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Three-Dimensional Finite Element Analysis of Spatially Variable PVD 

Improved-Ground 

A stochastic approach that investigates the effects of soil spatial variability on 

stabilization of soft clay via prefabricated vertical drains (PVDs) is presented and 

discussed. The approach integrates the local average subdivision of random field 

theory with the Monte Carlo finite element technique. A special feature of the 

current study is the investigation of impact of spatial variability of soil 

permeability and volume compressibility in the smear zone as compared to that 

of the undisturbed zone, in conjunction with uncoupled 3D finite element 

analysis. A sensitivity analysis is also performed to identify the random variable 

that has the major contribution to the uncertainty of the degree of consolidation 

achieved via PVDs. The results of this study indicate that the spatial variability of 

soil properties has a significant impact on soil consolidation by PVDs; however, 

the spatial variability of soil properties in the smear zone has a dominating 

impact on soil consolidation by PVDs over that of the undisturbed zone. It is also 

found that soil volume compressibility has insignificant contribution to the 

degree of consolidation estimated by uncoupled stochastic analysis.  

Keywords: soil consolidation; prefabricated vertical drains; finite element 

method; Monte Carlo technique; soil spatial variability. 

Introduction 

Soils are highly variable from one point to another in the ground. This inherent variation 

of soils with respect to spatial location is known as soil spatial variability and is due to 

the uneven soil micro fabric, complex characteristics of geological deposition and stress 

history. Despite the fact that the impact of spatial variation of soil properties on soil 

consolidation has long been recognized by many researchers (e.g. Pyrah 1996; Rowe 

1972), the design of soil consolidation via prefabricated vertical drains (PVDs) has been 

traditionally carried out deterministically and thus can be misleading due to the 

ignorance of the uncertainty associated with the inherent spatial variation of soil 

properties. In general, acknowledging and quantifying the soil spatial variability in 
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geotechnical engineering has been usually considered using probabilistic modelling 

techniques that treat the soil properties as random variables resulting in more realistic 

solutions. Unlike deterministic analyses, which are based on single best estimate 

(average or characteristic) values of soil properties, the probabilistic analyses explicitly 

take into account the variable nature of soil properties, based on their statistical 

characteristics. 

The formulation and solution of stochastic problems are often very complicated. 

The review of relevant literature has indicated that although the significance of soil 

spatial variability in relation to ground improvement by PVDs has long been realized, 

little research has been made in this area. Given the analytical and numerical 

complexity of the problem, available research into the consolidation of highly variable 

soils has been limited to the following two categories: (i) one-dimensional consolidation 

due to vertical drainage, i.e. no PVDs, for either 1D or 2D geometries (e.g. Badaoui et 

al. 2007; Freeze 1977; Houmadi et al. 2012; Huang et al. 2010; Hwang and Witczak 

1984); and (ii) soil consolidation by PVDs considering only the uncertainty associated 

with the measurement errors of soil testing, while the inherent spatial variability of soil 

properties has not been taken into account and soil permeability, k, and coefficient of 

volume compressibility, mv, are combined into a single coefficient of consolidation  

(e.g. Hong and Shang 1998; Zhou et al. 1999). However, it has been suggested by many 

researchers (e.g. Huang and Griffiths 2010; Huang et al. 2010; Lee et al. 1992; Pyrah 

1996) that the use of k and mv as independent parameters is a better choice for the 

numerical analyses because the coefficient of consolidation cannot explicitly account 

for the true combined effects of k and mv, and usually yields incorrect pore pressure 

distributions. More recently, preliminary studies have been carried out by the authors 

(e.g. Bari et al. 2012; 2013; Shahin and Bari 2012) on soil spatial variability for 
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consolidation of soft clays by PVDs and have shown valuable insights into the impact 

of soil spatial variability on soil consolidation and enhanced conceptual understanding 

about the soil consolidation problem. However, the above mentioned works have 

notable limitations of either ignoring the smear effect or considering smear effect with 

reference to permeability changes alone and volume compressibility have been ignored. 

It has to be noted that, the smear effect that develops as a consequence of mandrel 

installation not only reduces k but also increases mv. The combined effect of reduced k 

and increased mv within the smear zone brings different behaviour from that of the 

undisturbed soil. Hence, for more accurate prediction of the behaviour of stabilized soil 

with PVDs, the changes of both k and mv in the smear zone as well as undisturbed zone 

need to be considered. However, due to the non-uniform spatial distribution of soil 

disturbance (which decreases with the increase of distance from the centre of the drain), 

the variability characteristics of the smeared soil may be significantly different from 

those of undisturbed soil. In addition, as expelled water must pass through the smear 

zone, the implication of variability parameters in this zone on the overall consolidation 

behaviour may be different from that of the variability parameters in the undisturbed 

zone. Furthermore, in case of multiple spatially variable parameters, the effect of one 

soil property on the estimated behaviour of soil consolidation may be relatively more 

significant than that of another soil property even with the same magnitude of spatial 

variation. Therefore, it is necessary to distinguish the spatially variable soil parameters 

that have the dominating influence on the system response as this leads to a potential 

reduction in the number of spatially variable parameters that need to be considered in 

the analysis. In this paper, a parametric study is carried out to investigate the relative 

significance of spatially variable soil properties in the smear zone over the undisturbed 

zone, where k and mv are individually treated as random variables. A sensitivity analysis 
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is also performed to identify the random variable that has the most significant 

contribution in the uncertainty of the degree of consolidation achieved via PVDs. 

Stochastic modelling of soil consolidation by PVDs 

Among several methods of modelling stochastic problems, the use of deterministic 

finite element analysis with random input soil parameters in a Monte Carlo framework 

has gained much popularity in recent years (Elkateb et al. 2003). Similar approach is 

adopted in the present work to investigate the effects of soil spatial variability on the 

behaviour of soil consolidation by PVDs. The approach merges the local average 

subdivision (LAS) method (to generate random permeability fields) and finite element 

modelling (to calculate soil consolidation by PVDs) into a Monte Carlo framework. For 

a certain problem of ground improvement by PVDs, the proposed approach can be 

applied using the following steps: 

(1) Create a virtual soil profile for the problem in hand which comprises a grid of 

elements that is assigned random values of soil properties different from one 

element to another across the grid. The virtual soil profile allows arbitrary 

distributions of soil properties to be realistically and economically modelled 

according to their statistical characteristics; 

(2) Incorporate the generated soil profile into a finite element modelling scheme of 

soil consolidation by PVDs; and 

(3) Repeat Steps 1 and 2 many times using the Monte Carlo technique so that a 

series of consolidation responses can be obtained from which the statistical 

distribution parameters and probability of achieving a target degree of 

consolidation can be estimated and analysed. 

Details of the steps used, as well as the numerical procedures, are described below. 
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Generation of virtual soil profile 

As mentioned earlier, k and mv are considered to be the random variables in the present 

study and are characterized in terms of their probability density function (PDF) i.e. the 

mean, μ, standard deviation, σ (the standard deviation can also be represented by 

variance, σ2, or coefficient of variation, υ, where, υ = σ/μ). While soil properties vary 

randomly in the ground, such variation is gradual and spatial dependency exists (Fenton 

and Vanmarcke 1990; Jaksa et al. 1997; Vanmarcke 1977). That is, a soil property at 

two separate spatial locations could be similar or otherwise, depending on the distance 

they are located apart and this is known as spatial correlation. Vanmarcke (1977) 

pointed out that adequate characterization of spatially variable soil properties requires 

consideration of such spatial correlation. The mean and standard deviation are the point 

statistical measures with no consideration of the spatial correlation structure of soil 

properties. Therefore, a third parameter (i.e. the scale of fluctuation, SOF) is usually 

introduced as an additional statistic to consider the spatial correlation of soil properties. 

The SOF is also known as the correlation length and is usually denoted as θ. Generally 

speaking, a large value of θ indicates smooth spatial variation of soil property of 

interest, whereas a small value of θ implies erratic variation. In this study, the variability 

of both k and mv is characterized by following a lognormal distribution and assumed as 

3D random fields. In selecting the probability distribution of k and mv, the authors 

reviewed a broad range of literature (e.g. Badaoui et al. 2007; Freeze 1977; Huang et al. 

2010) and concluded that it is reasonable to assume lognormal probability distribution 

for both k and mv. Since the same approach is used to generate random field of both k 

and mv, only the procedure to generate the random field of k is summarized herein. 

In the process of simulating the lognormally distributed random field of k, correlated 

local averages standard normal random field G(x) are first generated with zero mean, 
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unit variance and a spatial correlation function using 3D LAS technique (Fenton and 

Vanmarcke 1990). The correlation coefficient between k measured at a point x1 and a 

second point x2 is specified by a correlation function, ρ(τ), where τ = |x1 - x2| is the 

absolute distance between the two points. An isotropic (i.e. the spatial correlation 

lengths in the horizontal and vertical directions are taken to be equal) exponentially 

decaying (Markovian) spatial correlation function is used in the current study, as 

follows (Fenton and Griffiths 2008): 

   









k



2

exp                                                        (1) 

It should be noted that, in natural soil deposits, the correlation structures in any spatial 

direction are often different (i.e. anisotropic) due to the complex process of weathering, 

transportation and soil layering. However, for the purpose of a generic non-site specific 

study, it is reasonable to assume that the spatial correlation function in Equation (1) to 

statistically isotropic for both k and mv.  This means that the SOF in the horizontal 

direction (x), the direction normal to the plane of paper (y) and the vertical direction (z) 

are the same (i.e. θx = θy = θz = θ). This assumption does not alter the general trend and 

observation presented in this study, hence, will not affect the basic understanding that 

might be acquired by considering anisotropic correlation structure. It is worthy to note 

that the spatial correlation length is estimated with respect to the underlying normally 

distributed random field. 

Since k is assumed to be characterized statistically by a lognormal distribution, 

the correlated standard normal random field, G(x), generated using the LAS method is 

then transformed into a lognormal distribution by the following transformation function 

(Fenton and Griffiths 2008): 
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   iGk kki lnlnexp                                                      (2) 

where: G(i) and ki are, respectively, the local (arithmetic) average of a standard 

Gaussian random field G(x) over the domain of the i’th element and the soil property 

value assigned to that element; μlnk and σlnk are the mean and standard deviation of the 

underlying normal distribution; μlnk and σlnk are obtained from the specified permeability 

µk and σk using the following lognormal distribution transformation functions (Fenton 

and Griffiths 2008): 
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where: υk = σk/µk is the permeability coefficient of variation (COV). It should be noted 

that the random fields of both k and mv are generated using the 3D free access LAS 

computer code available online at http://www.engmath.dal.ca/rfem/. 

Finite-element modeling incorporating soil spatial variability  

With the complete subsurface profile having been simulated in the previous step, the 

spatial variability of k and mv is now known and can be employed as input in a finite 

element (FE) consolidation modeling of soil improvement by PVDs. In this study, all 

numerical analyses are carried out using a modified version of the finite element 

computational scheme ‘‘Program 8.6’’ from the book by Smith and Griffiths (2004) in 

which soil consolidation is treated as a 3D uncoupled (i.e. no displacement degrees of 

freedom only pore pressure degrees of freedom) problem. Originally “Program 8.6” was 

for general two (plane) or three dimensional analyses of the uncoupled consolidation 
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equation using implicit time integration with the ‘‘theta’’ method. The authors modified 

the source code of ‘‘Program 8.6’’ to allow for input of the volume compressibility and 

repetitive Monte-Carlo analyses. Since a single-drain analysis is often enough to 

investigate the soil consolidation behavior, the effect of soil spatial variability is 

examined using a unit cell of soil around a single drain. The consolidation problem 

considered in this study implies a unit cell (axisymmetric) of actual 3D geometry of 

PVD system (see Figure 1a): L = 1.0 m, re = 0.8463 m, rs = 0.2821 m and rw = 0.0637 

m, where L is the maximum vertical drainage distance; re is the radius of equivalent soil 

cylinder with impermeable perimeter or the radius of zone of influence; rs is the radius 

of the smear zone; and rw is the equivalent radius of the drain. However for the finite-

element analyses, the circular influence area of the cylindrical unit cell is transformed 

into an equivalent square influence area (see Figure 1b) of side length S, such that S = 

√πre
2 (i.e. S = 1.5 m). The selection of square influence area instead of the equivalent 

circular influence area is to avoid the unfavorable mesh shape as the LAS method 

requires square (or rectangular) elements to accurately compute locally averaged values 

of k and mv for each element across the grid. For the same reason, square shaped smear 

zone of side length Ss = √πrs
2 and PVD of side length Sw = πrw/2 are employed. In order 

to check the validity of the transformation process of the actual cylindrical geometry to 

the “equivalent” square geometry for the FE analysis, a comparison is performed under 

the deterministic condition for the FE solution using a square mesh of an element size of 

0.1 m and Hansbo’s (1981) unit cell solution, and the results are shown in Figure 2. It 

can be seen that the two solutions are in good agreement despite the slight discrepancy 

at the earlier stage of consolidation, which may be attributed to the fact that the FE 

method is essentially a free strain analysis while Hansbo’s (1981) solution is based on 

an equal strain assumption. It should be noted that, for simplicity, the well resistance 
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factor which may affect the rate of consolidation is not considered in the FE analysis. 

This is due to the fact that the discharge capacities of most PVDs available in the 

market are relatively high, and hence the well resistance effect can be ignored in most 

practical cases (Abuel-Naga et al. 2012; Chu 2004). In soil stabilization by PVDs, soil 

consolidation takes place by combined vertical and horizontal (radial) drainage of 

water. However, for the case of PVDs, the overall consolidation is governed by the 

radial (horizontal) flow of water rather than the vertical flow as the drainage length in 

the horizontal direction is much less than that of the vertical direction and thus kh is 

often much higher than that of kv (Hansbo 1981). Under this reasoning, only the 

component of the overall consolidation resulted from the horizontal drainage is 

considered to be random in the current study. To simulate such condition, the 

permeability in the vertical (z) direction, kz is set as to zero in the FE analysis. Since the 

permeability variance of even one of the directions is rarely known with any accuracy, 

the two components of the horizontal permeability (i.e. kx and ky) are assumed as 

isotropic (i.e. kx = ky). In order to take the smear effect into consideration, two 

independent random fields of both k and mv are generated separately (one for the smear 

zone and another for the undisturbed zone) employing the specified statistical 

parameters (µ, σ and θ) of each zone. Both random fields are then mapped onto the 

corresponding grid in the finite element mesh.  

Generally speaking, discrepancy is inevitable in any discretization scheme of 

finite element (FE) modelling; however, it can be reduced by providing small elements 

in FE mesh. Although the accuracy of FE solutions increases with the increase of the 

number of elements in the mesh, a trade-off between accuracy and run-time efficiency 

is necessary due to limited computational resources. Previous literature includes some 

recommendations regarding the optimum ratio of the SOF to the size of finite elements. 
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For example, Ching and Phoon (2013) stated that this ratio should be ≥ 20, whereas 

Harada and Shinozuka (1986) pointed out that it should be ≥ 2. In the current study, a 

sensitivity analysis on two different FE meshes with element sizes of 0.1m and 0.05m is 

conducted. For a certain SOF, two random fields for the two selected meshes are 

generated with the same seed. The degree of consolidation is computed from the 

subsequent FE analysis for both random fields and checked whether that they are nearly 

identical or not. Several different random seeds and SOFs are tested, for permeability 

coefficient of variation 
hk = 200% and compressibility coefficient of variation 

vm = 

30% and the results are presented in Figure 3. It can be seen that for certain seed and 

SOF, U(t) obtained from the two meshes of element sizes of 0.1m and 0.05m are almost 

identical with the only exception when SOF is as low as 0.125m, which complies with 

the recommendation given by Harada and Shinozuka (1986). Based on this observation 

and in order to comply with the minimum correlation length used, a mesh with an 

element size of 0.1 m × 0.1 m × 0.1 m (see Figure 1b) is adopted in the current study. It 

should be noted that the 3D mesh used consists of 2250 eight node first order 

hexahedral elements and remained fixed for all selected SOF. Therefore, the minimum 

and maximum ratios of SOF to FE size are thus equal to 2.5 and 100, respectively (the 

minimum and maximum SOFs are chosen to be 0.25m and 10.0m, respectively). As the 

discrepancy in the FE solutions decreases when the ratio of SOF to FE size increases, a 

systematic bias might exist in the results presented in this study particularly for very 

small SOF but diminishes as the SOF increases. 

To simulate reduced permeability condition in the smear zone during the FE 

analysis, the mean values of k in the undisturbed and smear zones are taken to be equal 

to 	= 0.03 m/year and	 	= 0.015 m/year, respectively, which means that / = 

2.0. This is because, on the basis of laboratory experiments carried out on Bangkok 
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clay, Bergado et al. (1991) reported that kh/ks is approximately 1.5–2.0. on the other 

hand, Indraratna and Redana (1998) also reported that kh/ks is in the range of 2–3. 

Moreover, Terzaghi et al. (1996) stated that a ratio of kh/ks equal to 2.0 is usually 

assumed when there are no experimental data available. Walker (2006) indicates that 

the value of the smear zone compressibility could increase by about 20% from that of 

the undisturbed zone. Therefore, to consider increased compressibility condition in the 

smear zone, the mean value of mv in the undisturbed and smear zones are taken to be 

equal to 	 8.0×10-4 m2/kN and	 	 9.6×10-4 m2/kN, respectively, which 

means that /	 = 1.2. The effect of spatially variable of k and mv on the 

stochastic behavior of soil consolidation by PVDs is investigated over a range of 

different combinations of standard deviation, σ, and scale of fluctuation, θ. As stated 

earlier, both k and mv are assumed to be lognormally distributed.  It should be noted that 

σ is presented herein in a normalized form as υ (i.e. coefficient of variation). The 

following values of υ and θ are considered for the parametric study presented in this 

paper: 

 υk (for both smear and undisturbed zones) =     50, 100, 200 (%)  

 (for both smear and undisturbed zones) = 10, 20, 30 (%)  

 θ (for both k and mv, and smear and undisturbed zones) = 0.25, 0.5, 1, 5, 10 (m)  

It can be noticed that, the selected range of COV of mv is much less than that of the 

range selected for COV of k. This is due to the fact that k is considered to be the most 

significant spatially random soil property affecting soil consolidation, with COV as high 

as 300%, while mv usually possess COV of up to 30% as reported in the literature (e.g. 

Beacher and Christian 2003; Kulhawy et al. 1991; Lee et al. 1983). However, the range 

of θ is assumed to be the same for both k and mv. This assumption is reasonable 
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because, if one thinks that the spatial correlation structure of a soil is caused by changes 

in the constitutive nature of the soil over the ground, then both k and mv would have 

similar correlation lengths. Since little is currently known about the typical COVs and 

SOFs of soils in the smear zone, the same range of υ and θ are selected for both smear 

and undisturbed zones. It should be noted that kh and mv are assumed to be uncorrelated 

in this study, which is due to the lack of data available in the literature to identify the 

nature and level of correlation between k and mv. For the problem of one dimensional 

consolidation, Freeze (1977) reported that non-zero cross-correlation between k and mv 

has a minor impact on the stochastic results of soil consolidation. In addition, the 

introduction of cross-correlation decreases the variability between k and mv. In other 

words, the assumption of independence between k and mv increases the overall 

variability held in the model which leads to a slightly conservative results. Under this 

reasoning, k and mv are assumed to be independent in the current study rather than 

correlated, which is deemed to be reasonable instead of assuming any erroneous 

correlation. 

In order to identify the statistical parameters in the smear and undisturbed zones, 

υ and θ of k and mv are denoted with appropriate subscripts “s” and “u” depending on 

whether they are specified for smear zone or undisturbed zone, where s refers to the 

smear zone while u refers to undisturbed zone. An initial pore water pressure of 100 kPa 

dissipates in a single drain is considered in all FE analyses. A single generation of a 

random field and the subsequent finite-element analysis of that field are termed 

“realization”. For an individual realization, the degree of consolidation, U(t), at any 

certain consolidation time, t, is calculated with the help of the following expression: 

 
0

)(
1)(

u

tu
tU                                                              (5) 
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where: u0 = initial pore pressure; and ū(t) = average pore pressures at any time of the 

consolidation process. It has to be emphasized that ū(t) of the consolidation process is 

calculated by numerically integrating the pore pressure across the volume of each 

element at a particular time, summing the contribution of each element and dividing by 

the total mesh volume (element volume are also calculated by numerical integration). 

Repetition of process based on the Monte Carlo technique  

Following the procedures of the Monte Carlo technique, the process of generating 

random fields of k and mv and performing the finite element analysis is repeated 

numerous times until an acceptable accuracy of the estimated statistics of U(t) is 

achieved. It was found that 2000 realizations are sufficient to give reasonably stable 

output statistics for the first two moments (i.e. μU and U) of the degree of 

consolidation. The obtained outputs from the suite of 2000 realizations of the Monte 

Carlo simulation are collated and statistically analyzed to produce estimates of the mean 

and standard deviation of the degree of consolidation. In this study, at any given time t, 

the mean of the degree of consolidation based on the excess pore water pressure, μU, is 

estimated by utilizing the geometric average (considered as the representative mean) of 

ū(t), as follows: 
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The standard deviation of the average degree of consolidation at any time t defined by 

the pore water pressure, σU, is estimated as follows: 
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where: nsim is the number of Monte Carlo simulations; (ū(t)/u0)i and (U(t))i are, 

respectively, the ratio of the average excess pore pressure to the initial excess pore 

water pressure and the degree of consolidation at any time t for the ith simulation (see 

Equation (5)). The use of the geometric average for ū(t) in computing μU is due to the 

fact that the flow of water in 2D or 3D spaces compared to the 1D space has more 

freedom to avoid low permeability zones by detouring around them and therefore the 

geometric average may be a better estimator (e.g. Dagan 1989) for computing the 

representative mean of the average excess pore water pressures. For the same reason, 

Huang et al. (2010) also used the geometric average in determining the equivalent 

coefficient of consolidation for a 2D system. 

Probabilistic interpretation 

The estimation of the probability that a deterministic degree of consolidation 

overestimates the true consolidation value is one of the main objectives of the stochastic 

consolidation analyses. Such probability can be represented either by the probability of 

achieving a target degree of consolidation, Us, (i.e. P[U(ts)≥ Us(ts)]) at any specified 

consolidation time, ts, or the probability of required time t to achieve Us that is less than 

or equal to ts (i.e. P[t(Us) ≤ ts(Us)]). In this study, the later process is employed, i.e. 

P[t(Us) ≤ ts(Us)] is estimated. This is because determining probability from a set of data 

requires establishment of a reasonable probability distribution for the data set. However, 

the obtained fit using the raw data of U(ts) was typically poor while the distribution of 

t(Us) obtained from the suite of the 2000 realizations is reasonably fitted with lognormal 

distribution and gives sufficiently reasonable approximation to the P[t(Us) ≤ ts(Us)]. The 

legitimacy of the lognormal distribution hypothesis for t(Us) is examined by the well-

known Chi-square test through the frequency density plot of t(Us) data obtained from 



16 
 

the 2000 realizations and a fitted lognormal distribution is superimposed. This process 

is performed for many combinations of υ and θ at several different Us. For each of the 

cases considered, the goodness-of-fit p-value is found to be high enough to support the 

rationality of the lognormal distribution hypothesis of simulated t(Us) data. Figure 4 

illustrates a typical example of the histogram of t(Us) for the case of  = 50%,  = 

200%,  10%,  30%,  =	  =    = 0.5m at Us = 90%, along 

with their fitted lognormal distributions. The goodness-of-fit test at 5% significance 

(equivalent to 95% confidence) level yielded p-value of 0.4, indicating that there is very 

little evidence in the simulated t(Us) sample against the null hypothesis.  

By accepting the lognormal distribution for t at any given Us, the statistical 

moments  sUt and  sUt that are representing the mean and standard deviation of the 

lognormally distributed t that achieves Us are calculated from the suite of 2000 

realizations using the following transformation functions: 

    s

n
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Ut Ut

n
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where: ti(Us) is the t from the i’th realization (i = 1, 2, 3, …, nsim) at given Us and nsim = 

total number of realizations = 2000. As 90% consolidation is usually acceptable for the 

purpose of design of any soil improvement project (Bo et al. 2003), in this study, it is 

assumed that the target degree of consolidation is 90% and for convenience, it is simply 

denoted as U90. The probability that t is less than or equal to ts that achieves U90 can 

then be obtained from the following lognormal probability distribution transformation: 
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where: P [.] is the probability of its argument; Φ(.) is the standard normal cumulative 

distribution function;  and 	are, respectively, the mean and standard 

deviation of the underlying normally distributed lnt(Us) and can be estimated from 

 and  with reference to Equations (3) and (4), as follows: 
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Following the procedure set out above, probabilities of required time t to achieve Us that 

is less than or equal to ts can be estimated for any combination of υ and θ, and the 

stochastic behaviour of soil consolidation by PVDs can be investigated. 

Results and discussion 

In order to investigate the relative significance of the spatially variability of the smear 

zone over the undisturbed zone and to identify the random variable that has the major 

contribution to the uncertainty of the degree of consolidation, a series of 3D 

consolidation analyses are performed. The sensitivity of the statistics of the degree of 

consolidation and the probability of required time t to achieve Us that is less than or 

equal to ts to the statistically defined input data (i.e. υ and θ) in relation to both k and mv 

is examined. For each selected set of υ and θ, 2000 Monte Carlo simulations are 

performed. The obtained consolidation responses are then statistically analyzed to 

estimate µU, σU and P[t(U90) ≤ ts(U90)] using the excess pore water pressure. Since the 
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general trends of μU, σU and P[t(U90) ≤ ts(U90)] remain unaltered over the specified 

range of υ and θ, only the results of a few of the tests conducted are presented in Figures 

5−11, which are believed to be sufficient to demonstrate the main features of the 

influence of spatial variability of k and mv on soil consolidation by PVDs. In Figures 

5−11, μU, σU and P[t(U90) ≤ ts(U90)] are expressed as a function of time t. Prior to 

placing the stochastic analyses into context, an initial deterministic solution has been 

performed assuming a homogeneous soil. It should be noted that the deterministic 

solution of this case yields U90 at t = 0.73 year (i.e. tD90 = 0.73 year). The results 

obtained from this study are described below. 

Effect of variation of υ and θ on the mean of U 

The effects of increasing υu and υs on µU at fixed value of θu = θs = 0.5m is examined in 

Figure 5, which also includes the deterministic solution of no soil variability. It can be 

seen from Figure 5a that at any consolidation time, there is a slight reduction in µU for 

spatially varied soils compared to the deterministic case. The nearly identical curves for 

all cases of u (  and	 are fixed at 50% and 10% respectively) plotted in the figure 

indicate that the effect of increasing υu on µU remains marginal. The effect of υs on μU at 

fixed values of	  = 50% and = 10% is illustrated in Figure 5b, which shows that 

any change in υs has a significant impact on the estimated values of µU. At any certain 

consolidation time, µU decreases with the increase of υs, and the decreasing rate of µU 

consistently increases with the increase of υs. The comparison between Figures 5a and 

5b reveals that the effect of υs on µU is dominating. 

Figure 6 highlights the effects of increasing θu and θs on µU at fixed values of 

	= 	= 50% and  	= 10%. Virtually, the identical curves of µU in Figure 

6a for all θu at a fixed value of  = = 0.25m, indicate that µU is more or less 
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independent of θu. Similar to θu, the influence of θs (  and  are fixed at 0.25m) 

on µU is also marginal as can be seen in Figure 6b. In general, it can be observed that 

even though the results for various θ are drawn in Figure 6, they are embodied into a 

single curve, implying that the obtained results at different θ are very close and cannot 

be distinguished. The virtually identical curves for all θ at each plot demonstrate that µU 

is largely independent of θ. This is expected as in principle θ does not affect the local 

average mean of the process.  

Effect of variation of υ and θ on the standard deviation of U 

The influence of υu and υs on σU at a fixed value of θu = θs = 0.5m is depicted in Figure 

7. For a fixed value of s  ( 	 and 	 are, respectively, 50% and 10% in this case), 

increasing υu has a marginal effect on σU, as shown in Figure 7a. Figure 7b shows the 

effect of υs on σU at fixed values of 	= 50% and 	= 10%, and from which it can 

be seen that at any certain consolidation time, σU increases significantly with the 

increase of υs, implying the dominant effect of υs on the estimated values of σU. 

Figure 8 illustrates the effect of varying θu and θs on σU at fixed values of 	= 

	= 50% and  	= 10%. In Figure 8a, it can be seen that similar to the effect 

of θu on µU, σU remains almost identical for varying θu with a fixed value of  = = 

0.25m. On the other hand, the estimated σU for different values of θs is plotted in Figure 

8b at a fixed value of  = = 0.25m, which illustrates that unlike θu, θs has a 

considerable impact on the estimated values of σU. It can also be seen that for the 

consolidation problem under consideration, the increasing rate in σU with the increase of 

θ becomes insensitive when θ ≥ 5.0m. 
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Effect of variation of υ and θ on the probability of required time t to achieve U90 

that is less than or equal to ts 

The influence of the smear zone parameters over the undisturbed zone parameters in 

relation to the probability of required time t to achieve U90 that is less than or equal to ts 

are investigated in Figures 9 and 10. The deterministic time of achieving 90% 

consolidation, tD90, is also shown in the figures by vertical solid lines that give P[t(U90) 

≤ ts(U90)] at that time, for any combination of υ and θ. 

The effects of υu and υs on P[t(U90) ≤ ts(U90)] at a fixed value of θu = θs = 0.5m is 

demonstrated in Figure 9. It can be seen from Figure 9a that, in general, the effect of 

increasing u  ( 	 and 	 are fixed at 50% and 10%, respectively) on P[t(U90) ≤ 

ts(U90)] remains marginal. The effect of υs at fixed values of 	= 50% and 	= 10% 

is shown in Figure 9b, which shows that varying the values of υs has a considerable 

impact on the estimated values of P[t(U90) ≤ ts(U90)]. At any certain consolidation time, 

P[t(U90) ≤ ts(U90)] decreases significantly with the increase of υs.  The overall 

observation that can be derived from comparing the results in Figure 9 is that the effect 

of υs on P[t(U90) ≤ ts(U90)] is dominant. 

Figure 10 investigates the effects of θ on P[t(U90) ≤ ts(U90)] at fixed values of 

	= 	= 50% and  	= 10%.  In Figure 10a, the influence of increasing θu 

on P[t(U90) ≤ ts(U90)] is shown at  = = 0.25m, and the results yield almost 

identical curves indicating that varying the values of θu has little or no impact on the 

probabilistic behavior of degree of consolidation. On the other hand, the estimated 

P[t(U90) ≤ ts(U90)] for different values of θs is plotted in Figure 10b at a fixed value of 

 = = 0.25m.  It can be seen that unlike θu, θs has a considerable impact on the 

estimated values of P[t(U90) ≤ ts(U90)]; however, at any certain consolidation time 

P[t(U90) ≤ ts(U90)] becomes insensitive to θs when θs ≥ 5.0m. The comparison between 
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Figures 10a and 10b reveals that, the effect of θs on P[t(U90) ≤ ts(U90)] is more 

significant than θu. It is interesting to know that the deterministic solution yields 

P[t(U90) ≤ ts(U90)] < 50% for all combinations of values of υu, υs, θu, and θs, as can be 

seen in Figures 9 and 10. 

Effect of the degree of variability of mv on µU, σU and P[t(U90) ≤ ts(U90)] of U 

In order to determine the relative contribution of spatially variable k and mv to the 

uncertainty of the degree of consolidation at any certain consolidation time, a sensitivity 

analysis consists of a total of five stochastic simulation tests is performed. The COV of 

k is fixed at 100% in all five tests, while the COV of mv is varied as 25%, 33%, 50%, 

100% in addition to one simulation test with no variability in mv (i.e. homogeneous with 

uvm and 
svm ).  The specified COV for k and mv is kept the same for both the 

undisturbed and smear zones. A fixed value of  su  0.5m is considered for k and 

mv. The results obtained from this sensitivity analysis are shown in Figure 11. It can be 

seen that U  (Figure 11a), U (Figure 11b) and P[t(U90) ≤ ts(U90)] (Figure 11c) are 

almost identical for each conducted test implying that the variability of mv has a little or 

no effect on the estimated U , U and P[t(U90) ≤ ts(U90)] based on excess pore 

pressure. However, when kmv
  , a noticeable effect is found . For this case, U , U

and P[t(U90) ≤ ts(U90)] are slightly higher than those obtained from the case with 

homogeneous mv. Therefore, the variability of mv has a negligible impact on the degree 

of consolidation estimated based on the excess pore pressure. Consequently, for the 

uncoupled stochastic analysis of soil consolidation by PVDs, mv can be considered to be 

deterministic (i.e. spatially constant). It should be emphasised that the possible 

reduction in the number of spatially variable parameters allows the superfluous 
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complexity of the stochastic problem to be reduced in conjunction with the computation 

time. It may also reduce the cost of the site investigation program required for 

characterizing the soil spatial variability.  

Conclusions 

This paper used the random field theory and finite element modeling to investigate the 

relative significance of soil spatially variability in the smear and undisturbed zones in 

soil improvement by prefabricated vertical drains. A sensitivity analysis was also 

performed to identify the most significant random variable affecting stochastic response 

of soil consolidation by PVDs. The coefficient of permeability, k, and coefficient of 

volume compressibility, mv, were treated as independent random variables and 

uncoupled 3D finite element analysis was applied. The effect of coefficient of variation, 

υ, and spatial correlation or scale of fluctuation, θ, of the undisturbed zone on the 

estimated mean and standard deviation of the degree of consolidation was found to be 

marginal. On the other hand, the estimated statistics and probability associated with the 

degree of consolidation were found to be highly sensitive to υ and θ of the spatially 

variable soil properties at the smear zone. This result indicates that the probabilistic 

behavior of soil consolidation is governed by the spatial variation of the soil properties 

of the smear zone. Since the spatial variability of the smear zone will possibly be 

different from that of the undisturbed zone, this observation has important implications 

in the sense that, modeling soil consolidation with the same υ and θ for both zones (i.e. 

undisturbed and smear) that are equal to the υ and θ of the smear zone does not 

significantly affect the final results. It is also found that the variability of mv has a 

negligible contribution to the uncertainty of the degree of consolidation estimated via 

the uncoupled stochastic analysis, thus, can be considered to be deterministic (i.e. 
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spatially constant). This is an important observation from the point of view that the 

reduction in the number of spatially variable parameters not only reduces the 

computation time but also minimizes the cost of the site investigation program required 

to establish the soil variability characterization. Overall, the results obtained from this 

research highlight valuable insights into the impact of soil spatial variability on soil 

improvement by PVDs and clearly demonstrate the potential of stochastic analyses in 

routine design practice. 

References 

Abuel-Naga, H. M., Pender, M. J., and Bergado, D. T., 2012. Design curves of 
prefabricated vertical drains including smear and transition zones effects. 
Geotextiles and Geomembranes, 32, 1-9. 

Badaoui, M., Nour, A., Slimani, A., and Berrah, M. K., 2007. Consolidation statistics 
investigation via thin layer method analysis. Transport in Porous Media, 67(1), 
69-91. 

Bari, M. W., Shahin, M. A., and Nikraz, H. R., 2012. Effects of soil spatial variability 
on axisymmetric versus plane strain analyses of ground improvement by 
prefabricated vertical drains. International Journal of Geotechnical Engineering, 
6(2), 139-147. 

Bari, M. W., Shahin, M. A., and Nikraz, H. R., 2013. Probabilistic analysis of soil 
consolidation via prefabricated vertical drains. International Journal of 
Geomechanics, ASCE, 13(6), 877-881. 

Beacher, G. B., and Christian, J. T., 2003. Reliability and Statistics in Geotechnical 
Engineering. John Wiley & Sons, Chichester, England. 

Bergado, D. T., Asakami, H., Alfaro, M. C., and Balasubramaniam, A. S., 1991. Smear 
effects of vertical drains on soft Bangkok clay. Journal of Geotechnical 
Engineering, ASCE, 117(10), 1509-1530. 

Bo, M. W., Chu, J., Low, B. K., and Choa, V., 2003. Soil Improvement: Prefabricated 
Vertical Drain Techniques. Thomson Learning, Singapore. 

Ching, J., and Phoon, K.-K., 2013. Effect of element sizes in random field finite 
element simulations of soil shear strength. Computers & structures, 126(1), 120-
134. 

Chu, J., 2004. Practical considerations for using vertical drains in soil improvement 
projects. Geotextiles and Geomembranes, 22(1), 101-117. 



24 
 

Dagan, G., 1989. Flow and transport in porous media. Springer, New York. 

Elkateb, T., Chalaturnyk, R., and Robertson, P. K., 2003. An overview of soil 
heterogeneity: quantification and implications on geotechnical field problems. 
Canadian Geotechnical Journal, 40(1), 1-15. 

Fenton, G. A., and Griffiths, D. V., 2008. Risk assessment in geotechnical engineering. 
Wiley, New York. 

Fenton, G. A., and Vanmarcke, E. H., 1990. Simulation of random fields via local 
average subdivision. Journal of Engineering Mechanics, 116(8), 1733-1749. 

Freeze, R. A., 1977. Probabilistic one-dimensional consolidation. Journal of 
Geotechnical Engineering Division, 103(GT7), 725-742. 

Hansbo, S., 1981. Consolidation of fine-grained soils by prefabricated drains. 
Proceedings of the 10th International Conference on Soil Mechanics and 
Foundation Engineering, Stockholm, Sweden, 677-682. 

Harada, T., and Shinozuka, M., 1986. The scale of correlation for stochastic fields. 
Technical Report, Department of Civil Engineering and Engineering Mechanics, 
Columbia University, New York. 

Hong, H. P., and Shang, J. Q., 1998. Probabilistic analysis of consolidation with 
prefabricated vertical drains for soil improvement. Canadian Geotechnical 
Journal, 35(4), 666-677. 

Houmadi, Y., Ahmed, A., and Soubra, A.-H., 2012. Probabilistic analysis of a one-
dimensional consolidation problem. Georisk: Assessment and Management of 
Risk for Engineered Systems and Geohazards, 6(1), 36-49. 

Huang, J., and Griffiths, D. V., 2010. One-dimensional consolidation theories for 
layered soil and coupled and uncoupled solutions by finite-element method. 
Géotechnique, 60(9), 709-713. 

Huang, J., Griffiths, D. V., and Fenton, G. A., 2010. Probabilistic analysis of coupled 
soil consolidation. Journal of Geotechnical and Geoenvironmental Engineering, 
136(3), 417-430. 

Hwang, D., and Witczak, M. W., 1984. Multidimensional probabilistic consolidation. 
Journal of Geotechnical Engineering, 110(8), 1059-1077. 

Indraratna, B., and Redana, I. W., 1998. Laboratory determination of smear zone due to 
vertical drain installation. Journal of Geotechnical and Geoenvironmental 
Engineering, ASCE, 124(2), 180-185. 

Jaksa, M. B., Brooker, P. I., and Kaggwa, W. S., 1997. Inaccuracies associated with 
estimating random measurement errors. Journal of Geotechnical and 
Geoenvironmental Engineering, 123(5), 393-401. 

Kulhawy, F. H., Roth, M. J. S., and Grigoriu, M. D., 1991. Some statistical evaluations 
of geotechnical properties. Proceedings of the 6th International Conference on 



25 
 

Applied Statistical Problems in Civil Engineering (ICASP6), Mexico City, 705-
712. 

Lee, I. K., White, W., and Ingles, O. G., 1983. Geotechnical engineering. Pitman, 
London. 

Lee, P. K., Xie, K. H., and Cheung, Y. K., 1992. A study on one-dimensional 
consolidation of layered systems. International Journal of Numerical and 
Analytical Methods in Geomechanics, 16(11), 815-831. 

Pyrah, I. C., 1996. One-dimensional consolidation of layered soils. Géotechnique, 
46(3), 555-560. 

Rowe, P. W., 1972. The relevance of soil fabric to site investigation practice. 
Géotechnique, 22(2), 195-300. 

Shahin, M. A., and Bari, M. W., 2012. Modeling of ground improvement by 
prefabricated vertical drains in highly variable soils. International Conference 
on Ground Improvement and Ground Control (ICGI), University of 
Wollongong, Australia, 321-335. 

Smith, I. M., and Griffiths, D. V., 2004. Programming the finite element method. John 
Wiley and Sons. 

Terzaghi, K., Peck, R. B., and Mesri, G., 1996. Soil mechanics in engineering practice. 
Wiley Interscience, New York. 

Vanmarcke, E. H., 1977. Probabilistic modelling of soil profiles. Journal of 
Geotechnical Engineering Division, 103(11), 1227-1246. 

Walker, R. T., 2006. Analytical solutions for modeling soft soil consolidation by 
vertical drains. Thesis (PhD). University of Wollongong, Wollongong, 
Australia. 

Zhou, W., Hong, H. P., and Shang, J. Q., 1999. Probabilistic design method of 
prefabricated vertical drains for soil improvement. Journal of Geotechnical and 
Geoenvironmental Engineering, 125(8), 659-664. 

 
 

 

 

 

 

 



26 
 

 

 
 

  

   
 

Figure 1. Schematic diagram of soil consolidation with prefabricated vertical drain: (a) 
cylindrical unit cell; (b) equivalent square geometry with FE mesh discretization. 
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Figure 2. Comparison between finite element (square mesh) and Hansbo’s solution. 

 

 

 

Figure 3. Mesh sensitivity analysis under different scales of fluctuation and seeds. 
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Figure 4. Typical example of frequency density histogram of simulated t(U90) with 

fitted lognormal distribution for  = 50%,  = 200%,  10%,  30%, 

 =	  =  = 0.5m. 
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Figure 5. Effect of: (a) υu and; (b) υs on µU for θu = θs = 0.5m. 
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Figure 6. Effect of: (a) θu and; (b) θs on µU for 	= 	= 50% and  	= 10%. 
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Figure 7. Effect of: (a) υu and; (b) υs on σU for θu = θs = 0.5m. 
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Figure 8. Effect of: (a) θu and; (b) θs on σU for 	= 	= 50% and  	= 10%. 
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Figure 9. Effect of: (a) υu and; (b) υs on P[t(U90) ≤ ts(U90)] for θu = θs = 0.5m. 
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Figure 10. Effect of: (a) θu and; (b) θs on P[t(U90) ≤ ts(U90)] for 	= 	= 50% and 

 	= 10%. 
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Figure 11. Effect of degree of variability of mv on (a) μU (b) σU and (c) P[t(U90) ≤ 

ts(U90)] for θu = θs = 0.5m. 
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