other players. This occurs in both C/S 
and P2P, and is effectively undetectable. Yan [37] proposes 
several approaches to detect and prevent collusion 
including: using a webcam to monitor opponents, artificial 
intelligence (AI), disabling chat features, rank tracking, log 
auditing, etc; however, these methods are game specific, 
and cannot prevent sufficiently motivated players from 
colluding. 

4.3.6 Spoofing 
Spoofing is a traditional network security threat where a 
cheater sends a message masquerading as a different player 
[8]. For example, a cheater may send an update causing an 
honest player to drop all of their items. To prevent this cheat 
in both C/S and P2P, updates should be either digitally 
signed or encrypted. With either technique the receiver can 
validate the senders identity. We are not aware of any real-



world games where this has occurred, even though most 
games are vulnerable to spoofing.  

4.3.7 Replay 
If a cheater receives digitally signed/encrypted copies of an 
opponent’s updates he may be able to disadvantage an 
opponent by resending them (replay) at a later time [8]. As 
the updates are correctly signed or encrypted they will be 
assumed valid by the receiver. To prevent this in C/S and 
P2P updates should include a nonce (unique number), such 
as a round number or sequence number. When an update is 
received the receiver should check to ensure the nonce is 
fresh (has not been used before). While many games are 
vulnerable to replay attacks, we are not aware of any 
examples where this cheat has been used. 

4.3.8 Blind opponent 
A cheater may purposely drop updates to opponents, 
blinding them about the cheaters actions, while still 
accepting updates from opponents [34]. This cheat is only 
possible in some P2P protocols [26]. A tit-for-tat scheme 
where players stop sending updates to cheaters - effectively 
blinding the cheater as well - is an insufficient solution for 
this cheat as there are instances where dropping updates 
would still give the cheater an advantage, such as if they 
need to make a retreat. We are not aware of any real world 
instances where this cheat has been used. P2P solutions are 
discussed in Section 5. 

4.3.9 Undo 
Some P2P protocols [1,8,14] use a commit/reveal scheme to 
prevent the suppressed update, fixed delay, timestamp, and 
blind opponent cheats; however, if the reveal step is not 
enforced (as in [8,14]) it is possible for a cheater to reveal 
their opponent’s move and asses it, before deciding if they 
will reveal their move. If a cheater does not reveal their 
move they effectively undo the move. P2P protocols that 
require all updates to be revealed (e.g., Lockstep and AS) or 
do not use the commit/reveal process (e.g., RACS) are 
immune. This cheat was first discussed in [34]. 

4.4 Infrastructure level cheats 
Infrastructure cheats involve modifying or interfering with 
the software (e.g., display drivers) or hardware (e.g., the 
network infrastructure) that the game is using. In the 
following we describe two examples of infrastructure level 
cheats: information exposure and proxy/reflex enhancers.  

4.4.1 Information Exposure 
Information exposure (infrastructure level) is applicable to 
both C/S and P2P and is enabled by modifying either the 
client’s network or display drivers. If data is broadcast 
across the network,  (e.g., when using a non-switching hub) 
a cheater can use a different host to sniff network traffic 
intended for his host, which it then displays to the cheater. 
ShowEQ [29] is one example that captures and interprets 

Everquest traffic. Alternatively, by modifying the display 
drivers to render the world differently, such as with 
transparent walls, a cheater gains access to secret 
information such as the locations of opponents.  
As sniffing network traffic is entirely passive and does not 
take place on the cheater’s computer it is impossible to 
detect packet sniffing. However, PunkBuster [28] and 
VAC2 [33] can be used to detect modified drivers by 
scanning them for modifications; this solution can be used 
in both C/S and P2P architectures. As previously described, 
On Demand Loading (ODL) is the most effective 
countermeasure against information exposure in both 
application and infrastructure levels. 

4.4.2 Proxy/Reflex Enhancers 
Reflex enhancers are implemented at the infrastructure level 
by deploying a proxy between the client and the server to 
modify the client’s packets. As commands pass through the 
proxy it will insert or modify commands to improve the 
cheaters actions. Quake was one of the first games to suffer 
from aiming proxies, where the proxy inserts a movement 
command immediately preceding all shoot commands to 
aim at the nearest opponent [27].  
This cheat effects both C/S and P2P, and there is no 
complete solution. One proposal is to compare checksums 
of the client and server states; however, as many games use 
UDP this is often not possible. Alternatively encryption can 
be used; however, the client cannot be trusted to keep the 
key secret; therefore, the encryption will be broken. 

5. P2P Cheat Prevention Protocols 
Several P2P protocols have been proposed to prevent 
cheating. In this section we discuss the strengths and 
weaknesses of each.  

5.1 Age of Empires 
Age of Empires (AoE) was one of the first commercial 
games using a P2P architecture [27]. All peers are equal and 
each update is unicast to all other players. 
Peers perform mutual checking to prevent the use of a 
modified client application (invalid command cheat). All 
invalid commands are dropped by the receiver; further, 
periodically peers exchange hashes of their game state. As 
the cheater’s game state will differ from all other players, 
cheaters can be detected and removed. Note, it may be 
possible for a malicious player to remove honest players 
from the game using this mechanism. 
To prevent information exposure, AoE encrypts all game 
data in memory and only decrypts it when performing 
operations, making it far more difficult to locate critical 
values using a debugger. This does not prevent information 
exposure; however, the increased difficulty is a deterrent 
against cheating [27]. 



5.2 Lockstep 
Lockstep [1] divides game time into rounds and requires 
that every player in the game submit their move for that 
round before the next round is allowed to begin. To prevent 
cheating, all players commit to a move, and once all players 
have committed, each player reveals their move. A player 
commits to a move by transmitting either the hash of a 
move or an encrypted copy of a move, and it is revealed by 
sending either the move or encryption key respectively. 
Lockstep is provably secure against all protocol level cheats 
except the inconsistency cheat, as it does not use digital 
signatures to authenticate updates; hence, the cheat cannot 
be verified. Lockstep is also unacceptably slow for many 
fast paced games, with a worst-case delay of 3d; where d is 
the delay between the two slowest players  

5.3 Asynchronous Synchronization 
Asynchronous Synchronization (AS) [1] relaxes the 
constraints of Lockstep, only requiring players to work in 
Lockstep with the other players within their AoI. This 
greatly increases the speed the game can progress; however, 
AS is still slow, with the round length being at least twice 
the delay between the two slowest players within each 
other’s AoI, and upper bounded by three times the delay. 
Furthermore, it is also possible for a griefer to increase the 
delay intentionally to reduce the game play experience of 
other players. As with Lockstep, AS prevents all protocol 
level cheats except the inconsistency cheat.  

5.4 Sliding Pipeline 
The Sliding Pipeline (SP) [11] protocol is another extension 
of Lockstep, allowing updates to be pipelined and dead-
reckoning to be used; thus, improving the smoothness of the 
game. SP works by constantly monitoring the delay between 
players to determine the maximum allowable delay for an 
update without allowing timestamp cheating. Unfortunately, 
SP cannot differentiate between players suffering delay and 
cheaters (false positives). Further, the worst case scenario 
remains at 3d, where d is the delay between the two slowest 
players. SP solves the timestamp, suppressed update cheats, 
and blind opponent cheats. 

5.5 NEO/SEA 
The New Event Ordering (NEO) protocol [14] explicitly 
bounds the round length to 2d. Players must be able to send 
updates to more than half of the group within d time to have 
the update accepted as valid. Any late updates are discarded. 
Players then transmit their key in the second half of the 
round. To increase responsiveness rounds may be pipelined. 
NEO is effective in preventing malicious players eroding 
the game-play experience beyond a pre-defined limit (2d), 
and also provides functionality to re-negotiate the round 
length, increasing the responsiveness of the game. The 
Secure Event Agreement protocol (SEA) [8] is an update to 
NEO with modified cryptographic techniques. The authors 
of SEA demonstrate that NEO is still vulnerable to several 

forms of cheating (replay attack, spoofing, and 
inconsistency), and improve the security and performance 
by changing the cryptography. Both NEO and SEA are 
bounded by 2d. As NEO and SEA do not force players to 
reveal moves that have been committed, both protocols are 
vulnerable to the undo cheat. SEA is secure against all other 
protocol level cheats.  
The Secure Group Agreement (SGA) protocol [9] 
complements SEA by providing a selection mechanism to 
form verification groups. Peers in the verification group use 
SEA to agree on events in the game. SGA ensures, with any 
desired probability, that the percentage of corrupt members 
in the group is no greater than a selected limit [9]. Note that 
SGA does not consider a peer’s resources or its location in 
the network when forming groups. 

5.6 Referee Anti-Cheat Scheme 
Webb, et al. [34] propose the Referee Anti-Cheat Scheme 
(RACS), a C/S and P2P hybrid that increases the scalability 
of C/S without reducing its security. RACS uses a trusted 
central server (the referee) to receive, simulate, and validate 
all client updates to prevent cheating. To increase scalability 
RACS allows peers to exchange updates directly, reducing 
the referees outgoing bandwidth and processing 
requirements. Furthermore, as updates are not routed 
through the referee the delay between peers is minimized; 
thus, improving responsiveness. RACS uses two 
communication models: Peer-Referee-Peer (PRP) and Peer-
Peer (PP). In PRP mode all updates are routed through the 
referee – as in C/S. In PP mode updates are sent directly 
between peers and a copy to the referee. RACS penalizes 
cheaters and slow players by forcing them to use PRP mode, 
increasing their delay. Note that a delayed packet may be 
coming from a slow player (due to network delay) or from a 
cheater (fixed delay or suppressed update cheat), and is 
arguably difficult to differentiate [1]. Even though RACS 
cannot differentiate between a cheater and a slow player, 
this penalty in essence is equivalent to the cheating-evident 
systems of [8,11,14]. RACS directly prevents the following 
cheats: information exposure, invalid commands, 
suppressed update, timestamp, fixed delay, inconsistency, 
replay, spoofing, and blind opponent. To be effective the 
game developer must also release updates to prevent bug 
cheats; combine RACS with PunkBuster or VAC2 to 
prevent bots/reflex enhancers; and use the referee’s log files 
to detect RMT and power levelling. However, preventing 
collusion and proxy/reflex enhancers is impossible in C/S, 
RACS, or P2P. While RACS increases the scalability of C/S 
by reducing the outgoing bandwidth and lowering the 
number of AoI calculations; the referee may still be a 
bottleneck as it must receive all player updates and simulate 
the entire world. Furthermore, the referee is a single point of 
failure for the system. 



5.7 Cheat-Resistant P2P Gaming System 
The cheat resistant system proposed by Kabus et al [16] 
(column P2P RC in Table I) is similar to RACS as it 
prevents information exposure and invalid commands by 
using trusted third parties. While an individual peer cannot 
be trusted, multiple unaffiliated peers can be trusted to 
simulate the game correctly. In their system the virtual 
world is divided into regions, and every region is controlled 
by multiple Region Controllers (RCs). RCs use voting to 
establish the majority consensus of the game state, which is 
authoritative. To maximise responsiveness, votes are tallied 
by the peers. 
To prevent information exposure, secret information is only 
transmitted to the RCs. To prevent RCs colluding or 
exposing secret information they must be selected such that 
there is no affiliation between RCs, and such that RCs do 
not have an invested interest in the region they control. 
Secure RC selection is not covered in their work. 

6. Conclusion 
We have shown that cheating is prevalent, wide spread, and 
evolving in online games. Cheating is a major obstacle that 
must be prevented for an online game to be successful. We 
have extended the classification of cheating in [30] to 
include new forms of cheating, and to include real-world 
examples. Finally we have surveyed state of the art P2P 
game technologies that prevent cheating. 
While the referee concept in RACS has proved successful in 
reducing the server’s outgoing bandwidth, it does not 
address the incoming bandwidth or processing bottlenecks. 
Reference [35] uses mirrored referees to address the 
incoming bandwidth issue. Distributing referees to peers 
(similar to [16]) will greatly increase RACS scalability. This 
approach will minimise the referee resource requirements 
while maintaining security equal to C/S. This will require 
addressing referee selection, load balancing, and 
synchronization.  
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