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Abstract

This paper studies the asymptotic stability problem for a class of impulsive switched
systems with time invariant delays based on linear matrix inequality(LMI) approach.
Some sufficient conditions, which are independent of time delays and impulsive
switching intervals, for ensuring asymptotical stability of these systems are derived
by using a Lyapunov-Krasovskii technique. Moreover, some appropriate feedback
controllers, which can stabilize the closed-loop systems, are constructed. Illustrative
examples are presented to show the effectiveness of the results obtained.
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1 Introduction

Studies on dynamic systems with impulsive effects and switchings have arisen
in various disciplines of science and engineering in recent years [1]-[5]. These
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systems are usually called impulsive switched systems. They present an effec-
tive and a convenient way to model those physical phenomena which exhibit
abrupt changes at certain time points due to impulsive inputs or switchings.
For these impulsive switched systems, there is an increasing interest among
the control community in terms of stability analysis and the design of stabi-
lizing feedback controllers so as to achieve a required stability performance.
For example, in [1], some sufficient conditions for asymptotic stability of linear
impulsive switched systems are obtained and the Lyapunov direct method is
used to design linear feedback controllers which can robustly stabilize impul-
sive switched systems. In [2], a unified approach, which only requires a non
increasing Lyapunov function along each part or unit of a system, is devel-
oped for analyzing the stability of impulsive switched and hybrid systems. For
stability with definite attenuance, robust H∞ stability and stabilization with
definite attenuance for impulsive switched systems with time-varying uncer-
tainty are studied by using the LMI method in [3]. In addition, a procedure is
also presented in [3] for the construction of a robust H∞ static state feedback
controller that guarantees both robust stability with definite attenuance and
robust H∞ performance.

On the other hand, time delay systems have also received an increasing atten-
tion among the control community. See, for example [6]-[9] and the references
therein. The Lyapunov-Krasovskii Functional technique [6] is a useful tech-
nique, which extends the Lyapunov stability theory to time delay systems.
Most of the results obtained for time delay systems are based on either Ric-
cati inequalities or linear matrix inequalities. In this paper, our aim is to apply
the Lyapunov-Krasovskii technique to impulsive delayed switched systems, to
derive sufficient conditions for stability performance and to design feedback
controllers based on the linear matrix inequalities approach. Our results are
independent of time delays and impulsive and switching intervals. Some sta-
bility criteria expressed in terms of linear matrix inequalities are presented.
They are easy to solve using the LMI toolbox within the Matlab environment.

The rest of the paper is organized as follows. In Section 2, an uncertain im-
pulsive switched system with time delay is introduced. In Section 3, stability
results based on the Lyapunov-Krasovskii method are obtained and some sta-
bility criteria expressed in terms of LMIs are derived. In Section 4, numerical
examples are solved so as to illustrate the results obtained. Finally, we draw
some concluding remarks in Section 5.
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2 System description

Consider the following impulsive switched system with time delay





ẋ(t) = Âikx(t) + B̂ikx(t− h) + Ciku(t), t 6= tk

∆x(t) = Ik(t, x) = Dkx(t), t = tk

x(t) = ϕ(t), −τ ≤ t ≤ 0

Âik = Aik + ∆Aik , B̂ik = Bik + ∆Bik ,

(1)

where x(t) ∈ Rn and u(t) ∈ Rp, with n, p ∈ N , are the state and con-
trol vectors, respectively. Aik , Bik , Cik and Dk are constant real matrices
of appropriate dimensions. ∆x(t) = x(t+) − x(t−), x(t−) = lim

υ→0+
x(t − υ),

x(t+) = lim
υ→0+

x(t+ υ). lim
υ→0+

x(tk− υ) = x(t−k ) = x(tk) means that the solution

of the impulsive switched system (1) is left continuous. ik ∈ {1, 2, ...m}, k ∈
N,m ∈ N , is a discrete state variable, tk is an impulsive switching time point
and t0 < t1 < t2 < ... < tk < ... < t∞. Under the switching law of system (1),
at the time point tk, the system switches to the ik subsystem from the ik−1 sub-
system. Matrices ∆Aik(·) and ∆Bik(·) are unknown real norm-bounded matrix
functions which represent time-varying parameter uncertainty. Assume that
the admissible uncertainties are of the form

[∆Aik(t) ∆Bik(t)] = EikFik(t)[Hik Jik ] (2)

and Eik , Hik , Jik are known real constant matrices, Fik(t) is an unknown real
time-varying matrix satisfying F T

ik
(t)Fik(t) < I, in which I denotes the identity

matrix of appropriate dimension.

3 Asymptotic stability results

In this section, stability criteria for impulsive switched systems with time-
invariant delays are derived. Before this, we need the following lemma.

Lemma 1 [3] Let D̄, Ē and ∆̄ be real matrices of appropriate dimensions
with ∆̄T ∆̄ ≤ I. Then, for any scalar µ > 0, it holds that

D̄∆̄Ē + ĒT ∆̄T D̄T ≤ 1

µ
D̄D̄T + µĒT Ē. (3)

3



Our main results on the asymptotic stability of the impulsive switched systems
with time-invariant delays are presented in the next two theorems.

Theorem 2 Suppose that there exist symmetric and positive definite matrices
Pik and Qik , such that the following conditions are satisfied:

(a)




ÂT
ik
Pik + PikÂik + Qik PikB̂ik

B̂T
ik
Pik −Qik


 < 0, (4)

where Âik = Aik + ∆Aik , B̂ik = Bik + ∆Bik , and

(b)




Pik−1
(I + Dk)

T Pik

Pik(I + Dk) Pik


 > 0. (5)

Then, the trivial solution of the impulsive switched system (1) with the control
input u(t) = 0 is asymptotically stable.

Proof.

When t ∈ (tk, tk+1], consider the Lyapunov-Krasovskii function candidate

V (x(t)) = x(t)T Pikx(t) +

t∫

t−h

xT (s)Qikx(s)ds. (6)

The derivative of the function defined by (6) along the solution of the impulsive
switched system (1) is:

D+V (x(t)) = ẋ(t)T Pikx(t) + x(t)T Pik ẋ(t) + x(t)T Qikx(t)

−xT (t− h)Qikx(t− h)

= xT (t)((Aik + ∆Aik)
T Pik + P (Aik + ∆Aik) + Qik)x(t)

+2xT (t− h)(Bik + ∆Bik)
T Pikx(t)

−xT (t− d)Qikx(t− d). (7)
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(7) can be rewritten as:

D+V (x(t)) =




x(t)

x(t− h)




T

Θik




x(t)

x(t− h)


 (8)

where Θik =




ÂT
ik
Pik + PikÂik + Qik PikB̂ik

B̂T
ik
Pik −Qik


, where Âik = Aik + ∆Aik , B̂ik =

Bik + ∆Bik .

If (4) is satisfied, then

D+V (x(t)) < 0. (9)

It means that the impulsive switched system is asymptotically stable, except
possibly at the impulsive and switching points. Now, let us look at these time
points. Note that at the time point tk, k = 1, 2, ..., the system switches from
the ik−1 subsystem to the ik subsystem. To ensure the asymptotic stability,
the following condition is required to be satisfied:

V (t+k )− V (tk) = x(t+k )T Pikx(t+k )− x(tk)
T Pik−1

x(tk)

≤ x(tk)[(I + Dk)
T Pik(I + Dk)− Pik−1

]x(tk) < 0.

This means that

(I + Dk)
T Pik(I + Dk)− Pik−1

< 0,

or, equivalently,

Pik−1
− (I + Dk)

T Pik(I + Dk) > 0. (10)

From Schur complements [10], we see that the inequality (10) is equivalent to
that of (5). This completes the proof.

Theorem 3 Suppose that there exist symmetric and positive definite matrices
Pik , Qik and some positive scalars ε1, ε2, such that the following LMIs are
satisfied:
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(a)




−Qik Qik 0

Qik Ψik PikEik

0 ET
ik
Pik −(ε1 + ε2)

−1I




< 0, (11)

where Ψik = PikAik + AT
ik
Pik + I + ε−1

2 HT
ik
Hik ,

(b)




−I PikBik

BT
ik
Pik ε−1

1 JT
ik
Jik −Qik


 < 0, (12)

(c)




Pik−1
(I + Dk)

T Pik

Pik(I + Dk) Pik


 > 0. (13)

Then, the trivial solution of the impulsive switched system (1) with the control
input u(t) = 0 is asymptotically stable.

Proof.

Define

Yik =




ÂT
ik
Pik + PikÂik + Qik PikB̂ik

B̂T
ik
Pik −Qik


 , (14)

where Âik = Aik + ∆Aik , B̂ik = Bik + ∆Bik , and

Sik =




AT
ik
Pik + PikAik + Qik PikBik

BT
ik
Pik −Qik


 . (15)

Then, we have

Yik = Sik +




∆AT
ik
Pik + Pik∆Aik Pik∆Bik

∆BT
ik
Pik 0



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= Sik +




0 Pik∆Bik

∆BT
ik
Pik 0




+




∆AT
ik
Pik + Pik∆Aik 0

0 0




= Sik +




0 PikEikFik(t)Jik

JT
ik
F T

ik
(t)ET

ik
Pik 0




+




HT
ik
F T

ik
(t)ET

ik
Pik + PikEikFik(t)Hik 0

0 0




= Sik +




PikEik

0


 [Fik(t)]

[
0 Jik

]

+




0

JT
ik




[
F T

ik
(t)

] [
ET

ik
Pik 0

]

+




HT
ik
F T

ik
(t)ET

ik
Pik + PikEikFik(t)Hik 0

0 0




≤ Sik + ε1




PikEikE
T
ik
Pik 0

0 0


 + ε−1

1




0 0

0 JT
ik
Jik




+




ε2PikEikE
T
ik
Pik + ε−1

2 HT
ik
Hik 0

0 0




=




AT
ik
Pik + PikAik + Qik PikBik

BT
ik
Pik ε−1

1 JT
ik
Jik −Qik




+




(ε1 + ε2)PikEikE
T
ik
Pik + ε−1

2 HT
ik
Hik 0

0 0




=




−I PikBik

BT
ik
Pik ε−1

1 JT
ik
Jik −Qik



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+




Zik 0

0 0


 ,

where

Zik = AT
ik
Pik + PikAik + Qik + (ε1 + ε2)PikEikE

T
ik
Pik + I

+ε−1
2 HT

ik
Hik . (16)

The stability condition D+V (x(t)) < 0 can be obtained if the inequalities




−I PikBik

BT
ik
Pik ε−1

1 JT
ik
Jik −Qik


 < 0, (17)

and

Zik < 0 (18)

hold.

Then, (18) will hold if the following condition is satisfied:




−I 0 0

0 Zik 0

0 0 −I




< 0. (19)

Define

Wik =




Q
1/2
ik

0 0

−Q
1/2
ik

I −(ε1 + ε2)
1
2 PikEik

0 0 (ε1 + ε2)
− 1

2 I




. (20)

Then, by left multiplying and right multiplying (19) by Wik and W T
ik

, we obtain




−Qik Qik 0

Qik Ψik PikEik

0 ET
ik
Pik −(ε1 + ε2)

−1I




< 0, (21)
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where Ψik = PikAik + AT
ik
Pik + I + ε−1

2 HT
ik
Hik .

This completes the proof.

4 Design of feedback controllers

In this section, we focus on the design of feedback controllers of the form
u(t) = Likx(t) for impulsive switched systems with time delays. Thus, the
objective of this section is to provide a computational procedure to construct
an appropriate Lik such that the corresponding closed-loop system is stable.

Theorem 4 Suppose that there exist symmetric and positive definite matrices
Pik and Qik , such that the following conditions are satisfied:

(a)




ĀT
ik
Pik + PikĀik + Qik PikB̂ik

B̂T
ik
Pik −Qik


 < 0, (22)

where Āik = Aik + ∆Aik + CikLik , B̂ik = Bik + ∆Bik , and

(b)




Pik−1
(I + Dk)

T Pik

Pik(I + Dk) Pik


 > 0. (23)

Then, the trivial solution of the impulsive switched system (1) is asymptotically
stable.

Proof.

Substitute u(t) = Likx(t) in equation (1). Then, the corresponding impulsive
switched system (1) become





ẋ(t) = Āikx(t) + B̂ikx(t− h) t 6= tk

∆x(t) = Ik(t, x) = Dkx(t) t = tk

x(t) = ϕ(t) −τ ≤ t ≤ 0

, (24)

where Āik = Aik + ∆Aik + CikLik , B̂ik = Bik + ∆Bik .
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Hence, the conclusion of the theorem follows readily from the proof of Theorem
2. This completes the proof.

Theorem 5 Support that there exist symmetric and positive definite matri-
ces Pik , Qik and some positive scalars ε1, ε2, such that the following matrix
inequalities are satisfied:

(a)




−Qik Qik 0

Qik Ψ̄ik PikEik

0 ET
ik
Pik −(ε1 + ε2)

−1I




< 0, (25)

where Ψ̄ik = PikAik + AT
ik
Pik + I + ε−1

2 HT
ik
Hik − PikCikC

T
ik
Pik ,

(b)




−I PikBik

BT
ik
Pik ε−1

1 JT
ik
Jik − ε1ε2Qik


 < 0, (26)

(c)




Pik−1
(I + Dk)

T Pik

Pik(I + Dk) Pik


 > 0. (27)

Then, the trivial solution of impulsive switched system (1) is asymptotically
stable. Moreover,

u(t) = Likx(t), Lik = −1

2
CT

ik
Pik (28)

is a feedback controller which stabilizes the corresponding closed-loop impulsive
switched system.

Proof:
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Substitute the feedback controllers u(t) = Likx(t), where Lik = −1
2
CT

ik
Pik , in

(1). Then, the corresponding impulsive switched system (1) becomes




ẋ(t) = Ãikx(t) + B̄ikx(t− h), t 6= tk

∆x(t) = Ik(t, x) = Dkx(t), t = tk

x(t) = ϕ(t), −τ ≤ t ≤ 0

(29)

where Ãik = Aik− 1
2
CikC

T
ik
Pik +EikFikHik , B̄ik = Bik +EikFikJik . By Theorem

3, it is easy to show that the closed-loop impulsive switched system (29) is
asymptotically stable. This completes the proof.

Theorem 6 Suppose that there exist symmetric and positive definite matrices
Pik , Qik and some positive scalars ε1, ε2, such that the following LMIs are
satisfied: (a)




−Qik Qik 0

Qik Ψik PikUik

0 UT
ik
Pik −I




< 0 (30)

where UikU
T
ik

= (ε1+ε2)EikE
T
ik
−CikC

T
ik
, Ψik = PikAik +AT

ik
Pik +I+ε−1

2 HT
ik
Hik ,

(b)




−I PikBik

BT
ik
Pik ε−1

1 JT
ik
Jik −Qik


 < 0, (31)

(c)




Pik−1
(I + Dk)

T Pik

Pik(I + Dk) Pik


 > 0. (32)

Then, the trivial solution of the impulsive switched system (1) is asymptotically
stable. Moreover,

u(t) = Likx(t), Lik = −1

2
CT

ik
Pik (33)

is a feedback controller which stabilizes the corresponding closed-loop impulsive
switched systems.
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Proof.

The matrix inequality (25) can be written as

AT
ik
Pik + PikAik + Qik

+PikU
T
ik
UikPik + I + ε−1

2 HT
ik
Hik < 0 (34)

Let

Ẑik = AT
ik
Pik + PikAik + Qik

+PikU
T
ik
UikPik + I + ε−1

2 HT
ik
Hik . (35)

Then, we can see that (34) is equivalent to the following condition




−I 0 0

0 Ẑik 0

0 0 −I




< 0. (36)

Define

Ŵik =




Q
1/2
ik

0 0

−Q
1/2
ik

I −PikUik

0 0 I




. (37)

Then, left multiplying and right multiplying (36) by Ŵik and Ŵ T
ik

respectively,
we obtain




−Qik Qik 0

Qik Ψik PikUik

0 UT
ik
Pik −I




< 0, (38)

where Ψik = PikAik + AT
ik
Pik + I + ε−1

2 HT
ik
Hik .

The rest of the theorem can be obtained readily from Theorem 5. This com-
pletes the proof.

Remark 7 Theorem 6 offers a LMI based design of a linear memoryless state
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feedback controller, which will robustly stabilize the corresponding controlled
impulsive delayed switched system.

Remark 8 Inequalities (30)-(32) of Theorem 6 are expressed in terms of
some linear matrix inequalities with variables ε1, ε2, Qik , Pik . The feasibil-
ity of these LMIs can be solved by using feasp command in the LMI toolbox
within the MATLAB environment. Once a feasible solution of these LMIs is
found, the required solution can obtained readily.

We now consider the case of no switchings in the system (1). For this case,
system (1) becomes:





ẋ(t) = Âx(t) + B̂x(t− h) + Cu(t), t 6= tk

∆x(t) = Ik(t, x) = Dkx(t), t = tk

x(t) = ϕ(t), −τ ≤ t ≤ 0

(39)

where Â = A + ∆A, B̂ = B + ∆B.

The admissible uncertainties are of the form

[∆A(t) ∆B(t)] = EF [H J ] (40)

where E, H, J are known real constant matrices, F (t) is an unknown real
time-varying matrix satisfying F T (t)F (t) < I.

Corollary 9 Suppose that there exist symmetric and positive definite matri-
ces P , Q and some positive scalars ε1, ε2, such that the following LMIs are
satisfied:

(a)




−Q Q 0

Q Ψ PE

0 ET P −(ε1 + ε2)
−1I




< 0, (41)

where Ψ = PA + AT P + I + ε−1
2 HT H,

(b)



−I PB

BT P ε−1
1 JT J −Q


 < 0, (42)
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(c)




P (I + Dk)
T P

P (I + Dk) P


 > 0. (43)

Then, the trivial solution of the uncertain impulsive system (39) with the con-
trol input u(t) = 0 is asymptotically stable.

Corollary 10 Suppose that there exist symmetric and positive definite matri-
ces P , Q and some positive scalars ε1, ε2, such that the following LMIs are
satisfied:

(a)




−Q Q 0

Q PA + AT P + I + ε−1
2 HT H PU

0 UT P −I




< 0 (44)

where UUT = (ε1 + ε2)EET − CCT ,

(b)



−I PB

BT P ε−1
1 JT J −Q


 < 0, (45)

(c)




P (I + Dk)
T P

P (I + Dk) P


 > 0. (46)

Then, the trivial solution of the uncertain impulsive system (39) is asymptot-
ically stable. Moreover,

u(t) = Lx(t), L = −1

2
CT P (47)

is a feedback controller which stabilizes the corresponding closed-loop impulsive
systems.
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5 Numerical examples and simulations

We consider two examples in this section.

Example 1 Consider the following impulsive delayed switched system under
a given switching law. That is, the switching status alternates as i1 → i2 →
i1 → i2 → ..., and F1 = F2 = sin(10 ∗ t). We consider robust performance
of the system using Theorem 3. The parameters of the system are specified as
follows:

A1 =



−3 −0.8

−0.8 −2.8


 , E1 =




0.5 0.4

0.2 0.4


 ,

H1 =




0.2 0.4

0.2 0.1


 , B1 =




0.8 1

1.5 1


 ,

J1 =




0.2 0.3

0.2 0.1


 , A2 =



−2.8 −1

−0.7 −3.1


 ,

E2 =




0.3 0.1

0.6 0.4


 , H2 =




0.1 0.1

0.5 −0.1


 ,

B2 =




1.5 −0.3

−0.2 1


 , J2 =




0.2 0.1

0.3 0.2


 .

Choose ε1 = ε2 = 1. Then, we use the feasp command within the MATLAB
environment to calculate the positive define symmetric matrices, giving

P1 =




5.5303 −3.6741

−3.6741 3.4226


 , P2 =




1.4999 0.5335

0.5335 2.2719


 ,

Q1 =




12.8403 −7.4540

−7.4540 7.2573


 , Q2 =




5.7463 1.7452

1.7452 6.3872


 .

It means that there exist P1, Q1, P2, Q2 such that (11)-(13) are satisfied,
so the system is asymptotically stable by Theorem 3. Let (2,−1.5) be the
initial point. Fig. 1-Fig. 2 show the state trajectories of the impulsive delayed
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Fig. 1. State trajectories of x1. The solid, dotted, and dashed-dotted curves are for
cases with h = 0.1, 0.3 and 0.8, respectively.

0 1 2 3 4 5 6
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

t

x 2

h=0.1 

h=0.3 

h=0.8 

Fig. 2. State trajectories of x2. The solid, dotted, and dashed-dotted curves are for
cases with h = 0.1, 0.3 and 0.8, respectively.

switched system with a constant interval time ∆tk ≡ 1. The solid, dotted,
and dashed-dotted curves are for cases with the delay h chosen as 0.1, 0.3,
0.8, respectively. Fig. 1-Fig. 2 also show that a longer time delay will result
in a slower convergence rate. Fig. 3-Fig. 4 show the state trajectories of the
impulsive delayed switched system with a constant time delay h ≡ 0.2. The
solid, dotted, and dashed-dotted curves are for cases with the interval ∆tk
chosen as 0.5 and 1, 2, respectively. Fig. 3-Fig. 4 also show that a longer
interval will result in a slower convergence rate.

Example 2 Consider another impulsive delayed switched system under the
same switching law as in Example 5.1. The corresponding parameters are spec-
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Fig. 3. State trajectories of x1. The solid, dotted, and dashed-dotted curves are for
cases with interval= 0.5, 1 and 2, respectively.
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Fig. 4. State trajectories of x2. The solid, dotted, and dashed-dotted curves are for
cases with interval= 0.5, 1 and 2, respectively.

ified as follows:

A1 =



−3.3 −1.1

−0.6 −3.2


 , E1 =




0.5 0.4

0.2 0.4


 ,

H1 =




0.2 0.4

0.2 0.1


 , B1 =




0.8 1

1.5 1


 ,

J1 =




0.2 0.3

0.2 0.1


 , A2 =



−2.5 −1.2

−0.8 −2.5


 ,
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E2 =




0.3 0.1

0.6 0.4


 , H2 =




0.1 0.1

0.5 −0.1


 ,

B2 =




1.5 −0.3

−0.2 1


 , D1 = D2 =



−0.5 0

0 −0.5


 ,

J2 =




0.2 0.1

0.3 0.2


 , C1 =




0.6 0.4

0.2 0.2


 , C2 =




0.2 0.2

0.2 0.4


 .

Choose ε1 = ε2 = 1. Then, using the feasp command within the MATLAB
environment, we calculate the positive define symmetric matrices as given
below.

P1 =




0.8684 −0.1629

−0.1629 0.6567


 , P2 =




0.9749 0.0588

0.0588 0.9857


 ,

Q1 =




3.1070 −0.7158

−0.7158 1.9694


 , Q2 =




2.4971 −0.2988

−0.2988 1.3960


 .

Furthermore, we also obtain the following linear memoryless time-variant con-
troller

u(t) = Likx(t),

L1 =



−0.2442 −0.0168

−0.1574 −0.0331


 , L2 =



−0.1034 −0.1045

−0.1093 −0.2030


 .

Given initial point (1,−1). Fig. 5 and Fig. 6 show the state trajectories of the
impulsive delayed switched system with a constant interval time ∆tk ≡ 1. The
solid, dotted, and dashed-dotted curves are for cases with the delay h chosen as
0.1, 0.3, and 0.8, respectively. Fig. 7 and Fig. 8 show that the state trajectories
of the impulsive delayed switched system with a constant time delay h ≡ 0.2.
The solid, dotted, and dashed-dotted curves are for cases with the interval
∆tk chosen as 0.5, 1, and 2, respectively. Fig. 5-Fig. 8 also show that with the
linear feedback controller, the uncertain impulsive switched system converges
to the equilibrium point.
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Fig. 5. State trajectories of x1. The solid, dotted, and dashed-dotted curves are for
cases with h = 0.1, 0.3 and 0.8, respectively.
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Fig. 6. State trajectories of x2. The solid, dotted, and dashed-dotted curves are for
cases with h = 0.1, 0.3 and 0.8, respectively.
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Fig. 7. State trajectories of x1. The solid, dotted, and dashed-dotted curves are for
cases with interval = 0.5, 1 and 2, respectively.
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Fig. 8. State trajectories of x2. The solid, dotted, and dashed-dotted curves are for
cases with interval = 0.5, 1 and 2, respectively.

6 Conclusion

The stability problem of a class of impulsive delayed switched systems was
studied. By constructing appropriate Lyapunov-Krasovskii functions and us-
ing LMI approach, some asymptotic stability criteria were obtained and some
appropriate feedback controllers were constructed. As an illustration, two nu-
merical examples were solved using the results obtained in this paper.
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