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1 Introduction

In the last two decades, various notions of derivatives for set-valued maps have been

proposed and used for the formulation of optimality conditions and duality in set-valued

optimization. With the concept of contingent derivative for a set-valued map (see [1]),

Corley [2] investigated optimality conditions for set-valued optimization problems. But

it turns out that necessary and sufficient optimality conditions do not coincide under

standard assumptions. Jahn and Rauh [3] introduced the contingent epiderivative of a

set-valued map and then obtained unified necessary and sufficient optimality conditions.

The essential differences between the definitions of the contingent derivative and the

contingent epiderivative are that the graph is replaced by the epigraph and the derivative

is single-valued. Subsequently, Chen and Jahn [4] (see also Bednarczuk and Song [5])

introduced the concept of generalized contingent epiderivative in terms of minimizers of

projection of the contingent cone to epigraph of a set-valued map. In general, since the

epigraph of a set-valued map has nicer properties than its graph, it is useful to employ the

epiderivatives in set-valued optimization. As to other concepts of epiderivatives for set-

valued maps and applications to optimality conditions, one can refer to [6–9] and references

therein. Recently, Jahn et al. [10] introduced second-order contingent epiderivative and

generalized contingent epiderivative for set-valued maps and obtained some second-order

optimality conditions based on these concepts. Very recently, Lalitha and Arora [11]

introduced a notion of weak Clarke epiderivative for a set-valued map by using the concept

of Clarke tangent cone and established optimality conditions for a constrained set-valued

optimization problem in terms of weak Clarke epiderivative. On the other hand, various

kinds of differentiable type dual problems for set-valued optimization problems, such

as Mond-Weir type and Wolfe type dual problems have been investigated, for example,

see [12–14] and so on.

To the best of our knowledge, there are only a few papers deal with higher order opti-

mality conditions and duality of set-valued optimization problems by using higher order

derivatives and epiderivatives. Since higher order tangent sets, in general, are not cones

and convex sets, there are some difficulties in studying higher order optimality conditions

and duality for set-valued optimization problems by virtue of the higher order derivatives

or epiderivatives introduced by the higher order tangent sets. Very recently, Li et al. [15]

studied some properties of higher order tangent sets and higher order derivatives intro-

duced in [1] and then obtained higher order necessary and sufficient optimality conditions

2



for set-valued optimization problems in terms of the higher order derivatives. By using

these higher order derivatives, they [16] also discussed higher order Mond-Weir duality for

a set-valued optimization problem based on weak efficiency. Li and Chen [17] introduced

higher order generalized contingent epiderivative and higher order generalized adjacent

epiderivative of set-valued maps. Higher order Fritz John type necessary and sufficient

optimality conditions for Henig efficient solutions to a constrained set-valued optimization

problem were obtained by employing the higher order generalized epiderivatives.

Motivated by the work reported in [11, 15–17], we introduce the concepts of higher

order weak contingent epiderivative and higher order weak adjacent epiderivative for set-

valued maps. Based on higher order weak adjacent (contingent) epiderivatives and Henig

efficiency, we investigate higher order Mond-Weir type duality, higher order Wolfe type

duality and higher order Kuhn-Tucker type optimality conditions to a constrained set-

valued optimization problem (SOP).

The rest of the paper is organized as follows. In Section 2, we recall some basic

definitions and their properties used in the paper. In Section 3, we define the higher

order weak contingent epiderivative and adjacent epiderivative, and discuss the existence

and other useful properties. In Sections 4 and 5, we introduce a higher order Mond-

Weir type dual problem and a higher order Wolfe type dual problem to (SOP) by virtue

of higher order weak adjacent (contingent) epiderivatives and discuss the corresponding

weak duality, strong duality and converse duality properties, respectively. In Section 6,

we establish higher order Kuhn-Tucker type necessary and sufficient optimality conditions

of (SOP).

2 Preliminaries and Higher Order Tangent Sets

Throughout this paper, let X, Y and Z be three real normed spaces, where the spaces Y

and Z are partially ordered by nontrivial pointed closed convex cones C ⊂ Y and D ⊂ Z

with nonempty interiors intC and intD, respectively. Let Y ∗ be the topological dual space

of Y , S be a nonempty subset of X and F : S → 2Y and G : S → 2Z be two given set-

valued maps. The domain, the graph and the epigraph of F are defined respectively by:

dom(F ) = {x ∈ S | F (x) 6= ∅}, graph(F ) = {(x, y) ∈ X×Y | x ∈ S, y ∈ F (x)}, epi(F ) =

{(x, y) ∈ X × Y | x ∈ S, y ∈ F (x) + C}. The map F is said to be C-convex on a convex

set S, if for any x1, x2 ∈ S and λ ∈ [0, 1], λF (x1)+(1−λ)F (x2) ⊂ F (λx1 +(1−λ)x2)+C.
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It is well known that if F is C-convex on S, then epi(F ) is a convex subset in X × Y .

Let C∗ be the dual cone of C, defined by C∗ = {λ ∈ Y ∗ | λ(y) ≥ 0, ∀ y ∈ C}. Denote

the quasi-interior of C∗ by C], i.e., C] = {λ ∈ Y ∗ | λ(y) > 0, ∀ y ∈ C \{0Y }}. Let M be a

nonempty set in Y . Denote the closure of M by cl(M) and the interior of M by int(M).

The cone hull of M is defined by cone(M) = {ty | t ≥ 0, y ∈ M}. A nonempty convex

subset B of the convex cone C is called a base of C, if C = cone(B) and 0Y 6∈ cl(B). It

follows from Lemma 3.3 of [18] that C] 6= ∅ if and only if C has a base. Suppose that C

has a base B. Denote

Cε(B) = cone(B + εU) for all 0 < ε < δ,

where δ = inf{‖b‖ | b ∈ B} and U is the closed unit ball of Y . It follows from [7] that,

δ > 0, cl(int Cε(B)) is a closed convex pointed cone, and C \ {0Y } ⊂ int Cε(B) for all

0 < ε < δ. Denote

C4(B) = {f ∈ C∗ | inf{f(b) : b ∈ B} > 0}.
By the separation theorem, C4(B) 6= ∅ (see [7]). Obviously, C4(B) ⊂ C].

Lemma 2.1 ( [7])

(i) For any ε ∈ (0, δ), Cε(B)∗ \ {0Y ∗} ⊂ C4(B).

(ii) For any f ∈ C4(B), there exists 0 < ε < δ with f ∈ Cε(B)∗ \ {0Y ∗}.

Definition 2.1 ( [16]) F : X → 2Y is called pseudo-Lipschitzian at (x0, y0) ∈ graph(F ),

if there exist M > 0 and neighborhoods V of x0 and W of y0 such that F (x1) ∩ W ⊂
F (x2) + M‖x1 − x2‖BY , ∀x1, x2 ∈ V , where BY denotes the unit ball of the origin in Y .

Let m be a positive integer, X be a normed space supplied with a distance d and K

be a subset of X. We denote by d(x,K) = infy∈K d(x, y) the distance from x to K, where

we set d(x, ∅) = +∞. Now we recall the definitions of the higher order tangent sets.

Definition 2.2 ( [1]) Let x ∈ K ⊂ X and v1, · · · , vm−1 be elements of X.

(i) The set

T
(m)
K (x, v1, · · · , vm−1) =Limsuph→0+

K − x− hv1 − · · · − hm−1vm−1

hm

= {y ∈ X | lim inf
h→0+

d(y,
K − x− hv1 − · · · − hm−1vm−1

hm
) = 0}

is called the mth-order contingent set of K at (x, v1, · · · , vm−1).
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(ii) The set

T
[(m)
K (x, v1, · · · , vm−1) =Liminfh→0+

K − x− hv1 − · · · − hm−1vm−1

hm

= {y ∈ X | lim
h→0+

d(y,
K − x− hv1 − · · · − hm−1vm−1

hm
) = 0}

is called the mth-order adjacent set of K at (x, v1, · · · , vm−1).

Remark 2.1 ( [1])

(a) The following inclusion relation holds:

T
[(m)
K (x, v1, · · · , vm−1) ⊂ T

(m)
K (x, v1, · · · , vm−1)

⊂ cl(
⋃

h>0

K − x− hv1 − · · · − hm−1vm−1

hm
).

(b) Both tangent sets T
(m)
K (x, v1, · · · , vm−1) and T

[(m)
K (x, v1, · · · , vm−1) are closed.

From Propositions 3.1 and 3.2 of [15], we have the following results.

Proposition 2.1 If K is convex, then T
[(m)
K (x0, v1, · · · , vm−1) is convex.

Proposition 2.2 If K is a convex subset and v1, v2, · · · , vm−1 ∈ K, then

T
[(m)
K (x0, v1 − x0, · · · , vm−1 − x0) = T

(m)
K (x0, v1 − x0, · · · , vm−1 − x0)

= cl(
⋃

h>0

K − x0 − h(v1 − x0)− · · · − hm−1(vm−1 − x0)

hm
).

3 Higher Order Weak Epiderivatives

Definition 3.1 Let H ⊂ Y and intC 6= ∅. An element ȳ ∈ H is said to be a minimal

point (resp. weakly minimal point) of H if H ∩ (ȳ−C) = {ȳ} (resp. H ∩ (ȳ− intC) = ∅).
The set of all minimal points (resp. weakly minimal points) of H is denoted by MinC H

(resp. WMinC H).

Let X,Y be normed spaces and F : X → 2Y be a set-valued map. We first recall the

definitions of higher order generalized contingent epiderivative and adjacent epiderivative

introduced by Li and Chen [17].
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Definition 3.2 (i) The mth-order generalized contingent epiderivative D(m)
g F (x0, y0, u1, v1,

· · · , um−1, vm−1) of F at (x0, y0) ∈ graph(F ) for vectors (u1, v1), · · · , (um−1, vm−1) is

the set-valued map from X to Y defined by

D(m)
g F (x0, y0, u1, v1, · · · , um−1, vm−1)(x)

= MinC{y ∈ Y | (x, y) ∈ T
(m)
epi(F )(x0, y0, u1, v1, · · · , um−1, vm−1)}.

(ii) The mth-order generalized adjacent epiderivative D[(m)
g F (x0, y0, u1, v1, · · · , um−1, vm−1)

of F at (x0, y0) ∈ graph(F ) for vectors (u1, v1), · · · , (um−1, vm−1) is the set-valued

map from X to Y defined by

D[(m)
g F (x0, y0, u1, v1, · · · , um−1, vm−1)(x)

= MinC{y ∈ Y | (x, y) ∈ T
[(m)
epi(F )(x0, y0, u1, v1, · · · , um−1, vm−1)}.

Now we introduce the following higher order weak contingent and adjacent epideriva-

tives in terms of weak efficiency.

Definition 3.3 (i) The mth-order weak contingent epiderivative D(m)
w F (x0, y0, u1, v1,

· · · , um−1, vm−1) of F at (x0, y0) ∈ graph(F ) for vectors (u1, v1), · · · , (um−1, vm−1) is

the set-valued map from X to Y defined by

D(m)
w F (x0, y0, u1, v1, · · · , um−1, vm−1)(x)

= WMinC{y ∈ Y | (x, y) ∈ T
(m)
epi(F )(x0, y0, u1, v1, · · · , um−1, vm−1)}.

(ii) The mth-order weak adjacent epiderivative D[(m)
w F (x0, y0, u1, v1, · · · , um−1, vm−1) of

F at (x0, y0) ∈ graph(F ) for vectors (u1, v1), · · · , (um−1, vm−1) is the set-valued map

from X to Y defined by

D[(m)
w F (x0, y0, u1, v1, · · · , um−1, vm−1)(x)

= WMinC{y ∈ Y | (x, y) ∈ T
[(m)
epi(F )(x0, y0, u1, v1, · · · , um−1, vm−1)}.

Remark that Jahn and Khan [8] have introduced the notion of first-order weak con-

tingent epiderivative of set-valued maps. It is obvious that for all x ∈ X,

D(m)
g F (x0, y0, u1, v1, · · · , um−1, vm−1)(x) ⊂ D(m)

w F (x0, y0, u1, v1, · · · , um−1, vm−1)(x)

and

D[(m)
g F (x0, y0, u1, v1, · · · , um−1, vm−1)(x) ⊂ D[(m)

w F (x0, y0, u1, v1, · · · , um−1, vm−1)(x).

Now we give the following examples to explain various epiderivatives.
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Example 3.1 Let F : R → 2R2
be a set-valued map given by

F (x) = {(y1, y2) ∈ R2 | y1 ≥ x4, y2 ≥ x2}

and C = R2
+. Let (x0, y0) = (0, (0, 0)) ∈ graph(F ) and (u1, v1) = (1, (0, 0)). Then,

Tepi(F )(x0, y0) = R × R2
+ and T

(2)
epi(F )(x0, y0, u1, v1) = R × (R+ × [1, +∞)). Hence, for all

x ∈ R, we have

DgF (x0, y0)(x) = {(0, 0)},
DwF (x0, y0)(x) = {(y1, 0) | y1 ≥ 0} ∪ {(0, y2) | y2 ≥ 0},
D(2)

g F (x0, y0, u1, v1)(x) = {(0, 1)},
D(2)

w F (x0, y0, u1, v1)(x) = {(y1, 1) | y1 ≥ 0} ∪ {(0, y2) | y2 ≥ 1}.

Example 3.2 Let F : R → 2R2
be a set-valued map given by

F (x) = {(y1, y2) ∈ R2 | (y1 − 1)y2 ≤ 0}

and C = R2
+. Let (x0, y0) = (0, (1, 0)) ∈ graph(F ) and (u1, v1) = (1, (0, 0)). Then,

Tepi(F )(x0, y0) = epi(F ) − (x0, y0) = R × (R2\intR2
−) = T

(2)
epi(F )(x0, y0, u1, v1). Hence, for

all x ∈ R, we have

DgF (x0, y0)(x) = D(2)
g F (x0, y0, u1, v1)(x) = ∅,

DwF (x0, y0)(x) = D(2)
w F (x0, y0, u1, v1)(x) = {(y1, 0) | y1 ≤ 0} ∪ {(0, y2) | y2 ≤ 0}.

Definition 3.4 ( [11,19])

(i) The cone C is called Daniell, if any decreasing sequence in Y having a lower bound

converges to its infimum.

(ii) A subset H of Y is said to be minorized, if there is a y ∈ Y so that H ⊂ {y}+ C.

(iii) The weak domination property (resp. domination property) is said to hold for a

subset H of Y if H ⊂ WMinC H + intC ∪ {0Y } (resp. H ⊂ MinC H + C).

Now we give an existence theorem of D(m)
w F and D[(m)

w F .

Theorem 3.1 Let C be a closed pointed convex cone and let C be Daniell.

(i) Suppose that the set P0(x): = {y ∈ Y | (x, y) ∈ T
(m)
epi(F )(x0, y0, u1, v1, · · · , um−1, vm−1)}

is minorized for every x ∈ domP0. Then D(m)
w F (x0, y0, u1, v1, · · · , um−1, vm−1)(x)

exists for all x ∈ domP0.
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(ii) Suppose that the set P (x): = {y ∈ Y | (x, y) ∈ T
[(m)
epi(F )(x0, y0, u1, v1, · · · , um−1, vm−1)}

is minorized for every x ∈ domP . Then D[(m)
w F (x0, y0, u1, v1, · · · , um−1, vm−1)(x)

exists for all x ∈ domP .

Proof. It follows from Remark 2.1(b) that the mth-order contingent set (resp. mth-order

adjacent set) is closed. Thus for every x ∈ domP0 (resp. x ∈ domP ), P0(x) (resp. P (x)) is

minorized and closed. From the existence theorem of minimal points (see [19]), MinCP0(x)

(resp. MinCP (x)) is nonempty. Whence, D(m)
w F (resp. D[(m)

w F ) is well defined. 2

Now we give the following crucial proposition.

Proposition 3.1 Let F be C-convex on a nonempty convex subset E ⊂ X. Let (x0, y0) ∈
graph(F ) and (ui, vi) ∈ epi(F ), i = 1, · · · ,m − 1. If the set P (x − x0): = {y ∈ Y |
(x − x0, y) ∈ T

[(m)
epi(F )(x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)} fulfills the weak

domination property for all x ∈ E, then for all x ∈ E,

F (x)− y0 ⊂ D[(m)
w F (x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x− x0) + C.

Proof. The proof follows on the lines of Proposition 3.1 in [17] by replacing mth-order

generalized adjacent epiderivative by mth-order weak adjacent epiderivative and domina-

tion property by weak domination property. 2

Corollary 3.1 Let F be C-convex on a nonempty convex subset E ⊂ X. Let (x0, y0) ∈
graph(F ) and (ui, vi) ∈ epi(F ), i = 1, · · · ,m − 1. If the set P0(x − x0): = {y ∈ Y |
(x − x0, y) ∈ T

(m)
epi(F )(x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)} fulfills the weak

domination property for all x ∈ E, then for all x ∈ E,

F (x)− y0 ⊂ D(m)
w F (x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x− x0) + C.

Proof. Since F is C-convex and (ui, vi) ∈ epi(F ), i = 1, · · · ,m − 1, by Proposition 2.2,

we get that T
(m)
epi(F )(x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0) = T

[(m)
epi(F )(x0, y0, u1 −

x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0). Thus, it follows from Proposition 3.1 that the

conclusion holds. 2

4 Higher Order Mond-Weir Type Duality

In this section, we introduce a higher order Mond-Weir type dual problem for a constrained

set-valued optimization problem by virtue of higher order weak adjacent epiderivatives
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and discuss the weak duality, strong duality and converse duality properties.

Let F : X → 2Y and G : X → 2Z be two set-valued maps. Consider the following

constrained set-valued optimization problem (SOP):

min F (x)

s.t. x ∈ X, G(x) ∩ (−D) 6= ∅.

Set A = {x ∈ X | G(x) ∩ (−D) 6= ∅} and F (A) =
⋃{F (x) | x ∈ A}. The notation

(F,G)(x) is used to denote F (x)×G(x).

A point (x0, y0) ∈ X×Y is called a feasible solution of (SOP) if x0 ∈ A and y0 ∈ F (x0).

In the sequel, suppose that C has a base B, intD 6= ∅ and δ = inf{‖b‖ | b ∈ B}.

Definition 4.1 ( [17]) A feasible solution (x0, y0) is called a Henig minimal solution of

(SOP) if for some 0 < ε < δ, (F (A)− y0) ∩ (−intCε(B)) = ∅.

Suppose that (ui, vi) ∈ epi(F ), (ui, wi) ∈ epi(G), i = 1, · · · ,m − 1 and (x̂, ŷ) ∈
graph(F ). We introduce a Mond-Weir type dual problem (DSOP) of (SOP) as follows:

max ŷ

s.t. λD[(m)
w F (x̂, ŷ, u1 − x̂, v1 − ŷ, · · · , um−1 − x̂, vm−1 − ŷ)(x) +

µD[(m)
w G(x̂, ẑ, u1 − x̂, w1 − ẑ, · · · , um−1 − x̂, wm−1 − ẑ)(x) ≥ 0, x ∈ X, (1)

µ(ẑ) ≥ 0, (2)

λ ∈ C4(B), (3)

µ ∈ D∗, (4)

where ẑ ∈ G(x̂), and (1) means that λ(y) + µ(z) ≥ 0, for all (y, z) ∈ D[(m)
w F (x̂, ŷ, u1 −

x̂, v1−ŷ, · · · , um−1−x̂, vm−1−ŷ)(x)×D[(m)
w G(x̂, ẑ, u1−x̂, w1−ẑ, · · · , um−1−x̂, wm−1−ẑ)(x).

Throughout this paper, we assume that ∀λ ∈ C4(B), µ ∈ D∗, λ∅ = µ∅ = +∞.

Hence, (1) holds naturally whenever x 6∈ dom[D[(m)
w F (x̂, ŷ, u1 − x̂, v1 − ŷ, · · · , um−1 −

x̂, vm−1 − ŷ)] ∩ dom[D[(m)
w G(x̂, ẑ, u1 − x̂, w1 − ẑ, · · · , um−1 − x̂, wm−1 − ẑ)].

Let

HD := {ŷ ∈ F (x̂) | (x̂, ŷ, ẑ, λ, µ) satisfies conditions (1)− (4)}.

A point (x0, y0, z0, λ0, µ0) satisfying (1)-(4) is called a feasible solution of (DSOP).
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Definition 4.2 A feasible solution (x0, y0, z0, λ0, µ0) is called a maximal solution of (DSOP)

if (HD − y0) ∩ (C \ {0Y }) = ∅.

Theorem 4.1 (Weak duality) Suppose that F and G are C-convex and D-convex on X,

respectively. Let (ui, vi) ∈ epi(F ), (ui, wi) ∈ epi(G), i = 1, · · · ,m−1. Assume the feasible

solution (x0, y0) of (SOP) and the feasible solution (x̂, ŷ, ẑ, λ, µ) of (DSOP) satisfying that

the sets PF (x0−x̂): = {y ∈ Y | (x0−x̂, y) ∈ T
[(m)
epi(F )(x̂, ŷ, u1−x̂, v1− ŷ, · · · , um−1−x̂, vm−1−

ŷ)} and PG(x0−x̂): = {z ∈ Z | (x0−x̂, z) ∈ T
[(m)
epi(G)(x̂, ẑ, u1−x̂, w1−ẑ, · · · , um−1−x̂, wm−1−

ẑ)} fulfill the weak domination property. Then λ(y0) ≥ λ(ŷ).

Proof. It follows from Proposition 3.1 that

y0 − ŷ ∈ D[(m)
w F (x̂, ŷ, u1 − x̂, v1 − ŷ, · · · , um−1 − x̂, vm−1 − ŷ)(x0 − x̂) + C (5)

and

G(x0)− ẑ ⊂ D[(m)
w G(x̂, ẑ, u1 − x̂, w1 − ẑ, · · · , um−1 − x̂, wm−1 − ẑ)(x0 − x̂) + D. (6)

Since (x0, y0) is a feasible solution of (SOP), G(x0)∩ (−D) 6= ∅. Take z0 ∈ G(x0)∩ (−D).

Then, by (2) and (4), we have that

µ(z0)− µ(ẑ) ≤ 0. (7)

It follows from (1), (3), (4), (5) and (6) that λ(y0− ŷ) + µ(z0− ẑ) ≥ 0. Therefore, by (7),

we get λ(y0) ≥ λ(ŷ). 2

Lemma 4.1 Let (x0, y0) ∈ graph(F ) and (ui, vi − y0, wi) ∈ X × (−C) × (−D), i =

1, · · · ,m − 1. If (x0, y0) is a Henig minimal solution of (SOP), then for some 0 < ε < δ

and for any z0 ∈ G(x0) ∩ (−D),

[D[(m)
w (F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, · · · , um−1 − x0, vm−1 − y0, wm−1 − z0)(X)

+ C ×D + (0Y , z0)] ∩ −int(Cε(B)×D) = ∅.

Proof. If D[(m)
w (F,G)(x0, y0, z0, u1−x0, v1− y0, w1− z0, · · · , um−1−x0, vm−1− y0, wm−1−

z0)(x) = ∅ for some x ∈ X, then the result holds trivially. So we suppose x ∈ Ω : =

dom[D[(m)
w (F,G)(x0, y0, z0, u1− x0, v1− y0, w1− z0, · · · , um−1− x0, vm−1− y0, wm−1− z0)].

Then the proof follows on the lines of Theorem 4.1 in [17] by replacing mth-order

generalized adjacent epiderivative by mth-order weak adjacent epiderivative. 2
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Proposition 4.1 Suppose that P (x): = {(y, z) ∈ Y×Z | (x, y, z) ∈ T
[(m)
epi(F,G)(x0, y0, z0, u1−

x0, v1−y0, w1−z0, · · · , um−1−x0, vm−1−y0, wm−1−z0)} fulfills the weak domination prop-

erty for all x ∈ X and G+D is pseudo-Lipschitzian at (x0, z0), where x0 ∈ X, y0 ∈ F (x0)

and z0 ∈ G(x0). Then for all x ∈ X,

D[(m)
w F (x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x)

×D[(m)
w G(x0, z0, u1 − x0, w1 − z0, · · · , um−1 − x0, wm−1 − z0)(x)

⊂ D[(m)
w (F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, · · · ,
um−1 − x0, vm−1 − y0, wm−1 − z0)(x) + C ×D.

Proof. If either D[(m)
w F (·)(x) or D[(m)

w G(·)(x) is empty, then the inclusion relation holds

trivially. Suppose that

(y, z) ∈ D[(m)
w F (x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x)

×D[(m)
w G(x0, z0, u1 − x0, w1 − z0, · · · , um−1 − x0, wm−1 − z0)(x).

It follows from the definition of the mth-order weak adjacent epiderivative that

(x, y) ∈ T
[(m)
epi(F )(x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)

and

(x, z) ∈ T
[(m)
epi(G)(x0, z0, u1 − x0, w1 − z0, · · · , um−1 − x0, wm−1 − z0).

Whence, for any hn → 0+, there exists (xn, yn) → (x, y) such that

y0 + hn(v1 − y0) + · · ·+ hm−1
n (vm−1 − y0) + hm

n yn

∈ F (x0 + hn(u1 − x0) + · · ·+ hm−1
n (um−1 − x0) + hm

n xn) + C, (8)

and there exists (x̄n, z̄n) → (x, z) such that

z0 + hn(w1 − z0) + · · ·+ hm−1
n (wm−1 − z0) + hm

n z̄n

∈ G(x0 + hn(u1 − x0) + · · ·+ hm−1
n (um−1 − x0) + hm

n x̄n) + D. (9)

By the pseudo-Lipschitzian assumption, there exist M > 0, and neighborhoods W of z0

and N of x0 such that

(G(x1) + D) ∩W ⊂ G(x2) + D + M‖x1 − x2‖BZ , ∀x1, x2 ∈ N , (10)

where BZ denotes the unit ball of the origin in Z. Naturally, there exists N > 0 satisfying

x0 + hn(u1 − x0) + · · ·+ hm−1
n (um−1 − x0) + hm

n xn ∈ N , ∀n ≥ N,
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and

z0 + hn(w1 − z0) + · · ·+ hm−1
n (wm−1 − z0) + hm

n z̄n ∈ W , ∀n ≥ N. (11)

It follows from (9)-(11) that ∀n ≥ N ,

z0 + hn(w1 − z0) + · · ·+ hm−1
n (wm−1 − z0) + hm

n z̄n

∈ (G(x0 + hn(u1 − x0) + · · ·+ hm−1
n (um−1 − x0) + hm

n x̄n) + D) ∩W
⊂ G(x0 + hn(u1 − x0) + · · ·+ hm−1

n (um−1 − x0) + hm
n xn) + D + hm

n M ||x̄n − xn||BZ .

Then, there exists zn → z such that for any n ≥ N ,

z0 + hn(w1 − z0) + · · ·+ hm−1
n (wm−1 − z0) + hm

n zn

∈ G(x0 + hn(u1 − x0) + · · ·+ hm−1
n (um−1 − x0) + hm

n xn) + D.
(12)

It follows from (8) and (12) that

(x, y, z) ∈ T
[(m)
epi(F,G)(x0, y0, z0, u1−x0, v1− y0, w1− z0, · · · , um−1−x0, vm−1− y0, wm−1− z0),

i.e., (y, z) ∈ P (x). Since P (x) fulfills the weak domination property for all x ∈ X, we get

(y, z) ∈ D[(m)
w (F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, · · · , um−1 − x0, vm−1 − y0, wm−1 −

z0)(x) + C ×D. 2

Theorem 4.2 (Strong duality) Suppose that (x0, y0) is a Henig minimal solution of (SOP)

and the following conditions are satisfied:

(i) F is C-convex on X and G is D-convex on X;

(ii) (ui, vi, wi) ∈ epi(F,G) and (ui, vi − y0, wi) ∈ X × (−C)× (−D), i = 1, · · · ,m− 1;

(iii) there exists x′ ∈ X such that G(x′) ∩ (−intD) 6= ∅;

(vi) z0 ∈ G(x0) ∩ (−D) and G + D is pseudo-Lipschitzian at (x0, z0);

(v) P (x): = {(y, z) ∈ Y×Z | (x, y, z) ∈ T
[(m)
epi(F,G)(x0, y0, z0, u1−x0, v1−y0, w1−z0, · · · , um−1−

x0, vm−1 − y0, wm−1 − z0)} fulfills the weak domination property for all x ∈ X and

(0Y , 0Z) ∈ P (0X);

(iv) the sets PF (x0 − x̂): = {y ∈ Y | (x0 − x̂, y) ∈ T
[(m)
epi(F )(x̂, ŷ, u1 − x̂, v1 − ŷ, · · · , um−1 −

x̂, vm−1 − ŷ)} and PG(x0 − x̂): = {z ∈ Z | (x0 − x̂, z) ∈ T
[(m)
epi(G)(x̂, ẑ, u1 − x̂, w1 −

ẑ, · · · , um−1 − x̂, wm−1 − ẑ)} fulfill the weak domination property for all x̂ ∈ X,

where ŷ ∈ F (x̂) and ẑ ∈ G(x̂).
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Then, there exist λ ∈ C4(B) and µ ∈ D∗ such that (x0, y0, z0, λ, µ) is a maximal solution

of (DSOP).

Proof. Define

M = D[(m)
w (F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, · · · ,

um−1 − x0, vm−1 − y0, wm−1 − z0)(X) + C ×D + (0Y , z0).

By the similar proof method for the convexity of M in Theorem 5.1 in [17], just replac-

ing mth-order generalized adjacent epiderivative by mth-order weak adjacent epiderivative

and domination property by weak domination property, we have that M is a convex set.

By Lemma 4.1, there exists 0 < ε < δ such that

M ∩ −int(Cε(B)×D) = ∅.

By the separation theorem for convex sets, there exist λ ∈ Y ∗ and µ ∈ Z∗, not both zero

functionals, and a real number γ such that

λ(ȳ) + µ(z̄) < γ ≤ λ(ỹ) + µ(z̃), ∀ ȳ ∈ −intCε(B), z̄ ∈ −intD, (ỹ, z̃) ∈ M. (13)

It follows from (ȳ, z̄) ∈ −int(Cε(B)×D) and (13) that

λ(ȳ) + µ(z̄) ≤ 0, ∀ ȳ ∈ −intCε(B), z̄ ∈ −intD, (14)

and

0 ≤ λ(ỹ) + µ(z̃), ∀ (ỹ, z̃) ∈ M. (15)

Then, by (14), we have λ(ȳ) ≤ 0 for all ȳ ∈ −intCε(B), and µ(z̄) ≤ 0 for all z̄ ∈ −intD.

Thus, λ ∈ Cε(B)∗ and µ ∈ D∗. By Lemma 2.1(i), λ ∈ C4(B)∪ {0Y ∗}. Since P (x) fulfills

the weak domination property for all x ∈ X, hence

P (X) ⊂ D[(m)
w (F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, · · · ,
um−1 − x0, vm−1 − y0, wm−1 − z0)(X) + C ×D

= M − (0Y , z0).

It follows from (0Y , 0Z) ∈ P (0X) that (0Y , 0Z) ∈ M − (0Y , z0), i.e., (0Y , z0) ∈ M . From

(15), we have µ(z0) ≥ 0. It follows from z0 ∈ −D and µ ∈ D∗ that µ(z0) ≤ 0. Thus,

µ(z0) = 0. Moreover, it follows from (15) that

λ(y) + µ(z) ≥ 0,
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for all (y, z) ∈ D[(m)
w (F,G)(x0, y0, z0, u1−x0, v1−y0, w1−z0, · · · , um−1−x0, vm−1−y0, wm−1−

z0)(X) + C ×D.

Now we show that λ 6= 0Y ∗ . By Proposition 3.1, for any (y′, z′) ∈ (F,G)(A), we get

(y′, z′)− (y0, z0) ∈ D[(m)
w (F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, · · · ,
um−1 − x0, vm−1 − y0, wm−1 − z0)(x

′ − x0) + C ×D, x′ ∈ A.

Hence, λ(y′−y0)+µ(z′−z0) ≥ 0. Moreover, λ(y′−y0)+µ(z′) ≥ 0. Suppose that λ = 0Y ∗ .

Then µ 6= 0Z∗ and hence for all z′ ∈ G(A), µ(z′) ≥ 0. Since the generalized Slater’s

constraint qualification is satisfied, there exists x̂ ∈ X such that G(x̂) ∩ (−intD) 6= ∅.
This implies that there exists ẑ ∈ G(x̂) ∩ (−intD). Since ẑ ∈ −intD and µ ∈ D∗\{0Z∗},
it follows that µ(ẑ) < 0, which leads to a contradiction.

Consequently, in view of Proposition 4.1, we see that (x0, y0, z0, λ, µ) is a feasible

solution of (DSOP).

Finally, we prove that (x0, y0, z0, λ, µ) is a maximal solution of (DSOP). Suppose that

(x0, y0, z0, λ, µ) is not a maximal solution of (DSOP). Then, there exists a feasible solution

(x̂, ŷ, ẑ, λ′, µ′) such that ŷ − y0 ∈ C \ {0Y }. By λ′ ∈ C4(B) ⊂ C], we have

λ′(ŷ) > λ′(y0). (16)

Since (x0, y0) is a feasible solution of (SOP), by Theorem 4.1, we have that λ′(y0) ≥ λ′(ŷ),

which contradicts (16). Thus, the proof is complete. 2

Remark 4.1 In [7], Gong et al. introduced the assumption (C): For any ξ ∈ D∗\{0Z∗},
there exists x ∈ A = {x ∈ X | G(x) ∩ (−D) 6= ∅} such that ξ(G(x)) ∩ (−intR+) 6= ∅.
This assumption is weaker than the assumption (iii) of Theorem 4.2, which is called the

generalized Slater’s constraint qualification (CQ, in short). It is easy to show that (CQ)

can be weakened to the assumption (C) in Theorem 4.2 and in what follows (e.g., Theorems

5.2 and 6.1), respectively.

Theorem 4.3 (Converse duality) Suppose that there exist x0 ∈ X, y0 ∈ F (x0), z0 ∈
G(x0) ∩ (−D), λ ∈ C4(B) and µ ∈ D∗ such that (x0, y0, z0, λ, µ) is a feasible solution of

(DSOP) and the following conditions are satisfied:

(i) F is C-convex on X and G is D-convex on X;

(ii) (ui, vi, wi) ∈ epi(F,G), i = 1, · · · ,m− 1;
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(iii) the sets PF (x−x0): = {y ∈ Y | (x−x0, y) ∈ T
[(m)
epi(F )(x0, y0, u1−x0, v1−y0, · · · , um−1−

x0, vm−1 − y0)} and PG(x− x0): = {z ∈ Z | (x− x0, z) ∈ T
[(m)
epi(G)(x0, z0, u1 − x0, w1 −

z0, · · · , um−1 − x0, wm−1 − z0)} fulfill the weak domination property for all x ∈ A.

Then, (x0, y0) is a Henig minimal solution of (SOP).

Proof. Suppose that x ∈ A. Then, there exists z ∈ G(x) ∩ (−D). It follows from

Proposition 3.1 that

z − z0 ∈ D[(m)
w G(x0, z0, u1 − x0, w1 − z0, · · · , um−1 − x0, wm−1 − z0)(x− x0) + D.

By (2), we have that µ(z0) ≥ 0. It follows from z0 ∈ G(x0) ∩ (−D) that µ(z0) ≤ 0. So

µ(z0) = 0, and

µ(z − z0) = µ(z)− µ(z0) = µ(z) ≤ 0. (17)

Therefore, it follows from (1) and (17) that

λD[(m)
w F (x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x− x0) ≥ 0, x ∈ A. (18)

From Proposition 3.1 and (18), we have

λ(F (A)− y0) ≥ 0.

Since λ ∈ C4(B), by Lemma 2.1(ii), there exists ε ∈ (0, δ) such that λ ∈ Cε(B)∗ \ {0Y ∗}.
Suppose that the feasible solution (x0, y0) is not a Henig minimal solution of (SOP).

Then for ε, (F (A)− y0) ∩ (−intCε(B)) 6= ∅. Whence, there exists x′ ∈ A and y′ ∈ F (x′)

such that y′−y0 ∈ −intCε(B). Hence, λ(y′−y0) < 0, which yields a contradiction. Thus,

(x0, y0) is a Henig minimal solution of (SOP) and this completes the proof. 2

5 Higher Order Wolfe Type Duality

In this section, we introduce a higher order Wolfe type dual problem for (SOP) by virtue

of higher order weak adjacent epiderivatives and discuss the weak duality, strong duality

and converse duality properties.

Suppose that (ui, vi) ∈ epi(F ), (ui, wi) ∈ epi(G), i = 1, · · · ,m − 1 and (x̂, ŷ) ∈
graph(F ), (x̂, ẑ) ∈ graph(G). We introduce a Wolfe type dual problem (WDSOP) of
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(SOP) as follows:

max Ψ(x̂, ŷ, ẑ, λ∗, µ∗) = λ∗(ŷ) + µ∗(ẑ)

s.t. λ∗D[(m)
w F (x̂, ŷ, u1 − x̂, v1 − ŷ, · · · , um−1 − x̂, vm−1 − ŷ)(x) +

µ∗D[(m)
w G(x̂, ẑ, u1 − x̂, w1 − ẑ, · · · , um−1 − x̂, wm−1 − ẑ)(x) ≥ 0, x ∈ X, (19)

λ∗ ∈ C4(B), (20)

µ∗ ∈ D∗. (21)

A point (x0, y0, z0, λ0, µ0) satisfying (19)-(21) is called a feasible solution of (WDSOP).

Definition 5.1 A feasible solution (x0, y0, z0, λ0, µ0) is called a optimal solution of (WD-

SOP) if for any feasible solution (x, y, z, λ, µ), Ψ(x0, y0, z0, λ0, µ0) ≥ Ψ(x, y, z, λ, µ).

Theorem 5.1 (Weak duality) Suppose that (x0, y0) is a feasible solution of (SOP) and

(x̂, ŷ, ẑ, λ∗, µ∗) is a feasible solution of (WDSOP), which satisfy the conditions stated in

Theorem 4.1. Then λ∗(y0) ≥ Ψ(x̂, ŷ, ẑ, λ∗, µ∗).

Proof. By virtue of Proposition 3.1, we have that for any z0 ∈ G(x0)∩ (−D), there exist

y
F
∈ D[(m)

w F (x̂, ŷ, u1− x̂, v1− ŷ, · · · , um−1− x̂, vm−1− ŷ)(x0− x̂) and z
G
∈ D[(m)

w G(x̂, ẑ, u1−
x̂, w1− ẑ, · · · , um−1−x̂, wm−1− ẑ)(x0−x̂) such that (y0− ŷ)−y

F
∈ C and (z0− ẑ)−z

G
∈ D,

respectively. Thus,

λ∗(y0 − ŷ) ≥ λ∗(y
F
) ≥ −µ∗(z

G
) ≥ −µ∗(z0 − ẑ) ≥ µ∗(ẑ).

Hence, we get that λ∗(y0) ≥ λ∗(ŷ) + µ∗(ẑ) = Ψ(x̂, ŷ, ẑ, λ∗, µ∗). 2

Theorem 5.2 (Strong duality) Suppose that (x0, y0), where y0 = 0Y is a Henig minimal

solution of (SOP) and the conditions in Theorem 4.2 are satisfied. Then, there exist

λ0 ∈ C4(B) and µ0 ∈ D∗ such that (x0, y0, z0, λ0, µ0) is a optimal solution of (WDSOP).

Proof. From the proof of Theorem 4.2, we see that there exist λ0 ∈ C4(B) and µ0 ∈ D∗

such that (x0, y0, z0, λ0, µ0) is a feasible solution of (WDSOP) and µ0(z0) = 0. Therefore,

λ0(y0) = Ψ(x0, y0, z0, λ0, µ0).

Suppose that (x0, y0, z0, λ0, µ0) is not a optimal solution of (WDSOP). Then, there

exists a feasible solution (x′, y′, z′, λ′, µ′) of (WDSOP) such that Ψ(x0, y0, z0, λ0, µ0) <
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Ψ(x′, y′, z′, λ′, µ′). Since (x0, y0) is a feasible solution of (SOP), by Theorem 5.1, we have

that λ′(y0) ≥ Ψ(x′, y′, z′, λ′, µ′). Thus, we get that λ0(y0) < λ′(y0), i.e., (λ0 − λ′)(y0) < 0.

Since y0 = 0Y , a contradiction yields. Consequently, (x0, y0, z0, λ0, µ0) is a optimal solution

of (WDSOP). 2

Theorem 5.3 (Converse duality) Suppose that there exist x0 ∈ X, y0 ∈ F (x0), z0 ∈
G(x0)∩ (−D), λ0 ∈ C4(B) and µ0 ∈ D∗ such that (x0, y0, z0, λ0, µ0) is a feasible solution

of (WDSOP) and u0(z0) ≥ 0. Moreover, suppose the conditions in Theorem 4.3 are

satisfied. Then, (x0, y0) is a Henig minimal solution of (SOP).

Proof. The proof is similar to Theorem 4.3. 2

6 Higher Order Kuhn-Tucker Type Optimality Con-

ditions

In this section, we discuss higher order Kuhn-Tucker type necessary and sufficient opti-

mality conditions for (SOP).

Theorem 6.1 (Necessary condition) Suppose that (x0, y0) is a Henig minimal solution

of (SOP) and the conditions (i)-(iii) and (v) of Theorem 4.2 are satisfied. Then, for any

z0 ∈ G(x0) ∩ (−D), there exist λ ∈ C4(B) and µ ∈ D∗ such that

µ(z0) = 0 and λ(y) + µ(z) ≥ 0, (22)

for all (y, z) ∈ D[(m)
w (F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, · · · , um−1 − x0, vm−1 −

y0, wm−1 − z0)(X).

Furthermore, if G+D is pseudo-Lipschitzian at (x0, z0), then (22) holds for all (y, z) ∈
D[(m)

w F (x0, y0, u1−x0, v1− y0, · · · , um−1−x0, vm−1− y0)(X)×D[(m)
w G(x0, z0, u1−x0, w1−

z0, · · · , um−1 − x0, wm−1 − z0)(X).

Proof. In the proof process of Theorem 4.2, we have obtained that (22) holds for all

(y, z) ∈ D[(m)
w (F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, · · · , um−1 − x0, vm−1 − y0, wm−1 −

z0)(X) + C ×D. Then the conclusion follows readily. 2
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Remark that if the generalized Slater’s constraint qualification is not satisfied in The-

orem 6.1, then λ ∈ C4(B)∪{0Y ∗}. Thus, we obtain the so-called higher order Fritz John

type necessary optimality conditions for (SOP).

Now we give the following example to illustrate the Kuhn-Tucker type necessary opti-

mality conditions with respect to the mth-order weak contingent epiderivative (see Remark

6.1). Here we only take m = 1, 2 yet.

Example 6.1 Suppose that X = Y = Z = R and C = D = R+. Let F : X → 2Y

and G : X → Z be given by F (x) = {y ∈ R | y ≥ x2} and G(x) = x − 1, re-

spectively. Naturally, F and G are R+-convex on X, respectively, and the generalized

Slater’s constraint qualification is satisfied. Consider the corresponding constrained set-

valued optimization problem (SOP). We have A = {x ∈ R | x − 1 ≤ 0} = (−∞, 1] and

F (A) =
⋃

x∈(−∞, 1] F (x) = [0, +∞). Let B = {1}. Obviously, B is a base of C and hence

δ = 1. Let (x0, y0) = (0, 0) ∈ graph(F ). Since (F (A) − y0) ∩ (−intCε(B)) = ∅ for all

0 < ε < δ, hence (x0, y0) is a Henig minimal solution of (SOP).

It follows from the definitions of F and G that

epi(F,G) = {(x, (y, z)) ∈ R×R2 | y ≥ x2, z ≥ x− 1}.

Take z0 = −1 ∈ G(x0) ∩ (−R+). Then, we have

Tepi(F, G)(x0, y0, z0) = {(x, (y, z)) ∈ R×R2 | y ≥ 0, z ≥ x},

and

Dw(F,G)(x0, y0, z0)(x) = {(y, x) ∈ R2 | y ≥ 0} ∪ {(0, z) ∈ R2 | z ≥ x}, x ∈ R.

It is easy to verify that P (x) = {(y, z) ∈ R2 | (x, (y, z)) ∈ Tepi(F, G)(x0, y0, z0)} = {(y, z) ∈
R2 | y ≥ 0, z ≥ x} fulfills the weak domination property for all x ∈ R and (0, 0) ∈ P (0).

Then, the conditions of Theorem 6.1 are satisfied for Dw(F,G). Take λ > 0 and µ = 0.

Thus, for any (y, z) ∈ Dw(F,G)(x0, y0, z0)(x) and x ∈ R, we have

λ(y) + µ(z) = 0 and µ(z0) = 0. (23)

Clearly, G + R+ is pseudo-Lipschitzian at (x0, z0). Moreover,

DwF (x0, y0)(x) = WMinC{y ∈ R | y ≥ 0} = {0},
DwG(x0, z0)(x) = WMinC{z ∈ R | z ≥ x} = {x}.
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Thus, (23) holds for all (y, z) ∈ DwF (x0, y0)(x)×DwG(x0, z0)(x) and x ∈ R. So that the

1th-order Kuhn-Tucker type necessary optimality condition holds.

Take u1 = 0, v1 = 0 and w1 = −1/2 ∈ −R+. Then, we have

T
(2)
epi(F, G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0) = {(x, (y, z)) ∈ R×R2 | y ≥ 0},

and

D(2)
w (F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0)(x) = {0} ×R, x ∈ R.

Clearly, P (2)(x) = {(y, z) ∈ R2 | (x, (y, z)) ∈ T
(2)
epi(F, G)(x0, y0, z0, u1 − x0, v1 − y0, w1 −

z0)} = {(y, z) ∈ R2 | y ≥ 0} fulfills the weak domination property for all x ∈ R and

(0, 0) ∈ P (2)(0). Hence, the conditions of Theorem 6.1 are satisfied for D(2)
w (F,G). In

addition,

D(2)
w F (x0, y0, u1 − x0, v1 − y0)(x) = WMinC{y ∈ R | y ≥ 0} = {0},

D(2)
w G(x0, z0, u1 − x0, w1 − z0)(x) = WMinCR = ∅.

Choose λ > 0 and µ = 0. We have that the 2th-order Kuhn-Tucker type necessary

optimality condition holds.

Theorem 6.2 (Sufficient condition) Suppose that the following conditions are satisfied:

(i) F is C-convex on X and G is D-convex on X;

(ii) (x0, y0) ∈ graph(F ) and (ui, vi, wi) ∈ epi(F,G), i = 1, · · · ,m− 1;

(iii) there exist z0 ∈ G(x0) ∩ (−D), λ ∈ C4(B) and µ ∈ D∗ such that

µ(z0) = 0 and λ(y) + µ(z) ≥ 0,

for all (y, z) ∈ D[(m)
w (F,G)(x0, y0, z0, u1− x0, v1− y0, w1− z0, · · · , um−1− x0, vm−1−

y0, wm−1 − z0)(x− x0) and x ∈ A;

(iv) P (x−x0): = {(y, z) ∈ Y ×Z | (x−x0, y, z) ∈ T
[(m)
epi(F,G)(x0, y0, z0, u1−x0, v1−y0, w1−

z0, · · · , um−1 − x0, vm−1 − y0, wm−1 − z0)} fulfills the weak domination property for

all x ∈ X.

Then, (x0, y0) is a Henig minimal solution of (SOP).
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Proof. Since λ ∈ C4(B), by Lemma 2.1(ii), there exists ε ∈ (0, δ) such that λ ∈
Cε(B)∗ \ {0Y ∗}. Assume that (F (A) − y0) ∩ (−intCε(B)) 6= ∅. Then, there exist x′ ∈ A

and y′ ∈ F (x′) such that y′−y0 ∈ −intCε(B). Since x′ ∈ A, there exists z′ ∈ G(x′)∩(−D).

By the weak domination property for P (x− x0) and Proposition 3.1, we have

(y′ − y0, z
′ − z0) ∈ D[(m)

w (F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0,

· · · , um−1 − x0, vm−1 − y0, wm−1 − z0)(x
′ − x0) + C ×D.

Thus, there exist c̄ ∈ C and d̄ ∈ D such that

λ(y′ − y0 − c̄) + µ(z′ − z0 − d̄) ≥ 0. (24)

Since y′ − y0 ∈ −intCε(B), then y′ − y0 − c̄ ∈ −intCε(B) − C = −intCε(B). It follows

from λ ∈ Cε(B)∗ \ {0Y ∗} that λ(y′ − y0 − c̄) < 0. Since z′ ∈ G(x′) ∩ (−D), µ(z0) = 0 and

µ ∈ D∗, we have µ(z′ − z0 − d̄) = µ(z′)− µ(d̄) ≤ 0. Thus,

λ(y′ − y0 − c̄) + µ(z′ − z0 − d̄) < 0,

which contradicts (24). Then, (F (A)− y0)∩ (−intCε(B)) = ∅. Thus, the feasible solution

(x0, y0) is a Henig minimal solution of (SOP) and the proof is complete. 2

Theorem 6.3 (Sufficient condition) Suppose that the following conditions are satisfied:

(i) F is C-convex on X and G is D-convex on X;

(ii) (x0, y0) ∈ graph(F ) and (ui, vi, wi) ∈ epi(F,G), i = 1, · · · ,m− 1;

(iii) there exist z0 ∈ G(x0) ∩ (−D), λ ∈ C4(B) and µ ∈ D∗ such that

µ(z0) = 0 and λ(y) + µ(z) ≥ 0,

for all (y, z) ∈ D[(m)
w F (x0, y0, u1 − x0, v1 − y0, · · · , um−1 − x0, vm−1 − y0)(x − x0) ×

D[(m)
w G(x0, z0, u1 − x0, w1 − z0, · · · , um−1 − x0, wm−1 − z0)(x− x0) and x ∈ A;

(iv) the sets PF (x−x0): = {y ∈ Y | (x−x0, y) ∈ T
[(m)
epi(F )(x0, y0, u1−x0, v1−y0, · · · , um−1−

x0, vm−1 − y0)} and PG(x− x0): = {z ∈ Z | (x− x0, z) ∈ T
[(m)
epi(G)(x0, z0, u1 − x0, w1 −

z0, · · · , um−1 − x0, wm−1 − z0)} fulfill the weak domination property for all x ∈ A.

Then, (x0, y0) is a Henig minimal solution of (SOP).
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Proof. The conclusion can be obtained similarly as in the proof of Theorem 4.3. 2

Remark 6.1 Because F and G are C-convex and D-convex on X, respectively, and

(ui, vi) ∈ epi(F ), (ui, wi) ∈ epi(G), i = 1, · · · ,m − 1, it follows from Proposition 2.2

that the mth-order contingent set coincides with the mth-order adjacent set. Thus, if we

use mth-order weak contingent epiderivative instead of the mth-order weak adjacent epi-

derivative in all theorems of Sections 4-6 , then, the corresponding duality results and

optimality conditions for mth-order weak contingent epiderivative still hold.
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