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and decompression related to delamination and the collapse of the East African orogen. The REE 

chemistry of the monazite is consistent with the system having undergone partial melting prior to 

monazite growth, thereby altering the bulk rock chemistry. The periodicity of the heating and 

cooling cycles (~10 Ma) from this study are consistent with recently proposed tectonic switching 

models for the formation of granulite metamorphism in accretionary/collisional tectonic settings.  

The elevated heat flows required to generate the UHT metamorphism are achievable in the 

proposed back-arc setting for the PCSS during Gondwana amalgamation.
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Abstract1

Understanding the relationship between accessory mineral growth and the evolution 2

of silicate mineral assemblages along the entirety of a P-T-t path is a critical step in 3

developing models for evolving tectonic systems. Here we combine U-Pb age data4

(for zircon and monazite), rare earth element (REE) data and compositionally specific 5

phase diagrams (P-T pseudosections) for the rocks of the Palghat Cauvery shear 6

system (PCSS), southern India in order to constrain the periodicity of heating /cooling 7

and burial/exhumation events during the Ediacaran/Cambrian amalgamation of 8

Gondwana. HREE data from zircon is consistent with zircon growth at 672-724 °C 9

during the breakdown of garnet in the kyanite stability field at 535.0 ± 4.9 Ma. This 10

represents a cooling that punctuates the P-T-t path. Subsequent monazite growth and 11

symplectite formation occurred at 920 °C and 7.5 kbar, ~10 Ma after zircon growth 12

which reflects a period of reheating and decompression related to delamination and 13

the collapse of the East African orogen. The REE chemistry of the monazite is 14

consistent with the system having undergone partial melting prior to monazite growth, 15

thereby altering the bulk rock chemistry. The periodicity of the heating and cooling 16

cycles (~10 Ma) from this study are consistent with recently proposed tectonic 17

switching models for the formation of granulite metamorphism in 18

accretionary/collisional tectonic settings.  The elevated heat flows required to generate 19

the UHT metamorphism are achievable in the proposed back-arc setting for the PCSS 20

during Gondwana amalgamation.21

22

Keywords: Gondwana; UHT metamorphism; Monazite; Zircon; Garnet; 23

THERMOCALC24

25



3

Introduction1

The integration of the textural and chemical characteristics of accessory and silicate 2

minerals provides invaluable information when investigating the metamorphic and 3

tectonic history of a terrane (e.g. Buick et al., 2006; Hermann and Rubatto, 2003; 4

Kelsey et al., 2007; Rubatto, 2002; Rubatto and Hermann, 2007; Rubatto et al., 2006; 5

Rubatto et al., 2001; Whitehouse and Platt, 2003). In particular, the information 6

extracted from mineral assemblages can be used to great effect in making inferences 7

about poorly understood processes such as those involved in the generation, 8

preservation and tectonic significance of ultrahigh temperature (UHT) metamorphic 9

assemblages (Harley, 1998a; Harley, 1998b; Harley and Kelly, 2007; Kelly and 10

Harley, 2005). Coupling these observations with calculated metamorphic phase 11

diagrams for specific equilibrium bulk rock compositions (P-T pseudosections) allows 12

a clearer picture of the whole P-T-t evolution of a terrane to be reconstructed (e.g. 13

Clark et al 2007; Kelsey et al., 2007). This approach is especially important in 14

terranes that have undergone UHT metamorphism due to the uncertainty surrounding 15

the ability of geochronometers to record the timing of peak metamorphism (Fraser et 16

al., 1997; Harley, 2004; Kelsey et al., 2008; Roberts and Finger, 1997; Tomkins et al., 17

2005). This uncertainty reflects (1) the lack of absolute knowledge regarding closure 18

temperature and rates of elemental diffusion in key geochronometers such as zircon 19

and monazite and (2) the lack of certainty as to the exact controls on the growth of 20

zircon and monazite and how it relates to mineral reactions above and below the 21

solidus. Recent advances in the application of accessory phase thermometry (e.g. 22

Watson and Harrison, 2005; Watson et al., 2006; Ferry and Watson, 2007) allows 23

constraints to be placed on the temperatures at which accessory phase growth 24

occurred. This information can then be incorporated with the metamorphic forward 25
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models allowing a detailed event chronology, linking textural, temporal and thermal 1

observations, to be constructed. It is only when this information is gathered that 2

insights into the tectonic processes that created the metamorphism are generated and 3

the significance of the nature and timing of metamorphism for plate-tectonic global 4

reconstructions (e.g. Boger and Wilson, 2005; Collins and Pisarevsky, 2005; Li et al., 5

2007) can be addressed.6

7

In this paper we investigate the major and trace element compositions of garnet, 8

zircon and monazite in order to constrain the timing and rates of processes in the 9

Palghat Cauvery shear system (PCSS) in southern India (Fig. 1). This region 10

preserves a distinctive record of high-grade metamorphism coupled with accessory 11

mineral development and is a key area in understanding the tectonic scenarios that 12

may lead to the generation of ultra-high temperature crustal metamorphism. There is 13

also a recent debate surrounding the report of eclogite facies rocks from this area 14

(Kelsey et al., 2006; Shimpo et al., 2006; Tsunogae and Santosh, 2006; Kanazawa et 15

al., 2009) and the significance that these rocks have in defining the location of major 16

suture/collision zones during the amalgamation of Gondwana (Collins et al., 2007b; 17

Collins and Pisarevsky, 2005).18

19

Regional Geology20

The PCSS is an  approximately 70 km by 400 km E-W zone characterised by an 21

anastomosing network of mainly dextral shear zones, typically 1-10km wide, 22

separating the Dharwar Craton from the Southern Granulite Terrane (SGT) in 23

southern India. (Chetty et al., 2003; Tomson et al., 2006) (Fig.1). The lithologies 24

within the PCSS consist of deformed Neoarchaean rocks; variably retrograded 25
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charnockitic gneisses associated with biotite and hornblende-bearing migmatitic1

gneisses intercalated with supracrustal rocks that include, metapelites, calc-silicate 2

marbles and quartzites (Bhaskar Rao et al., 1996; Chetty and Bhaskar Rao, 2006). 3

4

A number of previous studies have found significant differences in the structural style, 5

lithological units, Nd model ages, Rb-Sr mineral ages and metamorphic P-T6

conditions of the lithologies within the PCSS when compared to the Dharwar Craton 7

and SGT (Bartlett et al., 1998; Ghosh et al., 2004; Harris et al., 1994b; Meissner et al., 8

2002; Santosh et al., 2005; Santosh et al., 2003). As a result the PCSS has been9

proposed to represent a major structural feature within southern India. The PCSS has10

been interpreted as (1) a dextral transcurrent shear belt (Drury et al., 1984); (2) a 11

suture zone (Bhaskar Rao et al., 2003; Meissner et al., 2002); (3) an Archaean-12

Palaeoproterozoic terrane boundary (Harris et al., 1994b); (4) a collapsed marginal 13

basin (Drury and Holt, 1980) and (5) a zone of Palaeoproterozoic and Neoproterozoic 14

re-working of Archaean crust (Bhaskar Rao et al., 1996; Chetty et al., 2003; Ghosh et 15

al., 2004; Harris et al., 1994b; Santosh et al., 2003; Tomson et al., 2006). The  notion 16

that the PCSS represents the Archaean-Proterozoic or Neoproterozoic terrane 17

boundary has been contested, based on new U-Pb zircon age data and Sm-Nd model 18

ages for charnockitic and migmatitic gneisses (Bhaskar Rao et al., 2003; Ghosh et al., 19

2004). These studies suggest that the Archaean crust may extend south of the PCSZ 20

up to Karur-Kamban-Painavu-Trichur (KKPT) shear zone (Ghosh et al., 2004) (Fig. 21

1).22

23

In tight-fit reconstructions of Gondwana, southern India is juxtaposed against 24

Madagascar and East Antarctica (Reeves and de Wit, 2000), where the major suture 25
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zones of the amalgamation of eastern Gondwana have been identified and correlated 1

through adjoining crustal blocks (Boger and Miller, 2004; Collins et al., 2007b; 2

Collins and Pisarevsky, 2005; Fitzsimons, 2000; Meert, 2003; Meert and Van der 3

Voo, 1997; Shaju et al., 1998). A number of different microcontinents have been 4

identified within the models of the amalgamation of eastern Gondwana; the most 5

significant of which, in the context of southern India, is Azania – a microcontinent 6

consisting of central Madagascar, part of eastern Africa and the Al-Mafid Block in 7

Yemen (Collins and Pisarevsky, 2005; Collins et al., 2007a). Prior to the formation of 8

Gondwana, the Mozambique Ocean was located between Azania and India. The 9

closure of the Mozambique Ocean formed the ~550-510 Ma Malagasy Orogeny 10

(Collins and Pisarevsky, 2005). The site of this closure has been identified in eastern 11

Madagascar as the Betsimisaraka suture (Collins, 2006; Collins and Windley, 2002),12

but its southern continuation is contentious. Recent work has demonstrated that the 13

PCSS marks an isotopic boundary between the Northern Granulite and Southern 14

Granulite terranes (Clark et al., 2009; Fig 1), contains discontinuous ultramafic bodies 15

that are coincident with crust penetrating shear zones that offset the Moho (Collins et 16

al., 2007b; Meissner et al., 2002) and may contain evidence of Neoproterozoic UHP 17

metamorphism (Shimpo et al., 2006) and therefore is a likely candidate for the 18

continuation of the Betsimisaraka suture into southern India.19

20

Results21

Petrography22

Sample description23

The petrology of the various units that occur in the Panagad area have been 24

investigated in detail by Kanazawa et al. (2009) and this study we have focussed on 25
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one lithology type a garnet-kyanite-biotite gneiss, sample I05-54. I05-54 is from an1

Mg-Al rich granulite from Panangad within the PCSS (Fig. 1b). This Mg-Al rich unit 2

occurs as a 10 to 50 metre wide unit that is discordant with the migmatitic layering in 3

the host mafic gneisses. The unit shows a general north-easterly trend with a steep 4

(>75°) northwest dip and a near vertical lineation defined by alignment of kyanite 5

(Fig 2a). The unit has a variable mineralogy with garnet, kyanite, biotite, gedrite, 6

sapphirine and cordierite all visible in within the unit (see Kanawazaet al., (in press) 7

for further details). Sample I05-54 is composed of coarse-grained garnet, kyanite and 8

biotite with sapphirine is observed rimming the kyanite blades whereas cordierite and 9

gedrite are not visible in hand sample (Fig. 2b).10

11

In thin section, I05-54 displays three distinct petrographic relationships: (1) an 12

inclusion rich garnet core (Fig. 2c); (2) a coarse grained garnet, kyanite and biotite 13

assemblage, and (3); symplectite development between the coarse-grained minerals14

(Fig. 2d).15

16

Inclusion assemblage17

Coarse grained garnets contain a zone rich in inclusions (Fig 2c). Inclusions are 18

restricted to the core of the garnets and are completely enclosed by a clean inclusion 19

free garnet rim. The inclusions are dominantly gedrite, sillimanite, and quartz (Fig. 20

2e) with minor plagioclase observed in some inclusions. The stability of this inclusion 21

assemblage with garnet is difficult to assess. Vernon (1976) suggests that in general 22

most inclusions belong to the same metamorphic assemblage as the porphyroblast. 23

However, the inclusion assemblage may have formed prior to garnet growth as gedrite 24

and quartz are only found as inclusions within garnet and not elsewhere in the rock 25
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(Vernon et al., 2008). Accessory minerals observed in the garnet cores are rutile, 1

zircon, monazite and apatite. Zircon within the garnet is dominantly oscillatory zoned 2

with overgrowths either narrow or absent. Zircon occurs as oscillatory-zoned grains 3

with an absence of any discernable rim or overgrowth material visible under 4

cathodoluminscence (CL). Collins et al. (2007b) analysed the oscillatory zoned zircon 5

from this sample and found that the age of oscillatory zoned zircon was ~2500 Ma. 6

This population is interpreted to be of igneous origin and inherited from the source 7

material that makes up the bulk of the gneisses in the PCSS. Monazite from within the 8

core of the garnets is small with grain sizes generally less than 20 m.9

10

Coarse-grained assemblage11

I05-54 is dominated by porphyroblastic garnet, kyanite and biotite. As mentioned 12

above, garnet is characterised by an inclusion-rich core and an inclusion-free rim. 13

Biotite is coarse grained and contains rare inclusions of zircon, the zircons have well 14

developed overgrowths on oscillatory zoned cores. Kyanite blades are partly 15

pseudomorphed by sillimanite with kyanite remaining in the core and more highly 16

birefringent sillimanite forming on the rims. Kyanite contains inclusions of both rutile 17

and zircon (Fig. 2f) with zircon having well-developed overgrowths. A single 18

xenotime crystal was observed in the otherwise inclusion free garnet rim (Fig. 3g)19

20

Symplectites21

Sapphirine-cordierite and spinel-cordierite symplectites are observed growing 22

between garnet and kyanite porphyroblasts with cordierite separating garnet from 23

sapphirine and spinel (Fig. 2g). In places sapphirine-spinel-cordierite symplectites24

have developed between the porphyroblastic kyanite and biotite. Additionally a25



9

narrow cordierite corona separates the garnet from the biotite without the additional 1

growth of sapphirine or spinel. Where garnet, kyanite and biotite are all proximal, a 2

cordierite-spinel-sapphirine-biotite symplectite is formed with the biotite being fine-3

grained, bladed and in contact with the garnet (Fig. 2h). The dominant accessory4

phase observed in the symplectites is monazite, which is intergrown with both the 5

sapphirine-cordierite and the spinel-cordierite symplectites (Fig. 2i). In contrast to the 6

monazite found in the cores of the garnet, the monazite in the symplectite is typically 7

large (>50 m). Smaller grains of xenotime are also found in the symplectites (Fig. 8

3g).9

10

Mineral chemistry11

Mineral compositions were analysed using the Cameca SX-51 electron microprobe at 12

Adelaide Microscopy at The University of Adelaide. Quantitative analyses for mineral 13

chemistry were acquired at 15 kV and 20 nA and a beam diameter of 2-3 μm, 14

Compositional maps were acquired at 15 kV and 100 nA for major elements (Figs. 3a-15

d) and 150 nA for trace elements (Figs. 3e-g) with a ‘dwell time’ of 195 ms and a 16

step-size of 2 μm in both the x and y directions. A summary of the analyses can be 17

found in Tables 1 and 2.18

19

Garnet20

Porphyroblastic garnet is in generally a solid solution of almandine and pyrope with 21

XMg (=Mg/Fe+Mg) in the range of 0.51-0.62 (Table 1) with low contents of grossular22

(<3 mol %) and spessartine (<1.15 mol%). Garnet has shows a pyrope rich core23

(Alm36-39 Pyr58-61 Sps1 Grs1-3) relative to the rim (Alm42-44 Pyr49-51 Sps1 Grs1-3) 24

consistent with retrograde diffusion and the occurrence of the cordierite coronae 25
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around the garnet (Table 1; Fig 3a-d). The compositional zoning of the major 1

elements is also evident in the electron microprobe traverse presented in Figure 4a. 2

3

Biotite4

Biotite is Mg rich (XMg=0.80-0.81) and contains approximately 2 wt% TiO2 (Table 2). 5

Both the coarse grained and symplectitic biotite have similar compositions. 6

7

Cordierite8

All cordierite analyses have a uniform magnesian composition with XMg in the range 9

0.89-0.91 (Table 2).10

11

Sapphirine12

The symplectitic sapphirine is less magnesian (XMg= 0.76-0.78, Table 2) compared to 13

other studies from the PCSS (Koshimoto et al., 2004; Santosh and Sajeev, 2006; 14

Santosh et al., 2004; Shimpo et al., 2006). Other components apart from SiO2 (11.7-15

12.3 wt%) and Al2O3 (61.1-62.5 wt%) total less than 1 wt%.16

17

Gedrite18

As previously mentioned gedrite only occurs as inclusions within the cores of the 19

porphroblastic garnet and is associated with quartz and sillimanite. The gedrite 20

inclusions preserve an XMg range of 0.77-0.78. The Na2O content ranges from 1.28-21

1.62 wt% and TiO2 show a range of 0.26-0.46 wt%.22

23

Spinel24
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Symplectitic spinel occurs in association with cordierite is principally a solid solution 1

of hercynite and Mg-spinel with consistent XMg values of 0.46-0.47 (Table S2). Spinel2

also contains a small amount of Cr2O3 (0.33-0.51 wt%) and ZnO (0.80-1.20 wt%).3

4

Zircon and Monazite geochronology5

Equipment and operating conditions for monazite analysis are identical to those 6

reported by Payne et al (2008).  U-Pb acquisition used a 15 µm beam diameter for 7

monazite, run at a repetition rate of 5 Hz.  Monazite ages were calculated using the 8

MADEL monazite standard to correct for U-Pb fractionation (TIMS normalization 9

data 207Pb/206Pb = 490.7 Ma, 206Pb/238U= 514.8 Ma and 207Pb/235U= 510.4 Ma), and 10

the GLITTER software for data reduction.  Over the duration of this study the 11

reported average normalised ages for MADEL are 493.0±8.3, 514.3±2.4 and 12

511.2±2.0 Ma for the 207Pb/206Pb, 206Pb/238U and 207Pb/235U ratios, respectively (n = 13

32).  Accuracy was monitored by repeat analyses of the in-house internal monazite 14

standard (94-222/Bruna-NW, 206Pb/238U= 447 Ma).  Over the duration of this study 15

the reported average 206Pb/238U age for the internal standard was 446.9±3.1 (n = 15).16

Analytical data for the analyses can be found in Tables 6.17

18

Zircon and monazite were separated from crushed rock samples by conventional 19

magnetic and methylene iodide liquid separation methods. Grains were handpicked 20

and mounted in epoxy resin discs. No grains of monazite less than 50 m in diameter21

analysed in an attempt to avoid the analysis of the monazite inclusions from the garnet 22

cores. The grains were cathodoluminescence (CL) imaged (zircon) or backscatter 23

electron (BSE) imaged (monazite) to assess compositional and textural zoning in 24

individual grains prior to analysis. Multi-faceted equant zircon crystals (Fig. 5a) and 25
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large brightly luminescent CL rims (Fig. 5b-d) yielded a precise 206Pb/238U age of 1

535.0 ± 4.9 Ma (2σ, MSWD = 1.4, Fig. 5e) and Th/U ratios from these analyses are 2

<0.22, characteristic of metamorphic zircon. The details of these data are presented in 3

Collins et al. (2007) The LA-ICPMS analyses of monazite yielded two statistically 4

distinct ages, the cores (Fig.6a) of monazite yielded a 206Pb/238U age of 525.7  3.9 5

Ma (2, MSWD = 0.17, Fig. 6b, Table 3) whereas overgrowths (Fig. 6a) on the 6

monazite cores gave a 206Pb/238U age of 515.7  4.7 (2, MSWD = 0.20, Fig 6c, Table 7

3).8

9

Garnet, zircon, monazite trace element chemistry10

Rare Earth Element (REE) compositions of minerals (Table 4, 5 and 6) were 11

performed by laser ablation inductively coupled mass-spectrometry (LA-ICPMS) on 12

block mounted mineral separates at The University of Adelaide using a Agilent 13

7500cs ICPMS equipped with a New Wave 213 nm Nd-YAG laser. Beam diameter 14

was set at 65μm using a repetition rate of 5 Hz which produced a laser power density 15

of ~14-16 J cm-2. Data was collected using time-resolved data acquisition in fast peak-16

jumping mode and processed using the GLITTER software (Van Achterbergh et al., 17

2001). Total acquisition time per analysis was 120 seconds; 60 seconds background 18

measurement followed by 60 seconds of sample ablation. Calibration was performed 19

against the NIST 612 standard glass using the coefficients of Pearce et al. (1997). 20

NIST was run 4 times at the beginning and end of a run, interspersed by two analyses 21

of BCR-2 and ten analyses of unknowns. 43Ca was used as the internal standard for 22

garnet and monazite and Si for zircon, applying previously determined values from 23

microprobe analysis. Precision based on repeated analyses of standards is 24
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approximately 10% for concentrations <10ppm. Typical detection limits for REE in 1

this study ranged from 0.04-0.6 ppm.2

3

Ti in zircon was measured in the same analytical run as the REE analyses. The less 4

abundant 49Ti isotope (5.41%) was analysed in preference to the more abundant 48Ti 5

isotope (73.72%) to avoid the interference with 96Zr. Individual temperature errors 6

(Table 5) are a function of counting statistics, standard calibration and the uncertainty 7

in the thermometer calibration and were calculated via propagation of the 2 errors of 8

the counting statistics and the standard calibration through the Ti in zircon 9

thermometer of Watson and Harrison (2006). 10

11

Garnet12

The trace element distribution in garnet from I05-54 was analysed by a LA-ICPMS 13

traverse (Fig. 4a) and electron probe compositional mapping (Fig. 3e-g). The LA-14

ICPMS traverse consisted of 17 spot analyses across a garnet with a diameter of 15

approximately 6000 μm (Fig. 3a). Zoning is observed in a number of the trace 16

elements with a few different patterns being recognised. As described earlier, the 17

garnet consists of two main zones, the inclusion rich core and the inclusion free rim, 18

and most of the elemental zoning patterns observed in the maps and the LA-ICPMS 19

traverse reflect a change associated with the transition between the two garnet types.20

21

Garnet maps show zoning in P (Fig 3f) with the garnet core more depleted (6-70 ppm) 22

relative to the rim (159-266 ppm) with a step increase at the transition between the 23

core and rim. This pattern is similar to the patterns observed for Zr and Hf (Table 4). 24

The core of the garnet is contains 43-85 ppm Y, 3-11 ppm Yb and .3-1.3 ppm Lu. The 25
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HREE-poor core then transitions in to an intermediate domain with Y contents 105-1

135 ppm, 16-32 ppm Yb and and 2.2-6 ppm Lu with a corresponding increases in the 2

other HREE, Co, and Ni.  The beginning of the intermediate Y rich zone also 3

represents the largest drop in Sc, Ti and V (184-223 ppm Sc, 69-77 ppm Ti and 67-74 4

ppm V in the core), which then gradually decrease rimward (61-158 ppm Sc, 32-55 Ti 5

ppm and 24-49 ppm V from the intermediate zone to rim) in there abundances. Y, Co, 6

Ni and the HREE then show a decrease in their relative elemental abundances back to 7

those measured in the core moving towards the rim of the garnet.8

9

In summary three main zoning styles are observed in the trace elements of the garnets. 10

These are:11

(1) A bell shaped zoning pattern in the Sc, Ti and V with a step decrease in abundance 12

that corresponds with the petrographically observed core/rim transition in the garnet;13

(2) A W-shaped trend in P, Zr and Hf with core and rims relatively enriched in these 14

elements relative to the intermediate area, although the elements are much more 15

strongly enriched in the rims than in the core, and; 16

(3) A zoning pattern that consists of a low abundance flat core, near symmetric peaks 17

corresponding with the petrographically observed core/rim transition that drop off 18

toward the rims. This pattern is observed in Co, Ni, Y and the HREE from Gd to Lu 19

with the pattern becoming more pronounced moving from Gd to Lu.20

21

Garnet chondrite-normalised REE patterns for sample I05-54 show similar features 22

that are common to high-grade garnet in granulite terranes (Degeling et al., 2001; 23

Harley and Kelly, 2007; Harley et al., 2007; Hermann and Rubatto, 2003; Kelly and 24

Harley, 2005; Whitehouse and Platt, 2003) with one major exception. This exception 25
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is that there is no significant Eu anomaly (Eu/Eu* 0.80-1.05) associated with the 1

garnet in any of the textural zones described earlier. However, the garnet displays a 2

consistent depletion in the LREE with all well below chondrite values and enrichment 3

in the HREE relative to chondrite. Variation in the relative HREE enrichment in the 4

textural domains is observed across the garnet (Fig. 4c). The garnet core is more 5

depleted (Fig. 4, Lu/Gd 0.09-0.19) relative to a more enriched intermediate zone (Fig. 6

4, Lu/Gd >1.0) that corresponds to the interface between the core and rim of the 7

garnet. The HREE content is depleted from this more enriched zone towards the rim8

(Fig. 4, Lu/Gd 0.17-0.65). The relative abundance of the LREEs remains constant 9

across the garnet.10

11

Zircon12

All zircon analysed from the sample occurred as either multi-faceted equant zircon 13

crystals (Fig.5a) or as wide, brightly luminescent, under CL, overgrowths on 14

oscillatory-zoned cores (Fig. 5b-d). Once again the patterns are similar to those found 15

in zircons from high-grade metamorphic rocks, particularly those inferred to have 16

formed in sub-solidus conditions (Hoskin and Schaltegger, 2003; Rubatto, 2002), with 17

flat to slightly negative HREE patterns (Lu/Gd 0.11-0.18) positive Ce anomalies 18

(Ce/Ce* 12-74), and no negative Eu anomalies (Eu/Eu* 0.89-1.01). The LREE 19

elements are close to, or below, chondrite values. The Th/U ratios obtained from the 20

analysed zircon were in the range 0.09-0.22 (Collins et al., 2007), this is consistent 21

with the zircon growth occurring during metamorphism (Corfu et al., 2003; Williams 22

and Claesson, 1987). The REE composition of the oscillatory zoned cores that yielded 23

Archaean ages was analysed and found to have distinctly different chondrite 24
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normalised REE patterns (Fig. 5g) with much steeped HREE slopes than the unzoned 1

c. 535 Ma population.2

3

The Ti contents of the zircons were also analysed in order to constrain the temperature 4

at which the zircons grew. Due to the large beam size of the laser and the relative 5

width of zircon overgrowths no trends in the data was able to be detected, i.e. zoning 6

from high temperature early growth to low temperature later rim growth, was able to 7

be detected. The measured Ti values ranged between 4.3-11.7 ppm (Table 5) which 8

corresponds to a temperature range of 672-724 °C using the Ti in zircon thermometer 9

(Fig. 4f; Watson and Harrison, 2005; Watson et al., 2006). The application of the Ti in 10

zircon thermometer is dependent on the growth of zircon in equilibrium with a 11

suitable buffering assemblage of quartz and rutile (Ferry and Watson, 2007), while 12

these minerals are present in the rock it cannot be assumed that they are in 13

equilibrium. The reasons why they are believed to be in equilibrium will be discussed 14

in the next section.15

16

Monazite17

Monazite data for sample I05-54 are plotted on Fig 6d and presented in Table 6. Due 18

to the analytical spot size (65 m) only the core regions of monazite was analysed as 19

the overgrowths were to narrow. The trace element pattern, when normalised against 20

chondrite, shows a strong relative enrichment in the LREE (232 000- 540 000 times 21

chondrite for La) with a smooth decrease in the normalised abundance towards the 22

HREE (Fig. 6d). The monazite from I05-54 displays a small negative Eu anomaly 23

(Eu/Eu* 0.60-0.78) (Fig 6d).24

25
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Discussion1

Garnet zoning and zircon chemistry2

The notion that the trace element composition of zircon and garnet can be used to 3

correlate growth events between these minerals is well established in both 4

experimental (Rubatto and Hermann, 2007) and high-grade metamorphic rock 5

systems (Buick et al., 2006; Harley, 2001; Hermann and Rubatto, 2003; Kelly and 6

Harley, 2005; Rubatto and Hermann, 2003; Rubatto, 2002; Rubatto et al., 2006). The 7

ability to examine the timing of zircon growth with respect to the growth of a 8

petrologically sensitive mineral such as garnet can greatly improve the veracity of the 9

interpreted P-T-t evolution of rock systems. This is particularly relevant to high-grade 10

metamorphic terranes where the timing of zircon growth may not necessarily record 11

the timing of peak metamorphism (Fraser et al., 1997; Kelsey et al., 2008). Although 12

there is still some debate as to the most appropriate HREE distribution coefficients for 13

application to these systems (Buick et al., 2006; Kelly and Harley, 2005; Rubatto, 14

2002; Rubatto and Hermann, 2007; Rubatto et al., 2006) this technique can be readily 15

applied to the rocks of the PCSS. 16

17

One feature is immediately apparent when looking at the HREE and Y profiles across 18

the garnet (Fig 4a), that there is a zone of low HREE and Y abundance that 19

corresponds with the core of the garnet and it is mantled by a strongly enriched zone 20

that then decreases rimward. This profile is interpreted to reflect two stages of garnet 21

growth separated by a period of garnet breakdown and the development of a HREE 22

and Y annulus that separates the core from the rim of the garnet. The interpretation of 23

two stages of garnet growth is consistent with the petrographic observation that the 24

garnet has an inclusion rich core and an inclusion free rim.25
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1

When relating the timing of zircon growth relative to that of the silicate mineral 2

assemblage it is useful to establish whether the zircon grew in equilibrium with garnet3

(e.g. Hermann and Rubatto, 2003; Rubatto, 2002; Rubatto and Hermann, 2003; 4

Whitehouse and Platt, 2003). From the normalised patterns presented in Fig 4c it can 5

be seen that both zircon and garnet display flat to slightly negative Gd to Lu slopes 6

consistent with equilibrium growth. However, when the DREE(zrc/grt) studies of 7

previous workers from natural rock samples (Fig 7a) and experimental studies 8

(Fig.7b) (Harley et al., 2001; Whitehouse and Platt, 2001; Rubatto,  2002; Rubatto 9

and Hermann, 2007; Taylor and Harley, unpubl. data) are compared to the relative 10

abundances of MREE and HREE in the garnet and zircon of this study it is apparent11

that the zircon analysed was not in equilibrium with garnet of any composition in 12

sample I05-54, regardless of which DREE(zrc/grt) is used. Calculated DREE(zrc/grt) 13

values decrease slightly from Sm to Gd in all zones of the garnet. The core/rim 14

boundary (CRB) and rim analyses then show a steady decline in DREE(zrc/grt) values 15

from Tb to Lu (CRB: Tb = 2.04 to Lu = 0.44; rim Tb =3.71 to Lu = 1.22), whereas the 16

core shows a slight increase (Tb = 2.69 to Lu = 3.56). These patterns and 17

DREE(zrc/grt) values are siginificantly different when compared to the results from the 18

study of natural studies (Figure 7a). The absolute DREE(zrc/grt) values in the CRB and 19

rim are favoured in zircon over garnet by a factor of 2-3 times the published range in 20

studies from Harley (2001) and Whitehouse and Platt (2001). The study of Rubatto 21

(2002), which yielded different results to the other previous studies, shows a steady 22

increase in DREE(zrc/grt) values from Tb to Lu this is again in contrast to the decrease 23

(CRB and rim) or minor increase (core) observed in this study. When compared to 24

recent experimental studies of zircon-garnet REE partitioning the DREE(zrc/grt)25
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patterns are again inconsistent with the zircon and garnet in sample I05-54 being in 1

equilibrium. Rubatto and Hermann (2007) again show a steady increase in the DREE2

values from Dy to Lu (Figure 7b). I05-54 also shows the MREEs being favoured in 3

the zircon over garnet by a factor of 2.4

5

A second diagnostic feature recorded by the REE contents of the zircon in sample 6

I05-54 is the lack of a pronounced negative Eu anomaly. This feature suggests that 7

zircon did not growth in the presence of an anatectic melt phase (Hoskin and 8

Schaltegger, 2003). When coupled with the distinctive flat chondrite-normalised 9

HREE profile and high HREE contents relative to garnet these observations suggest10

that zircon grew during metamorphism, prior to the onset of partial melting and not 11

during the growth of garnet. The flat HREE patterns observe suggest that zircon was 12

competing with another phase that incorporates HREE and as discussed above this 13

phase is unlikely to be garnet. Rare inclusions of xenotime are observed in the garnet 14

rims (Fig. 3g) and this may be competing with zircon resulting in the observed flat 15

HREE patterns in zircon. Xenotime growth could have been the result of apatite 16

and/or monazite breakdown during cooling releasing the required P. 17

18

The temperature of zircon growth can be constrained to be between 672-724 °C via 19

the application of the Ti in zircon thermometer (Watson and Harrison, 2005; Watson 20

et al., 2006). The application of this thermometer is dependent upon the growth of 21

zircon in equilibrium with quartz and rutile. The knowledge of the aTiO2 and aSiO2 at 22

the time of zircon growth are fundamental to the accuracy of the Ti in zircon 23

thermometer (Ferry and Watson, 2007). Sample I05-54 contains rutile and quartz 24

suggesting that there is potential for the application of the Ti in zircon thermometer. 25
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Rutile occurs as inclusions in the same phases as zircon and seems to be in textural 1

equilibrium with zircon suggesting aTiO2 = 1. However, quartz only occurs in the 2

inclusion assemblage and is not necessarily in equilibrium with zircon and rutile. As 3

previously discussed, zircon growth occurs prior to partial melting and this is 4

suggestive of the growth of zircon in a rock that has not undergone modification of 5

it’s bulk composition due to the loss of partial melt. We therefore contend that quartz 6

was likely to be part of the assemblage (aSiO2 = 1) during zircon growth and the Ti in 7

zircon thermometer being applicable in this case.8

9

Monazite chemistry10

Less is understood about the relationship of monazite growth to major silicate mineral 11

phases, especially during high-grade metamorphic events such as those experienced 12

by the samples used in this study (Kelsey et al., 2008). The occurrence of large 13

monazite grains restricted to the symplectitic overgrowths on the coarse garnet and 14

kyanite assemblage suggests a relationship between symplectite formation and 15

monazite growth. However this observation alone is not enough to conclude that the 16

monazite ages from this study constrain the timing of symplectite formation. The 17

chondrite normalised REE patterns in sample I05-54 have a pronounced negative Eu 18

anomaly. A negative Eu anomaly in these rocks could be generated in a couple of 19

ways, monazite could inherit the negative Eu anomaly from the source rocks, or form 20

from a rock composition that has undergone partial melting where Eu2+ has been 21

incorporated into plagioclase in place of Ca (e.g. Nagy et al., 2002). The presence of a 22

negative Eu anomaly is a common feature of monazite in high-grade metamorphic 23

rocks that have undergone partial melting (e.g. Bea and Montero, 1999; Buick et al., 24

2006; Hermann and Rubatto, 2003; Rubatto et al., 2006) and in the case of monazite 25
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in sample I05-54 the partial melting process is the most likely mechanism to generate1

the observed Eu anomaly. Partial melting is preferred to the inheritance of the REE 2

pattern from the host rock because no negative Eu anomaly is recorded in the zircon 3

and garnet from the sample, which would be expected if the original host rock had a 4

negative Eu anomaly (e.g. Schulz et al., 2006).5

6

A composite P-T evolution of PCSS7

8

It is difficult to reconstruct the early prograde path of the rocks from the Panangad 9

area but some first order observations can be made based on the petrographic10

evidence preserved as inclusions in the porphyroblastic garnet and the trace element 11

zoning of the garnet. The early prograde evolution of sample I05-54 led to the 12

formation of the inclusion assemblage of gedrite-sillimanite-quartz possibly in 13

equilibrium with garnet. It is near impossible to constrain the bulk rock chemistry 14

relevant for the inclusion assemblage as it has been substantially modified by partial 15

melting and associated melt-loss. This makes the calculation of a P-T pseudosection 16

for this early evolution quite difficult to do and therefore quantitative P-T constraints 17

on this early assemblage nearly impossible to reconstruct. However, the inclusion 18

assemblage of gedrite-sillimanite-quartz  garnet suggest the initial prograde path 19

experienced by I05-54 did not exceed temperatures greater than 700-780 C as the 20

prograde FMASH gedrite + garnet = cordierite + orthopyroxene reaction was not 21

crossed (grey shaded area on Fig. 8a; Diener et al., 2008). The presence of sillimanite 22

also places an upper pressure limit of 8 kbars on the inclusion assemblage.23

24
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Sample I05-54 developed the coarse-grained mineral assemblage garnet-kyanite-1

biotite subsequent to the formation of the inclusion assemblage. The formation of this 2

assemblage was most likely related to the formation of the Y annulus in the garnet 3

that represents a period of garnet breakdown and Y resorption by the garnet. To 4

achieve the garnet breakdown and the formation of kyanite in sample I05-54 would 5

either have to move up pressure or down temperature from the conditions experienced 6

during the inclusion assemblage formation. An up-pressure evolution, while 7

consistent with the formation of kyanite, is inconsistent with the breakdown of garnet8

and generation of the observed Y annulus. For this reason we prefer an episode of 9

cooling subsequent to the formation of the gedrite-sillimanite-quartz-garnet 10

assemblage. The breakdown of garnet during this cooling event would liberate 11

zirconium (e.g. Degeling et al., 2001; Fraser et al., 1997) and trigger the sub-solidus 12

growth of zircon. The chemistry of zircon analysed in this study is consistent with this 13

scenario for two reasons. Firstly, the DREE(zrc/grt) of the sample indicates that zircon 14

and garnet did not grow in equilibrium. Secondly, the Ti in zircon thermometer 15

indicates that metamorphic zircon grew at temperatures between 672-724 °C, 16

consistent with cooling from the conditions related to the growth of gedrite-17

sillimanite-quartz-garnet.18

19

After cooling, I05-54 underwent a period of reheating that drove the rock through the 20

solidus resulting in partial melting, melt loss and the generation and preservation of 21

the coarse grained mineral assemblages, symplectite and the growth of monazite. A 22

metamorphic forward model for a specific rock bulk compositions (P-T23

pseudosection) is presented in Figures 8b. Figure 8b was calculated from a 24

composition determined by XRF analysis of sample I05-54. The P-T pseudosection25
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was calculated using THERMOCALC v3.31i (Powell and Holland, 1988). The K2O-1

FeO-MgO-Al2O3-SiO2-H2O (KFMASH) including the minerals garnet (g) (Holland 2

and Powell, 1998), orthopyroxene (opx) (Powell and Holland, 1999), cordierite (cd)3

(Holland and Powell, 1998), spinel (sp), aluminosilicate (and/ky/sill), biotite (bi)4

(White et al., 2007), K-feldspar (ksp), quartz (q), sapphirine (sa) (Kelsey et al., 2004; 5

White et al., 2001), osumilite (osm) (Holland et al., 1996), corundum (crn), silicate 6

liquid (liq) (White et al., 2007) and H2O-fluid the pseudosection was calculated using 7

the 5.5s update to enable the incorporation of sapphirine into the model (Kelsey et al., 8

2004). 9

10

The pseudosection shown in Figure 8b constrains the peak conditions experienced at 11

this time from the symplectite assemblage cordierite-sapphirine-spinel-garnet-12

sillimanite-melt that are ~ 7.5 kbar and 920 °C (Fig. 7b). The reheating is consistent 13

with the growth of a second stage of inclusion-free garnet and subsequent 14

decompression to form the cordierite-sapphirine-spinel symplectites and the related 15

growth of monazite. The presence of the negative Eu anomaly displayed by the 16

monazite is consistent with growth from a partially melted rock, the Eu being 17

removed from the bulk rock composition via the removal of plagioclase, during high-18

grade metamorphism (e.g. Buick et al., 2006; Rubatto et al., 2006). 19

20

A regional tectonic scenario21

The mineral parageneses outlined above describes an initial prograde evolution that 22

generated the gedrite-sillimanite-quartz-garnet assemblage, which was followed by a 23

period of cooling, garnet resorption, and kyanite and zircon growth at ~535 Ma. A 24
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subsequent episode of heating (second stage garnet growth), followed by 1

decompression (symplectite formation and monazite growth) occurred at ~525 Ma.  2

3

This sequence of events is consistent with the initial thickening of a hot crust (Fig. 9a)4

that is then subsequently cooled towards a normal geotherm (Fig. 9b). Cooling is then 5

followed by crustal thickening and an up-pressure evolution (Fig. 9c). A second 6

thermal pulse, approximately 10 Ma later, heats the crust to ~920 °C and is associated 7

with decompression (Fig. 9d). We interpret this second heating/decompression pulse 8

to be due to delamination of the sub-continental lithospheric mantle after continental 9

collision. This is consistent with reflection seismic images that show a shallowing in 10

Moho depth beneath the PCSS (Rajendra-Prasad et al. 2006). 11

Such a scenario of repeated pulsative heating and cooling related to extensional and12

contractional events on a subduction margin (tectonic switching) has been previously 13

proposed for the generation of granulite terranes on an evolving collisional continental 14

margin (Collins, 2002a; Collins, 2002b) in both ancient (Lachlan and New England 15

Orogens, Australia) and modern (Taupo Vocanic Zone, New Zealand) settings. In this 16

scenario, transient rollback of a subducting slab induces extension in the overriding 17

plate and the formation of back-arc basins and the production and emplacement of 18

basaltic magmas via advection from the decompressed asthenosphere resulting in 19

thermally anomalous crustal conditions. The arrival of more buoyant oceanic plateaus 20

induces a period of flat subduction that drives compression focussed into the 21

thermally softened back arc and the formation of a narrow hot orogenic belt (Collins, 22

2002a). A back-arc setting for metamorphism associated with the PCSS is consistent 23

with recent observations made by Brown (2006; 2007) who suggests that Ediacaran-24

Cambrian (Pan-African) mobile belts show similarities to inverted, thickened back-arc 25
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basins. With the high heat flow at these sites (Hyndman et al., 2005) being able to 1

account for the generation of the observed UHT mineral assemblages in the inverted 2

and eroded back-arc settings.3

4

The tectonic switching model of Collins (2002a) is consistent with a number of first 5

order observations about the setting of the PCSS: 1) The PCSS is situated close to the 6

continental margin during the Neoproterozoic amalgamation of Gondwana (Collins 7

and Pisarevsky, 2005); 2) there is a two stage heating process; the first of which is8

associated with crustal thickening and is separated from the second by a stage of 9

cooling, the second thermal pulse being related to delamination of the lithospheric 10

mantle and upwelling asthenosphere; 3) The rate of this change in subduction style in 11

eastern Australia has been proposed to be in the order of ~10 Ma, this is consistent 12

with the age data of the cooling and reheating events presented in this paper. Previous 13

workers have interpreted the PCSS as a suture zone between Neoproterozoic India 14

and Azania (Collins et al., 2007b; Shimpo et al., 2006; Santosh et al., 2009). We 15

concur that the PCSS was proximal to an Ediacaran-Cambrian active margin, but 16

suggest that data presented here are consistent with the Panangad being the northern 17

part of the Madurai Block (Fig. 1)—a part of the Neoproterozoic continent Azania—18

to the present day south of the proposed suture zone within a continental back-arc 19

setting.20

21

Summary22

The coupled accessory phase, major silicate mineral parageneses, trace element 23

geochemistry, geochronology and P-T pseudosections presented in this paper allow a 24
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relatively complete P-T-t evolution and tectonic setting for the rocks of the PCSS to 1

be deduced. 2

3

1. HREE data from zircon is consistent with zircon growth during the breakdown 4

of garnet at between 672-755 °C in the kyanite stability field at 535.0 ± 4.95

Ma.6

7

2. Monazite growth and symplectite formation occured at 920 °C and 7.5 kbar, 8

~10 Ma after zircon growth and reflects a period of reheating and 9

decompression related to delamination. The REE chemistry of the monazite is 10

consistent with the rock having undergone partial melting prior to monazite 11

growth, thereby altering the bulk rock chemistry.12

13

3. The periodicity of the heating and cooling cycles (~10 Ma) from this study are 14

consistent with recently proposed tectonic switching models for the formation 15

of granulite metamorphism in accretionary/collisional tectonic settings 16

(Collins, 2002a). The elevated heat flows required to generate the UHT 17

metamorphism are achievable in the proposed back-arc setting for the18

Pannangad locality within the PCSS during Gondwana amalgamation (e.g. 19

Brown, 2007; Hyndman et al., 2005).20

21
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Figure Captions1

2
3

Figure 1 – (a) Map of southern Indai showing the various protolith ages amd major 4

structural features. (b) Enlargement of area in (a) showing the location of 5

the Panangad sample area.6

7

Figure 2 – (a) Field photograph of a garnet-kyanite-biotite gneiss with kyanite blades 8

aligned in the shear plane. Scale bar has 1 cm increments. (b) Field photo 9

of garnet-kyanite-biotite gneiss (1cm increment on scale bar). (c) 10

Photomicrograph of garnet separated form biotite by a narrow rim of 11

cordierite, and the development of a sapphirine + cordierite symplectite 12

between the garnet and coarse grained kyanite. The pits from the LA-13

ICPMS traverse are visible running vertically through the garnet (field of 14

view = 8000 m) (d) Sapphirine + cordierite and sapphirine +spinel 15

symplecties separating kyanite (partially pseudomorphed by sillimanite) 16

and garnet. Note the monazite in the symplectite (field of view = 3500 17

m). (e) Gedrite + sillimanite + quartz inclusion in garnet. (f) Zircon and 18

rutile in coarse grained kyanite blades. (g) Sapphirine-cordierite and 19

spinel-cordierite symplectites between garnet and kyanite porphyroblasts 20

with cordierite separating garnet from sapphirine and spinel. (h) Fine 21

grained biotite in cordierite, note the monazite in the reaction texture and 22

the zircon in the kyanite. (i) monazite intergrown with a sapphirine-23

cordierite symplectite.24

25
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Figure 3 – (a-g) Electron probe maps of garnet with characteristic retrograde zoning 1

pattern, LA-ICPMS analysis spots marked. Location of the electron 2

microprobe spot analysis traverse across the garnet shown in part (4a) is 3

shown on (b).4

5

Figure 4 – major and trace element data for garnet. (a) Electron microprobe spot 6

analysis traverse across the garnet (b) LA-ICPMS traverse for Lu, Yb and 7

Y as shown in Fig. 3a. (c) Chondrite normalised rare earth element 8

patterns for the core, intermediate and rim of the garnet.9

10

Figure 5 – (a-d) CL images of zircons showing main textural features. (e) Wetherill 11

concordia plot of U-Pb analyses from sample I05-54 (after Collins et al., 12

2007). (f) Range of temperatures obtained from Ti in zircon thermometry.  13

Chondrite normalise REE patterns for (g) older oscillatory zoned cores and 14

(h) zircon rims and new grown metamorphic zircon.15

16

Figure 6 – (a) BSE images of a selection of analysed monazites showing main 17

textural features and the location of U-Pb spot analyses. (b) Wetherill 18

concordia plot of U-Pb monazite data from monazite cores for sample I05-19

54. (c) Wetherill concordia plot of U-Pb monazite data from monazite rims 20

for sample I05-54. (d) Chondrite normalised REE patterns for monazite.21

22

Figure 7 – Comparison of the REE distribution patterns between zircon and garnet in 23

(a) natural samples and (b) experimental studies. (Rubatto’02 = Rubatto 24
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(02); W & P ‘03=Whitehouse and Platt 2003; Harley UHT ’01 = Harley, 1

2001; RH07 = Rubatto and Hermann, 2007).2

3

Figure 8 – (a) Schematic phase diagram showing possible maximum temperatures 4

and pressure experienced during the early metamorphic evolution of 5

sample I05-54. The oam + grt = crd + opx FMASH reaction line is from 6

Diener et al., 2008). (b) Pseduosections calculated for a bulk composition 7

determined by XRF analysis of sample I05-54. Bulk rock compositions are 8

in molecular weight percent.9

10

Figure 9 – Cartoon showing the tectonic evolution of the region around the PCSS 11

from immediately prior to collision of the Dharwar craton at 540 Ma and 12

final amalgamation at 525 Ma.13

14
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Table Captions1

2

Table 1 – Electron microprobe garnet compositions.3

4

Table 2 - Spinel, sapphirine gedrite, cordierite, and two generations of biotite electron 5

microprobe compositions.6

7

Table 3 –U-Pb monazite age data from LA-ICPMS.8

9

Table 4 – LA-ICPMS garnet trace element compositions.10

11

Table 5 – LA-ICPMS zircon trace element compositions and Ti in zircon 12

thermometry.13

Table 6 – LA-ICPMS monazite trace element compositions14

15

16
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TABLE 1: EPMA major element analyses of garnet

Gt-6 Gt-9 Gt-11 Gt-13 Gt-35 Gt-36 Gt-37 Gt-39 Gt-135 Gt-136 Gt-137 Gt-138

SiO2 39.54 39.42 39.48 39.81 40.17 40.04 39.80 39.94 39.70 39.31 39.86 39.77

TiO2 0.00 0.12 0.01 0.00 0.00 0.04 0.01 0.04 0.04 0.00 0.03 0.04

Al2O3 22.53 22.63 22.66 22.75 22.58 22.87 22.85 22.95 22.62 22.74 22.65 22.58

Fe2O3 0.88 0.86 0.93 0.65 0.93 0.78 1.08 0.97 0.78 1.03 0.76 0.86

FeO 21.38 21.17 20.84 20.47 18.99 18.83 19.02 18.95 20.98 21.18 21.53 21.61

MnO 0.48 0.32 0.37 0.37 0.22 0.37 0.25 0.28 0.33 0.49 0.50 0.50

MgO 14.10 14.32 14.50 14.74 15.72 15.84 15.94 15.99 14.44 14.34 14.00 13.91

CaO 1.26 1.30 1.36 1.26 1.40 1.34 1.32 1.34 1.27 1.34 1.37 1.45

Total 100.17 100.12 100.14 100.05 100.01 100.10 100.28 100.46 100.16 100.43 100.70 100.71

Si 2.96 2.94 2.94 2.96 2.97 2.96 2.94 2.94 2.96 2.93 2.96 2.96

Al iv 0.04 0.06 0.06 0.04 0.03 0.04 0.06 0.06 0.04 0.07 0.04 0.04

Al vi 1.94 1.94 1.94 1.96 1.94 1.95 1.93 1.94 1.95 1.94 1.95 1.94

Ti 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe3+ 0.05 0.05 0.05 0.04 0.05 0.04 0.06 0.05 0.04 0.06 0.04 0.05

Fe2+ 1.34 1.32 1.30 1.27 1.17 1.16 1.17 1.17 1.31 1.32 1.34 1.34

Mn 0.03 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.03

Mg 1.57 1.59 1.61 1.63 1.73 1.74 1.75 1.75 1.60 1.59 1.55 1.54

Ca 0.10 0.10 0.11 0.10 0.11 0.11 0.10 0.11 0.10 0.11 0.11 0.12

Total 8.03 8.03 8.04 8.03 8.02 8.03 8.04 8.04 8.03 8.05 8.03 8.03

XAlm 42.41 41.64 40.78 40.63 37.47 36.68 36.21 36.14 41.67 40.92 42.88 42.90

XGrs 0.89 1.07 1.03 1.52 1.15 1.38 0.50 0.84 1.21 0.68 1.54 1.46

XPyr 53.15 54.15 54.74 55.20 58.32 58.97 59.70 59.67 54.21 54.39 52.36 52.14

XSpss 1.03 0.69 0.79 0.79 0.46 0.78 0.53 0.60 0.70 1.05 1.07 1.06

Rim Core Rim
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TABLE 2: EPMA major element analyses of spinel, sapphirine, gedrite, cordierite and biotite

SiO2 0.12 0.08 0.10 12.20 12.24 12.02 44.14 44.49 44.28 50.56 50.58 50.63 38.50 38.28 37.92 38.42 38.44 38.29

TiO2 0.02 0.00 0.00 0.03 0.02 0.06 0.44 0.43 0.38 0.00 0.01 0.00 1.95 2.01 2.15 2.00 1.97 1.94

Al2O3 61.41 61.02 60.51 62.07 62.23 62.48 19.16 19.12 19.19 33.20 32.97 32.92 17.35 17.58 17.75 17.84 17.79 17.71

Cr2O3 0.41 0.33 0.42 0.19 0.21 0.24 0.07 0.08 0.06 0.00 0.00 0.00 0.13 0.06 0.06 0.09 0.09 0.02

FeO 24.38 24.72 24.77 8.85 9.07 8.80 10.68 10.39 10.19 2.67 2.44 2.42 8.58 8.79 8.67 8.67 8.52 8.63

MnO 0.06 0.00 0.05 0.05 0.01 0.04 0.01 0.00 0.06 0.08 0.00 0.08 0.00 0.03 0.00 0.04 0.02 0.00

MgO 12.48 12.11 12.24 16.56 16.72 16.36 21.51 21.89 22.16 12.80 12.79 12.91 19.56 19.70 19.73 19.74 19.68 19.50

ZnO 1.18 0.87 0.99 0.04 0.00 0.00 0.00 0.06 0.08 0.05 0.00 0.00 0.02 0.04 0.09 0.08 0.00 0.00

CaO 0.00 0.00 0.00 0.02 0.00 0.00 0.62 0.61 0.56 0.05 0.04 0.04 0.01 0.01 0.00 0.00 0.00 0.00

Na2O 0.01 0.03 0.00 0.00 0.00 0.04 1.48 1.46 1.62 0.27 0.30 0.20 0.75 0.71 0.79 0.68 0.71 0.73

K2O 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 8.51 8.37 8.47 8.45 8.41 8.62

Total 100.08 99.16 99.08 100.02 100.50 100.05 98.12 98.53 98.59 99.68 99.14 99.22 95.37 95.58 95.64 96.00 95.61 95.43

Si 0.00 0.00 0.00 1.47 1.46 1.44 6.12 6.13 6.10 5.01 5.03 5.03 2.76 2.74 2.72 2.74 2.75 2.75

Ti 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.04 0.04 0.00 0.00 0.00 0.11 0.11 0.12 0.11 0.11 0.10

Al 1.94 1.95 1.94 8.78 8.77 8.83 3.13 3.10 3.12 3.88 3.87 3.86 1.47 1.48 1.50 1.50 1.50 1.50

Cr 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00

Fe2+
0.55 0.56 0.56 0.89 0.91 0.88 1.24 1.20 1.17 0.22 0.20 0.20 0.51 0.53 0.52 0.52 0.51 0.52

Mn2+
0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Mg 0.50 0.49 0.50 2.96 2.98 2.93 4.44 4.50 4.55 1.89 1.90 1.91 2.09 2.10 2.11 2.10 2.10 2.09

Zn 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.09 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.00 0.00 0.00 0.00 0.00 0.01 0.40 0.39 0.43 0.05 0.06 0.04 0.10 0.10 0.11 0.09 0.10 0.10

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.77 0.78 0.77 0.77 0.79

Biotite (fine)Spinel Sapphirine Gedrite Cordierite Biotite (coarse)
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TABLE 3: U-Pb LA-ICP MS Monazite Analyses

Spot No. 206Pb/238U 1s 207Pb/235U 1s 207Pb/206Pb 1s 206Pb/238U 1s 207Pb/235U 1s 207Pb/206Pb 1s Conc (%)

(Ma) (Ma) (Ma)

Core Analyses

54.1.1 0.08425 0.00114 0.67858 0.00989 0.05831 0.0069 521.4 6.8 525.9 6.0 540.8 26.5 96

54.2.1 0.08438 0.00114 0.67583 0.00982 0.05799 0.0069 522.2 6.8 524.3 6.0 528.8 26.1 99

54.3.1 0.08537 0.00116 0.69674 0.01048 0.05908 0.0074 528.1 6.9 536.8 6.3 570.2 27.0 93

54.4.1 0.08493 0.00115 0.68472 0.00994 0.05836 0.0069 525.5 6.8 529.6 6.0 543.5 25.6 97

54.5.1 0.08450 0.00115 0.68244 0.01015 0.05846 0.0072 522.9 6.8 528.2 6.1 547.2 26.6 96

54.6.1 0.08509 0.00116 0.68995 0.01034 0.0587 0.0073 526.4 6.9 532.8 6.2 556.1 26.9 95

54.7.1 0.08570 0.00116 0.69540 0.01003 0.05874 0.0069 530.1 6.9 536.0 6.0 557.5 25.2 95

54.8.1 0.08462 0.00115 0.68693 0.0099 0.05877 0.0068 523.7 6.8 531.0 6.0 558.5 25.2 94

54.9.1 0.08493 0.00115 0.68741 0.01 0.0586 0.0069 525.5 6.9 531.2 6.0 552.2 25.6 95

54.10.1 0.08544 0.00116 0.68402 0.00993 0.05796 0.0068 528.5 6.9 529.2 6.0 527.9 26.0 100

54.11.1 0.08556 0.00119 0.70125 0.01201 0.05933 0.009 529.2 7.1 539.5 7.2 579.2 32.7 91

54.12.1 0.08526 0.00117 0.69271 0.01049 0.05881 0.0074 527.4 6.9 534.4 6.3 560.2 27.3 94

Rim Analyses

54.1.2 0.08355 0.00116 0.67464 0.01112 0.05845 0.0084 517.3 6.9 523.5 6.7 546.8 31.1 95

54.3.2 0.08310 0.00114 0.65717 0.01036 0.05725 0.0077 514.6 6.8 512.9 6.4 500.5 29.4 103

54.4.2 0.08311 0.00114 0.67038 0.01046 0.05839 0.0077 514.7 6.8 520.9 6.4 544.4 28.7 95

54.5.2 0.08404 0.00115 0.67645 0.01047 0.05827 0.0076 520.2 6.8 524.6 6.3 539.1 29.0 96

54.8.2 0.08352 0.00115 0.66822 0.01075 0.05792 0.008 517.1 6.9 519.6 6.5 526.4 30.3 98

54.10.2 0.08318 0.00115 0.66830 0.0106 0.05816 0.0079 515.1 6.8 519.7 6.5 535.2 29.9 96

54.11.2 0.08355 0.00116 0.66782 0.01079 0.05786 0.008 517.3 6.9 519.4 6.6 524.4 30.4 99

54.12.2 0.08228 0.00113 0.66079 0.01048 0.05814 0.0079 509.7 6.7 515.1 6.4 534.5 29.9 95
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TABLE 4: Trace Element LA-ICP MS Garnet Analyses
G-54.1 G-54.2 G-54.3 G-54.4 G-54.5 G-54.6 G-54.7 G-54.8 G-54.9 G-54.10 G-54.11 G-54.12 G-54.13 G-54.14 G-54.15 G-54.16 G-54.17

Sc 77.37 61.02 82.61 130.94 152.12 157.92 204.57 222.91 219.1 186.43 184.32 176.12 154.66 134.5 118.39 84.06 72.92

Ti 35.41 37.95 42.51 51.88 52.32 50.38 77.2 65.26 73.36 60.05 59.94 52.35 55.21 55.6 53.25 42.33 38.85

P 159.32 169.4 167.69 43.12 46.2 64.18 64.34 58.68 67.71 6.25 4.91 6.86 37.28 55.33 77.68 204.65 266.2

V 23.91 34.18 33.99 36.45 37.69 48.57 73.7 64.55 73.18 63.37 66.72 44.19 47.14 44.31 42.78 34.29 30.43

Cr 233.67 237.42 268.69 232.13 157.33 237.67 259.81 264.12 261.19 256.49 245.99 160.72 167.14 219.62 396.54 238.28 224.29

Y 44.09 58.12 80.99 135.01 124.92 105.36 61.67 65.99 59.06 43.5 50.02 63.52 85.41 109.19 111.33 86.1 64.63

Zr 1.987 2.64 2.17 2.17 2.53 2.58 2.62 2.59 2.36 1.562 1.713 2 2.33 2.54 2.64 2.94 4.22

La bdl bdl 0.00125 bdl bdl bdl bdl bdl bdl bdl 0.00027 0.00238 0.0015 bdl bdl bdl 0.00283

Ce 0.00335 0.003 0.0048 0.0072 0.0112 0.0127 0.0097 0.0061 0.0094 0.00424 0.00273 0.0146 0.0054 0.0095 0.007 0.0064 0.0078

Pr 0.00327 0.00317 0.00295 0.0047 0.0085 0.0051 0.003 0.0085 0.0082 0.00382 0.00394 0.00482 0.00476 0.0051 0.00444 0.006 0.003

Nd 0.0645 0.0865 0.0738 0.105 0.139 0.135 0.126 0.132 0.14 0.0811 0.0901 0.107 0.104 0.099 0.091 0.09 0.093

Sm 0.278 0.283 0.315 0.379 0.374 0.441 0.502 0.431 0.59 0.317 0.324 0.344 0.398 0.37 0.37 0.313 0.33

Eu 0.237 0.251 0.29 0.387 0.409 0.456 0.401 0.433 0.398 0.286 0.306 0.322 0.354 0.328 0.335 0.301 0.299

Gd 1.752 1.896 2.48 3.44 4.06 3.99 3.76 4.32 3.91 2.39 2.66 3.06 3.23 3.42 3.36 2.72 2.38

Tb 0.858 1.016 1.301 1.99 2.18 2.01 1.98 2.07 1.95 1.173 1.327 1.558 1.743 1.829 1.738 1.327 1.136

Dy 7.83 9.79 13.28 22.12 21.03 19.86 14.9 15.91 14.32 9.85 11.15 14 16.83 19.67 19.25 14.35 11.34

Ho 1.607 2.25 3.42 6.27 5.4 4.6 2.35 2.65 2.29 1.551 1.84 2.49 3.48 5.04 4.92 3.62 2.51

Er 3.59 5.4 9.4 20.02 16.06 11.97 4.19 5.29 4.69 3.26 3.74 5.52 9.08 17.04 16.03 11.03 6.62

Tm 0.456 0.807 1.56 3.9 3.11 2.09 0.517 0.744 0.666 0.405 0.447 0.698 1.386 3.3 2.92 1.741 0.872

Yb 2.71 5.55 11.74 36.84 26.13 16.19 2.75 5.07 4.77 3.1 3.12 4.98 10.88 32.67 26.36 14.07 6.09

Lu 0.306 0.667 1.61 6 4.1 2.22 0.339 0.734 0.699 0.376 0.383 0.582 1.257 5.65 3.89 1.97 0.731

Hf 0.0404 0.0799 0.0579 0.0286 0.017 0.042 0.073 0.039 0.086 0.0281 0.0306 0.0167 0.0388 0.04 0.0548 0.09 0.118
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TABLE54: Trace element LA-ICP MS Zircon Analyses
Zr-54.1 Zr-54.2 Zr-54.3 Zr-54.4 Zr-54.5 Zr-54.6 Zr-54.7 Zr-54.8 Zr-54.9 Zr-54.10 Zr-54.11 Zr-54.12

P 191 122 130 130 99 138 119 112 91 110 115 105

Sc 389 380 387 350 320 391 356 350 297 337 303 297

Ti 7.25 8.23 7.52 8.01 5.54 5.78 8.17 7.25 6.31 4.69 4.31 5.58

Y 175 211 215 191 154 179 230 218 179 138 140 142

Nb 0.20 0.17 0.18 0.17 0.16 0.23 0.18 0.16 0.14 0.20 0.17 0.17

La 0.02 0.01 bdl 0.03 0.01 0.01 0.03 bdl bdl 0.01 0.01 0.02

Ce 2.28 2.09 2.19 2.21 2.02 3.14 2.26 2.21 1.99 2.82 2.34 2.09

Pr 0.03 0.03 0.02 0.04 0.02 0.01 0.03 0.03 0.02 0.02 0.02 0.02

Nd 0.49 0.55 0.45 0.69 0.43 0.45 0.71 0.58 0.49 0.41 0.33 0.37

Sm 1.77 2.28 2.23 2.17 1.60 1.91 2.45 2.31 1.96 1.47 1.46 1.55

Eu 1.64 1.86 1.82 1.77 1.34 1.66 2.09 1.95 1.58 1.17 1.16 1.32

Gd 13.68 16.23 15.75 14.70 12.10 14.64 17.27 16.98 14.32 10.07 10.68 10.97

Tb 4.36 5.42 5.27 4.77 3.88 4.65 5.73 5.46 4.52 3.12 3.41 3.50

Dy 30.99 38.05 37.48 33.93 27.17 31.96 41.09 38.63 32.34 23.48 24.67 25.00

Ho 5.74 6.98 7.19 6.21 5.10 5.93 7.59 7.21 5.92 4.63 4.69 4.72

Er 12.72 15.11 15.98 13.89 11.47 13.47 16.91 16.40 13.33 11.21 10.73 10.69

Tm 1.84 2.24 2.41 2.10 1.73 1.94 2.47 2.29 1.88 1.69 1.63 1.57

Yb 13.21 16.62 17.55 15.76 12.72 14.00 18.24 16.94 13.57 13.42 11.62 11.54

Lu 1.68 2.08 2.23 1.94 1.59 1.67 2.21 2.15 1.73 1.81 1.54 1.51

Hf 13937 13306 13708 12920 12255 15460 13041 13162 11410 13889 12631 12411

Ta 0.04 0.03 0.03 0.04 0.03 0.05 0.02 0.03 0.03 0.04 0.04 0.03

Pb 1.16 0.97 0.95 1.34 1.03 1.51 1.33 1.13 0.94 1.32 1.19 1.29

ZrTi T 713 724 717 722 692 695 724 713 702 679 672 692

1s 35 35 35 35 35 35 36 36 36 36 36 36
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TABLE 6: Trace element LA-ICP MS Monazite Analyses

M-54.1 M-54.2 M-54.3 M-54.4 M-54.5 M-54.6 M-54.7 M-54.8 M-54.9 M-54.10 M-54.11 M-54.12 M-54.13 M-54.14

P 71750 65621 52106 62048 58773 57812 56277 54493 54515 61437 71810 61160 63109 62134

V 13 13 8 16 15 9 9 9 9 10 16 9 11 7

Y 727 707 521 533 516 515 543 577 481 814 571 506 506 660

Zr 1.60 1.14 0.80 0.94 0.97 0.95 0.81 0.83 0.78 0.87 0.97 0.91 0.86 0.94

Nb 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.04 0.04 0.07 0.05 0.05 0.04

La 130242 112049 85354 107435 102530 95897 93651 89586 89533 99458 119703 101497 96844 94296

Ce 176248 156294 119446 148814 138210 132316 129876 124544 121678 135612 162234 132546 132565 129052

Pr 18179 16584 12564 15547 14509 14142 13678 13225 12830 14354 17182 13684 14084 13805

Nd 68609 63411 48120 60368 55897 55154 52506 51537 49547 55271 65990 51800 54712 52517

Sm 8324 7854 6975 7351 6864 7689 7136 7098 7059 7517 8137 6865 7518 7396

Eu 1450 1339 1276 1098 1036 1417 1298 1300 1317 1383 1214 1225 1316 1415

Gd 4033 3816 3836 3468 3282 4105 3850 3874 3756 4136 3806 3583 3852 4144

Tb 236 229 228 190 182 236 228 234 221 261 209 213 227 265

Dy 481 469 397 363 347 399 412 429 377 518 392 382 395 493

Ho 33 32 23 24 23 22 24 25 19 35 26 22 22 29

Er 29 28 18 21 21 17 19 20 14 33 23 17 16 23

Tm 1.35 1.39 0.86 1.05 0.96 0.81 0.81 0.89 0.56 1.70 1.02 0.76 0.69 0.97

Yb 4.79 4.77 3.23 3.68 3.57 3.37 3.05 3.36 2.48 5.64 3.71 3.05 2.93 3.54

Lu 0.38 0.36 0.30 0.31 0.28 0.31 0.28 0.29 0.20 0.49 0.36 0.23 0.27 0.33

Hf 0.46 0.48 0.53 0.49 0.44 0.59 0.48 0.52 0.60 0.51 0.53 0.47 0.49 0.54

Pb 1281 1498 1424 1542 1485 1508 1556 1561 1385 1538 1494 1408 1558 1481

Table 6


