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Abstract 

A decision support framework has been provided to assist investors with long-term decision-making for investment 
choices in power generation assets under uncertain climate policy. The model combines real options analysis and 
modern portfolio optimization theory. A long-term correlation between carbon and renewable portfolio standard 
certificate prices is used to model the interaction of climate policies, with a case study being developed to investigate 
the optimal choice of capacity additions to an existing mix of power generation assets in Australia. The findings show 
that there is potential for investors to fully hedge their existing fossil fuel based generation assets through the addition 
of on-shore wind capacity. The model developed allows for (1) the investigation of investment risk and return under 
uncertain climate policies, and (2) the study of interaction among green policies. 
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1. Introduction 

The focus of investors interested in power generation has been captured by restructuring of the 
electricity sector, climate change and energy security. These factors have rendered ‘a time of 
unprecedented uncertainty for the energy sector’, as recognized by the World Energy Council (WEC) [1]. 
In the context of this volatile decision-making environment, orthodox investment decision techniques 
have not been successful in accounting for the influence of uncertainty, nor have they captured the 
proactive responses of managers to changing market conditions. There is a gap between the intuitive 
reflections of decision-makers and traditional investment decision techniques in uncertain situations. 

Decision criteria such as the levelized cost of energy (LCOE) are not sufficient to rank feasible 
projects in an unbundled power market setting where investment risk passes back to investors. The 

Available online at www.sciencedirect.com

© 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of Applied Energy Innovation Institute

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195651276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2015.07.367&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2015.07.367&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2015.07.367&domain=pdf


2650   Mahdi ShahNazari et al.  /  Energy Procedia   75  ( 2015 )  2649 – 2657 

generation of electricity has become competitive and a risk-return balance has emerged as a key 
investment driver. Additionally, electricity generation has proved to be a GHG intensive industry, thus, 
policy makers have intervened in the imperfect market to attempt to internalize negative externalities. 
However, a balanced, stable and predictable policy framework has been beleaguered by two diverging 
points: (1) a divergence between profit maximizing private firms and social welfare, and (2) a global 
disagreement over the issue of climate change [2].  

Numerous studies have applied portfolio optimization theory in power generation investment decision-
making under uncertainty. Mean variance portfolio theory (MVP) and relative variations incorporating 
various risk measures have been widely used [3-10].a A second stream of studies, more relevant to the 
study in this paper, has recently attempted to combine real options analysis (ROA) with portfolio 
optimization theories to address the effects of irreversibility and uncertainty in power generation 
investments. The standard deviation of the payoffs for investment alternatives, value at risk (VaR) and 
conditional value at risk (CVaR) are common risk measures applied in the relevant problem formulations. 
In more recent works in this stream, Fortin et al.[11] and Fuss et al.[12] developed a static model for a 
portfolio of various generation technologies using CVaR as the measure of risk. They use total discounted 
income divided by total discounted cost as the measure of return as they focus on the effect that CO2 price 
volatility has on the composition of a generation portfolio. Szolgayová et al. [13, 14] have tried to extend 
the static portfolio problems to a dynamic formulation. This extension is non-trivial since the 
understanding of the correlation of portfolios at different time points is not intuitive. 

This study builds on the second research stream as it attempts to provide a decision support framework 
to assist power generation investors in identifying optimal capacity additions to an existing generation 
mix. In comparison with other works we use an Australian case study to focus on: 

(1) power mix rebalancing; identification of optimal capacity additions considering an existing 
portfolio,  

(2) capacity constraints; the results of capacity constrained model are superimposed on a 
conventional budget constrained portfolio optimization model, and  

(3) the interaction between the renewable portfolio standard mechanism in Australia, called the 
Large-scale Renewable Energy Target (LRET), and carbon pricing policy. 

The case study is developed to assess the effect of post-implementation uncertainty, regarding the 
future of carbon pricing policy, on investment decisions in electricity generation in Australia.  A choice of 
renewable and non-renewable technologies as additional capacity is available to the investor that can be 
appended to their existing mix of coal-fired and combined cycle gas turbine (CCGT) investments.    

2. Method 

A portfolio in the context of power generation planning is specified as either generation capacity 
holdings or value weights in each individual generation technology from the asset universe, herein called 
technology choices. The decision model is developed at three distinctive levels, as shown in Figure 1.  

Level 1, models stochastic variables representing uncertainty in the framework; carbon, electricity and 
renewable energy certificate (REC) prices. The modelling uses the expanded carbon and electricity price 
models previously described by the authors [15, 16]. However, in contrast to the MRV process, the 
average base price of electricity in this work is modelled through a regime switching model developed by 
Higgs and Worthington [17] for the state of New South Wales, Australia. The level of discretization of 
the underlying variables has been expanded to average daily values (from a monthly average) to increase 

 

a See [10] for a recent and detailed literature review of the application of modern portfolio theory to power planning. 
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the precision of the model and to provide insight into how the model can be further developed to 
incorporate hourly or half-hourly spot prices.b  

 
Figure 1. The three-level investment decision-making model  

In Australia, the LRET mandated by the Renewable Energy (Electricity) Act 2000 established a target 
for large-scale renewable electricity supply to ramp up to 41000 GWh by 2020. This scheme requires 
electricity retailers to purchase large-scale green certificates (LGCs), also called RECs, from the 
renewable energy technology (RET) generators, which have a dollar value per MWh. Ideally, the value of 
RECs should reflect the difference between the lowest LCOE for power generation among RETs and the 
average wholesale price of electricity [18, 19].c A model is also required for REC prices as the investment 
portfolio includes RETs. Although REC prices, , are traded in a market, it is assumed here that 
their average price is equal to the difference between the least generation cost among RETs, , and 
the average wholesale electricity price in the market at each time stage , , calculated for all 
simulation replications, , as defined below, 

 
 

 
(1) 

where  is derived from the electricity price model developed. 
In Level 2 an ROA is conducted to specify the proxies for portfolio return and risk. The difference 

between the present value (PV) of net operating cash flows and investment expenditure is divided by the 
investment expenditure to define an investment return proxy. This measure of return is similar to the 
holding period (rate of) return (HPR) introduced by Seitz [21]. To calculate net operating cash flows a 
real option analysis (ROA) model is used. It is assumed that the investor invests in the relevant choice of 
technologies; however, they have the option to abandon the plant at an optimal point in the future.d For 
this purpose, the American option valuation model developed in our previous works [15, 16] is used. In 
the case of existing plants, the investment expenditure is replaced by the market value of the incumbent 

 

b To include peak generators with relevant spark-spread option in the model, a finer time discretization of electricity prices along 
with a unit commitment model is required. 
c see a recent study of the LRET policy in [20]. 
d Other range of options such as retrofitting with carbon capture and storage (CCS) units can be considered to address the potential 
flexibility of fossil fuel burning plants in mitigation of GHG emissions. 
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assets. It is assumed that the market values of the incumbent plants are equal to the PV of their net 
operating cash flows averaged over all simulated replications.e Consequently, HPR for incumbent plants 
is zero. The ROA valuation framework suggests that the investor operates the existing plants over their 
remaining life unless the expected PV of net operating cash flows is sufficiently close to zero. In the latter 
case, the investor is better to abandon the existing plant and replace it with an optimal choice of 
generation technologies. This assumption is plausible considering that in the case of existing assets, a 
substantial part of the financial risk is eliminated as the investment expenditure is already sunk. Any 
decision relating to existing generation plants has to be justified by their expected future cash flows.  

Identification of portfolios in terms of budget (or value) weights is conventional, although in 
generation planning, meeting electricity demand or required capacity is the major concern of investors. 
Therefore, capacity holding in each individual asset gains more significance in comparison with a budget 
constrained specified portfolio. The problem takes the form of a complex optimization problem to meet a 
required demand/capacity within the constraints of a conventional budget. The portfolio optimization is 
thus approached in two steps (as shown in Level 3, Figure 1): (1) a portfolio optimization based upon a 
link between investment expenditures/asset values and capacity/demand values, herein referred to as the 
capacity/demand constrained optimization, and (2) a conventional budget constrained portfolio 
optimization. In the first step, a portfolio optimization determines the range of efficient portfolios subject 
to capacity/demand limitations, herein referred to as the constant demand efficient frontier (CDEF). These 
portfolios are the result of adding new capacity to the existing generation mix with their risk estimated 
based on the minimum CVaR at a range of feasible constant returns. At this stage, the total budget 
required to invest in each technology choice is determined. The budget weights of the portfolios on the 
CDEF are calculated based on the results of step (1) and are fed into the results of a conventional budget 
constrained portfolio optimization in step (2). This enables the comparison of CDEF portfolios with 
portfolios on the conventional efficient frontier (EF) obtained by the budget constrained portfolio 
optimization.    

In step (1), the objective function for a CVaR portfolio optimization problem is written as, 
 

(2) 

where  is the budget/value invested in technology choice , and  is the probability level that is set 
at . The result of this optimization provides the CDEF for the choice of technologies. In order to 
run the portfolio optimization under capacity/demand constraints, a relationship between the investment 
budget and generation capacity is required (as shown in Eq. 3). It is assumed that existing plants supply 
electricity as long as the PV of their net operating cash flows is not close to zero (a threshold can be 
defined to decide if a plant should be abandoned, however, in this study the limit is set to zero). Finally, 
the constraints are written as,  

 

 

 

(3) 

 

e Many profitable investments cannot be sold for their present value of net operating cash flows. The selling transaction of these 
assets is subject to incurring a substantial loss. Further work might be conducted to integrate the risk associated with asset selling 
into portfolio optimization framework. 
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where  is the set of all existing power plants,  is sent-out capacity,  is required capacity,  is 
output factor adjusted for auxiliary load, and is the unit market value (in A$ per nominal capacity 
installed) for technology . The second constraint limits the lower bound of budgeted investment 
expenditure (i.e. ).  

In step (2), a conventional budget-constrained portfolio optimization is conducted as per the objective 
function and constraints below, 

 
 

 
(4) 

where  is a vector of technology budget weights and  a vector array of ones. The result of this 
optimization provides the conventional EF for the choice of technologies. As mentioned, the CDEF, i.e. 
the results of the capacity-constrained portfolio optimization, will be overlaid on the results of this stage. 

The CVaR optimization is conducted through a reformulation suggested by Rockafellar and Uryasev 
[22], who replace the objective function with an auxiliary function that has more tractable computational 
properties.  

3. Case study 

It is assumed that an investor’s existing generation mix consists of 5 incumbent plants operating at 
time  (the beginning of the planning horizon):  MW black-coal steam turbines with a 
remaining economic life of 10 years (bkCFST10),  MW black-coal steam turbines with a 
remaining economic life of 20 years and 30 years (bkCFST20, bkCFST30), and  MW combined 
cycle gas turbine plant with a remaining economic life of 30 years (CCGT30). The total sent-out capacity 
of these existing plants amounts to 1579.2 MW.  

To meet a total required sent-out capacity of  MW, the investor has a choice of investment 
in a mix of the following technologies: (1) black coal-fired steam turbine (bkCFST), combined cycle gas 
turbine (CCGT), on-shore wind (onWind), or non-tracking photovoltaic (nonTrackPV). Table 1 shows 
technological data for the above technology choices.  

The modelling in the case study offers a distinctive perspective that reflects an investor’s exposure to 
political uncertainty, both carbon pricing and post-implementation uncertainty i.e. the investor is exposed 
to an established carbon pricing policy (and volatility in carbon prices) but with an uncertain future (post-
implementation uncertainty) regarding the stability of that policy. The model also assumes the existence 
of a relatively stable renewable portfolio standard regulation to subsidize power supply from renewable 
sources (in the Australian context this is the LRET mechanismf ). 

Table 2 summarizes the statistical characteristics of HPR distributions for the choice of existing and 
new technologies. These HPR distributions are derived from the result of the ROA model explained in 
section 0, and are used as return scenarios in the portfolio optimization stage. Notice that green-field 
CCGT investment has the highest HPR dispersion among the choice of new technologies and existing 
assets. While it has the largest maximum HPR value, the magnitude of its negative outcomes makes it a 
risky investment, as also indicated by its VaR and CVaR. Green-field wind investment has the highest 
expected HPR, with relatively stable and non-negative HPR outcomes. This signals that wind generation 
may be a dominant investment among the efficient portfolios to be calculated in the next section, whereas 
CCGT, bkCFST and nonTrackPV technologies have less potential for inclusion in efficient portfolios.  

 

f Other perspectives may include uncertainty over the future of LRET mechanism, as is a current issue in Australian climate policy. 
However, in order to maintain our focus on the framework development we intend to consider such viewpoints in further studies. 
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Table 1. Typical technological data for the choice of technologies 

Technology Nominal 
Capacity 
(MW) 

Capacity 
Factor (%) 

Auxiliary 
(%) 

Emission 
Intensity 
(tCO2/MWh) 

Thermal 
Efficiency 
(%) 

FOM 

(mA$/y) 

VOM 
(mA$/y) 

Economic 
Life (year) 

bkCFST 400 83 3 1 33.3 19.40 3.36 40 

CCGT 374 83 3 0.368 49.5 3.63 10.48 40 

onWind 100 38 0.5 0 - 3.98 3.94 30 

nonTrackPV 100 21 0 0 - 2.50 0 40 

Technological data collected from [23-25]. All other data including fuel prices, macroeconomic, and parameters used in price 
models are similar to that used in the authors’ previous work [16].  

Table 2. Statistical characteristics of HPR distributions 

Technology mean min max skewness VaR CVaR 

bkCFST 0.110 -0.482 0.318 -1.600 -0.062 -0.178 

CCGT 0.151 -0.528 1.990 1.617 -0.438 -0.477 

onWind 0.367 0.279 0.460 -0.425 0.285 0.283 

nonTrackPV -0.252 -0.321 -0.188 -0.499 -0.319 -0.320 

bkCFST10 0 -0.155 0.237 0.5777 -0.122 -0.136 

bkCFST20 0 -0.383 0.162 -0.328 -0.085 -0.149 

bkCFST30 0 -0.508 0.098 -2.993 -0.109 -0.219 

CCGT30 0 -0.581 1.235 0.850 -0.500 -0.535 

 
The result of the capacity-constrained portfolio optimization is shown in Figure 2, Panel 1. The CDEF 

is depicted by the solid line.g Note that the efficient portfolios on the CDEF do not have the same budget, 
which is in contrast to the EF from a classical budget-constrained portfolio optimization. Thus, the CDEF 
line does not represent the positively sloped risk-return trade-off found in the conventional EF as 
estimated by budget-constrained optimizations.  

In order to understand how the optimization model has identified optimal portfolios, 1000 random 
portfolios are generated and depicted on the same graph (Figure 2, Panel 1). These randomized portfolios 
are generated in such a way that the total sent-out capacity equals the required amount. A further 
examination of the randomized portfolios reveals that those with a higher CVaR and lower return, moving 
to the lower right, are mainly dominated by nonTrackPV generation capacity. Towards the upper left, 
portfolios gain a higher return and lower CVaR risk by the addition of onWind generation to the existing 
mix of technologies. The upper end of the CDEF line consists of a portfolio of existing assets and 100% 
of the additional capacity requirement met by onWind. Aside from the extremes of the CDEF line there is 
a third portfolio region where the portfolio CVaR risk approaches zero. In this region the investor has the 
opportunity to almost fully hedge their set of existing assets in the face of uncertain carbon pricing policy 
through their choice of additional capacity. Generally, a significant portion of such portfolios consists of 

 

g Note that the CDEF frontier is not necessarily a continuous smooth curve, given the limited size of the asset universe in our case 
study. In this analysis, however, we have chosen to draw the solid line based on 20 optimal portfolios to appropriately present the 
results. 



 Mahdi ShahNazari et al.  /  Energy Procedia   75  ( 2015 )  2649 – 2657 2655

onWind generation, although this capacity is quite variable (385 to 730 MW of nominal capacity), and the 
remainder is allocated to other green-field investment choices under various proportions. 

 

  

Figure 2. The results of portfolio optimization: Panel 1, capacity-constrained portfolio optimization; Panel 2, budget-
constrained portfolio optimization 

Finally, by superimposing the results of the capacity-constrained optimization, i.e. the CDEF 
portfolios, onto the conventional budget-constrained portfolios, we arrive at a model to better conceive 
the results of the capacity constrained optimization. For this purpose, the portfolio capacity weights are 
converted to value weights. The results of this step are shown in terms of risk-return dimensions in Figure 
2, Panel 2. Note that the risk and return scales on this graph are different from those on Figure 2, Panel 1. 
In Figure 2, Panel 2, portfolios are scaled based on their rate of return. The associated risk is the portion 
of those returns in terms of CVaR (rather than total return and absolute amount of CVaR in Figure 2, 
Panel 1).  

The efficient frontier, calculated among green-field investments, consists of 100% onWind generation. 
For comparison, other generation assets are shown on the same scale. Note how wind generation has the 
highest rate of return among the choice of generation assets. One of the most noticeable results, however, 
is in how the direction of CVaR risk in wind generation differs from other technologies. This is the result 
of a constantly positive return distribution for wind generation across all the various outcomes.  

4. Conclusion 

A decision support framework has been developed through a combination of a CVaR portfolio 
optimization and ROA and assists investors in evaluating their investment decisions for additional 
capacity, considering their existing power generation assets and uncertainty regarding the future of 
climate policies. The findings show that opportunities may exist for investors to fully hedge their 
generation assets against potential policy changes. A lower cost renewable technology, i.e. onshore wind 
generation, looks to be an attractive choice of technology for additional capacity. This result, however, 
should be seen in the light of shortcomings of the research, which is based on a particular case study. 

In conclusion, REC prices are correlated to carbon and electricity prices. This represents the 
interaction between the emission trading and the LRET scheme in Australia. Notwithstanding the ideal 
model developed here, the findings suggest that a clash of objectives between these GHG reduction 
schemes can be detrimental to the achievement of socially optimal GHG abatement costs. The model 
developed in this research has the potential to be combined with reliability analysis models and expanded 
to a dynamic model. The model developed for the correlation between carbon and REC prices can be 
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further extended in order to investigate the effect of interaction among climate policies. The uncertainty 
regarding the future of the LRET mechanism in Australia can also be added to the model. 
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