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Abstract—The Expected Hop Count (EHC) of a computer 
communication network has so far been computed for network 
models that consider only device or link failure, but not both. 
We introduce an Augmented Ordered Multi-valued Decision 
Diagram (OMDD-A) to obtain the EHC of a network in which 
both devices and links may fail. The OMDD-A approach can 
compute the EHC of a 2×100 grid network with 299 paths, 
which is unsolvable using existing techniques. We show that 
OMDD-A generates significantly fewer nodes than the 
corresponding ordered binary decision diagram, leading to 
large reductions in processing time. 
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links,  multi-value decision diagram, network reliability 

I.  INTRODUCTION 
Reliability and performability are important for the 

design and maintenance of computer communication 
networks, road transport, power distribution and many other 
networks. Both links and nodes of the network are subject to 
failure, which impacts on performance. Network reliability 
(REL) has been studied extensively [1]-[5] but only 
considers the network connectivity. The performance of a 
network is often measured in terms of how long it takes 
messages to travel. The Expected Hop Count (EHC) [6]-[9] 
computes the number of vertices that a message is expected 
to pass through on the shortest active path from source to 
target. 

AboElFotoh [6] has shown that computing EHC for the 
general network, where vertices may fail but edges are 
perfect, is #P-hard. A breadth-first-search combined with the 
factoring theorem was proposed to calculate EHC for 
networks with a single source and target; however the 
solution does not scale well with large networks. Soh, et al. 
[7] proposed a more efficient sum-of-disjoint products (SDP) 
technique that generates all network minpaths, sorts them in 
increasing cardinality, and then applies an SDP technique 
[1]. It is shown [7] that the SDP technique is significantly 
faster than the factoring approach.  Neither of these 
approaches [6],[7] is feasible for computing EHC for 
networks with an extremely large number of paths, such as 
the 2×100 grid network with 299 paths. Brooks, et al. [8] use 
random graph models to approximate EHC in mobile WSN 
for EHC with a single source and target, but assume fallible 
edges and perfect vertices. Recently, AboElfotoh, et al. [9] 
extended the factoring approach [6] to solve EHC for 
multiple sources.  

Currently no work considers the more general case where 
both links and devices can fail. Since EHC is a #P-Hard 
problem [6], existing solutions are exponential in the number 
of vertices or edges of the network graph. Ball, et al. [3] 
proposed transforming the graph model G(V,E) into one that 
considers only edge failures, G’(V’,E’). Since |E’| = |V|+|E|, 
the complexity of computing EHC from G’ is exponential in 
the sum of the edges and vertices of the original graph. 

The Ordered Binary Decision Diagram (OBDD) [10] has 
been considered one of the most efficient methods for 
representing Boolean functions [11]. OBDDs have been used 
to solve REL [2]-[5] but do not store sufficient information 
to solve EHC. Decision Diagrams (DDs) with more than two 
output values were first suggested in [12] for the simulation 
of circuits. This concept was extended in [13], which 
presented a formalization of the Multi-variable Decision 
Diagram (MDD) and analyzed its properties. Both [14] and 
[15] produced formal and efficient implementations of the 
MDD. Research has shown that the MDD uses less space 
than the equivalent BDD over a wide variety of benchmarks 
[15],[16]. MDDs have been applied to a number of areas, 
including circuit design and verification [14], Petri nets [17] 
and fault tolerant systems [18]. However, to the best of our 
knowledge, MDDs have not yet been applied to REL or 
other performability measures such as EHC. 

In this paper, we propose an Augmented Ordered MDD 
(OMDD-A) to compute the EHC of a network when both 
edges and vertices are susceptible to failure. Our simulations 
in Section IV show that its performance is far superior to that 
of the binary equivalent; the Augmented OBDD [19].  

The layout of the paper is as follows. Section II discusses 
terminology and reviews DDs and their use in REL. Section 
III present the OMDD-A to compute EHC. We give results 
in section IV and conclusions and future work in Section V. 

II. BACKGROUND 

A.  Network Model and Terminology 
We model a computer communication network (CN) 

using a graph G=(V,E), where each vertex in V represents a 
communication device and every edge in E represents a 
communication link between the devices. A vertex vj or edge 
ej is said to be UP (DOWN) if it is functioning (failed). Let pj 
(ϕj) be the operational probability of vertex vj (edge ej) and 
assume all failures are statistically independent.  

Let n=|V|, and let the vertices (v0, v1, …, vn-1) of V be 
ordered in increasing distance from the source vertex, v0, 
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Figure 2: An OBDD (a) and OMDDs (b)-(e) representing f=e0e2+e1e3
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(b) 
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with the target vertex vt always labeled as vn-1. When two or 
more vertices have the same distance from v0, they are 
ordered arbitrarily. Let (vi,vj) ({vi,vj}) denote a directed 
(undirected) edge between vertices vi and vj, with i>j for 
each {vi,vj}. Fig. 1 shows an example network that illustrates 
such an ordering.  

 
 
 
 
 
 
 
 
 
 
A path Pi is a sequence of UP vertices (va, vb, … vk) in V 

such that there exist UP edges eab = (va,vb) or {va,vb}, ebc = 
(vb,vc) or {vb,vc}, etc. A reaching path Pi to vx is a path from 
v0 to vx where each vertex in Pi is traversed only once. A 
minpath is a reaching path to vt. A diagram path to node Ni 
is a path in a DD starting at the root and leading to Ni. In this 
paper, we use node and link to refer to the elements of a DD, 
and vertex and edge for those of the CN. 

A network state Ω=(VU,EU) of network G=(V,E) is a 
partition of G such that all vertices in VU⊆V and edges in 
EU⊆E are UP and all other vertices and edges are DOWN. 
The probability of a state Ω=(VU,EU) is computed as: 
 Pr(Ω)= ( ) ( )∏∏∏∏

∉∈∉∈

−
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since all failures are assumed to be statistically independent. 
A state is a success state if it contains at least one minpath. 
There are 2|V|+|E| network states in G, but REL and EHC are 
computed only from the set of all success states, ΩS. 

 
In addition to the success state information, computing 

the EHC requires the length of each success state, Ω∈ΩS, 
denoted as 1≤L(Ω)≤n-1. Thus, L(Ω) is the length (the 
number of hops or hop count) of the shortest minpath 
contained in Ω. We assume that the routing protocol in the 
network always finds the shortest available minpath [9]. 
When this minpath is unavailable the router finds the next 
possible shortest minpath. Formally, the EHC is given by: 
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B. Multi-valued Decision Diagrams 
Figures 2(a) and 2(b) to 2(e) show the BDD and MDDs, 

respectively of a Boolean function f=e0e2 + e1e3. Each non-
terminal node (a circle in Fig. 2) in a DD represents the 
evaluation of one or more Boolean variables, with one sub-
tree representing each possible combination of values of 
these variables. In an Ordered DD (ODD), the variable order 
is fixed for all branches/paths of the diagram. Following a 
path from the root node, variables are decided in a given 
order until a value is returned. This value is stored in the 
terminal node of that path (a square in Fig. 2).  

Links in Fig. 2 are labeled with the subscript of the 
variables that are UP, or are labeled with an ‘X’ in the case 
when no variables are UP. When one link represents multiple 
combinations of variables, these combinations are separated 
by commas. For example, in Fig. 2 (c) the label on the 
leftmost edge leaving the root node is “X,0,2”. This label 
represents three cases; all variables being DOWN (‘X’), 
variable e0 being UP and e1 and e2 being DOWN (‘0’), and e2 
being UP and e0 and e1 being DOWN (‘2’) respectively. 

Each node in an Ordered BDD (OBDD) such as in Fig. 
2(a) represents one Boolean variable, and thus has two 
children. By comparison, a node in an Ordered MDD 
(OMDD) may represent a group of several variables, and 
hence it can have more than two children. For example, the 
root node of the OMDD in Fig. 2(b) is evaluating a group of 
three variables (e0,e1 and e2) and thus it has 8 children. 

An OMDD has a fixed variable grouping at each level of 
the diagram, although the number of variables in each 
grouping does not have to be identical. Nagayama and Sasao 
[16] showed that, over a wide variety of benchmarks, that 
such an OMDD uses less space than the equivalent OBDD. 
Note that each level of an OMDD represents the evaluation 
of one particular variable group.  

The efficiency of a DD implementation is measured by 
its number of nodes [17] and its depth [16]. A good variable 
ordering can effectively reduce the number of nodes and 
depth of an OMDD [16]. A better variable ordering may 
result in more isomorphism between nodes in the diagram. 

Two non-terminal (terminal) nodes are isomorphic if they 
have equivalent sub-trees (they produce identical outputs). 
Merging isomorphic nodes reduces the size of the ODD; this 
operation effectively prunes one of the sub-trees. For 
example, we obtain the smaller ODD in Fig. 2(c) by merging 
the three isomorphic nodes (labeled g1) and the terminal 

 
 Figure 1.  Sample Network 
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nodes in Fig. 2(b). Finding the optimal variable ordering has 
been shown an NP-Complete problem [20].  

The MDD is a natural extension of the BDD, in that it 
has d terminal nodes labeled 0 to d-1, and similar labels are 
possible for the outputs of each MDD node. Each non-
terminal node has a fixed number (d) of outputs, although 
some implementations remove redundant outputs.  A MDD 
that has an equal number of outputs for every non-terminal 
node (before considering isomorphism) is referred to as 
homogeneous; otherwise it is a heterogeneous MDD. 

Fig. 2 (e) shows the homogeneous OMDD with variable 
grouping g0={e0,e1} and g1={e2,e3}. The OMDD has four 
nodes, which is more efficient than the equivalent six node 
OBDD in Fig. 2(a). Fig. 2(c) shows a heterogeneous OMDD 
with groups g0={e0,e1,e2} and g1={e3}, and Fig. 2(d) shows 
another with g0={e0} and g1={e1,e2,e3};  these OMDDs have 
less nodes than the homogeneous OMDD in 2(e). In this 
example the OMDD with g0={e0,e1,e2} and g1={e3} gives the 
optimal result. Unfortunately, finding the optimal grouping is 
even more difficult than the NP-complete problem of finding 
the optimal variable ordering [20]. 

C. Decision Diagrams and Network Reliability 
The Boolean function f=e0e2+e1e3 can represent the 

pathset {e0e2, e1e3} of a network if only edges are 
considered. The OBDD in Fig. 2(a) is used to compute REL 
for this network with perfect vertices. In the application of 
the DD technique to REL [2] the probability that the network 
is connected is given by tracing paths upwards from the 
success terminal nodes and multiplying by the probability of 
the variable(s) being UP or DOWN as appropriate. Since 
each traversed path represents a disjoint event the probability 
of each such path is summed to give REL. 

As an example, consider f = e0e2 + e1e3 as the reliability 
function of a network (for paths e0e2 and e1e3), with each 
edge having a probability of 0.9 of being UP. Thus, the REL 
of the network can be obtained from Fig. 2(a) by following 
each diagram path from the root to the success node (marked 
as 1), and multiplying by 0.9 for each positive edge and 
0.1=(1-0.9) for each negative edge (marked with an ‘X’). 
The right-hand diagram path is 210 eee which has a 

probability of 0.729. The other diagram paths are 210 eee , 

3210 eeee and 310 eee . Note that the nodes of the DD do not 
contain any information other than what is inherent through 
their position in the diagram. Therefore the existing OBDD 
approaches [2],[4],[5] cannot be used to compute EHC, since 
this requires path length information (See Section II A). 

OBDD have been efficiently used for computing REL 
[2],[5], and fault covering and tolerance [18]. Kuo, et al. [2] 
have proposed a recursive EED-ISO algorithm to compute 
REL for a network with perfect vertices and failed edges. 
The use of node isomorphism in OBDD makes EED-ISO 
able to compute REL for a 2×100 grid network with 299 
minpaths. Yeh, et al. [5] use the OBDD for calculating REL 
for a one-to-many network, where one vertex must be 
connected with k-1 other vertices of the network. k-1 
different REL are calculated, which are then combined to 

give the k-terminal reliability. Although these approaches 
[2],[5] are efficient for computing REL, they are not useful 
for computing EHC. The method in [2], for example, only 
generates OBDD nodes to take advantage of isomorphism 
through hash table lookups, but never explicitly links them 
into a diagram. The approach can compute REL by 
traversing the OBDD nodes, but cannot calculate the EHC, 
whose computation requires path length information.  

III. AUGMENTED DECISION DIAGRAMS 

A. Augmenting Decision Diagram Nodes 
For computing EHC, each OMDD node requires more 

information than just its position in the diagram. In particular 
each node, Ni, must store the state(s) of the CN that it 
represents, given the decisions that have been made in the 
diagram path(s) that lead to that node. We call the 
heterogeneous OMDD that comprises such nodes an 
Augmented OMDD (OMDD-A).  

State information includes a set VIi of vertex 
components, Mx={(va, Lx

a), (vb, Lx
b), …, (vk, Lx

k,), Px}. Each 
pair (vj Lx

j) ∈Mx denotes an undecided vertex vj known to be 
reachable from v0 along with the length Lx

j of the shortest 
reaching path known. The probability Px is the probability of 
being in the network state represented by Mx. Section III E 
describes how Px is computed. For each VIi we define a 
vertex set, VSi={va, vb, … vk}. Each VIi also contains a set 
CIi of conditional paths of the form (vx, vy, L) where L is the 
length of the shortest path between undecided vertices vx and 
vy. When the first vertex, vx, of a conditional path is 
reachable (i.e. vx∈VSi) and decided UP, (vx, vy, L) is moved 
to VIi as a minpath to vy by appending it to the minpath to vx. 

The augmenting information in each OMDD-A node is 
computed from its parent nodes (discussed in Section III E). 
Each separate component represents a different network state 
and the probability of being in this state. Because the 
OMDD-A stores state-based information, we can construct 
each level using only the nodes of the previous level. It also 
allows the tracking of information such as path length 
needed to compute EHC. Note that the number of children 
does not affect the size of a node since links are not 
explicitly stored. However, as the number of components in 
a node increases so does the size of the node. This size 
increase is generally manageable since less than two levels 
of nodes are kept in memory at any one time. 

B. Variable Order and Grouping 
The depth of an OMDD can be reduced by using variable 

partitioning [16]. For the OMDD-A algorithm, we group 
each vertex vj with its adjacent edges. Note that both 
directions of undirected edges are considered at one time, 
hence any edge will only be in one variable grouping. Thus a 
node that decides a group consisting of vj with d adjacent 
ungrouped edges has 2d+1 children. An undirected edge is 
grouped with the first endpoint in the ordering; the use of 
conditions ensures that it only has to be considered once. 

Note that those 2d children for which vj is DOWN 
represent identical network states to the child for which all 
edges are DOWN and vj is UP. To reduce the number of 

421

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 26,2010 at 01:33:16 EST from IEEE Xplore.  Restrictions apply. 



nodes of the OMDD-A, we only generate one negative child, 
which represents the network state of the 2d+1 identical 
children. Hence an OMDD-A node deciding the grouping of 
vj and d adjacent edges has only 2d children. The link 
connecting a parent node to its negative child is referred to as 
the negative link and is marked with an ‘X’. For example, 
consider the network in Fig. 1. The OMDD-A partition for 
this network is g0={v0,e0,e1}, g1={v1,e2,e3} and g2={v2,e4}. 
The negative child for g0 represents the case when either v0 is 
DOWN, or e0 and e1 are both DOWN.  

C. OMDD-A Node Types 
We consider two types of OMDD-A nodes: terminal, and 

non-terminal. Our approach processes each non-terminal 
node in a breadth-first fashion and completes when there are 
no more such nodes. A terminal node can be either a success 
node (whose value is a hop count of 1 or more) or a failure 
node (with a value of 0). The REL and EHC are computed 
from the reaching path probabilities contained in all success 
nodes (discussed in Section III E). 

 
Figure 3. The TestNode function 

A failure node has no sub-trees containing a success 
node. It is favorable to detect failure nodes as early as 
possible, since REL are computed only from success nodes. 
However the processing cost of testing for failure must be 
kept to a minimum. Ni is a failure node if VSi={}; if the node 
has no information on any undecided vertices then no new 
vertices (including the target) will be reached. However, a 
failure Ni may have a non-empty VSi, and detecting such 
nodes is computationally expensive. Our TestNode function 
in Fig. 3 returns a value 1, 2, or 3 if Ni is a failure, success, 
or non-terminal node, respectively. Note that a node that 
contains multiple components is not a success node if any of 
the components do not meet the criteria. The OMDD-A 
implementation removes successful components from the 
node as soon as they are detected, and stores their 
information to avoid unnecessary overhead.  

D. Node Isomorphism 
We consider non-terminal nodes Ni and Nj at the same 

level of an OMDD-A isomorphic iff VSi=VSj and CIi=CIj. 
We check isomorphic nodes only from their equal VS and CI 
to tradeoff between the number of isomorphic nodes and the 
processing time complexity per node.  

Two isomorphic nodes Ni and Nj can be merged into one 
node that keeps the VS and CI of merged nodes; without loss 
of generality let the resulting node be Ni for i<j. We say 
components Mx={(va, Lx

a), (vb, Lx
b), …, (vk, Lx

k,), Px } and 
My = {(va, Ly

a), (vb, Ly
b), …, (vk, Ly

k), Py } are equal (and 

write Mx=My) iff Lx
α=Ly

α for α =a to k. Fig. 4 shows the 
Merge function. 

 
Figure 4.  The Merge function 

 
Figure 5: Unmerged OMDD-A 

Consider the OMDD-A in Fig. 5, which computes the 
EHC of the network in Fig. 1; the diagram has not been 
reduced using isomorphism. Links between a node and its 
children have been labeled with the edges that are UP (e.g. 
01 indicates that both e0 and e1 are UP, in addition to v0 
being UP). Negative links are labeled with an X. Terminal 
nodes are marked with the EHC, or 0 for a failure node. The 
shaded nodes deciding variable group g2 are isomorphic, and 
thus are merged before being further processed to create sub-
trees; the resulting OMDD-A is shown in Fig. 6. 

While the top two levels of the diagram in Fig. 6 are 
unchanged, the third level now has only three non-terminal 
nodes instead of seven. Although each g1 node in Fig. 6 
could have a maximum of four sub-trees, two have less than 
this, and several of the sub-trees consist solely of a terminal 
node. This represents a reduction from a theoretical 
maximum of 53 (1+4+16+32) nodes to 19 nodes in this 
diagram, most of which are terminal nodes. 

Terminal nodes are not processed to create sub-trees. 
Failure nodes are simply discarded, while success nodes 
have their probability contribution stored before being 
discarded. For this reason the OMDD-A algorithm does not 
merge terminal nodes, and it is more appropriate to compare 
diagrams by counting only non-terminal nodes. The OMDD-
A in Fig. 6 has 7 non-terminal nodes.  

An OMDD-A has |V| levels, compared to |V|+|E| levels 
for OBDD-A. The advantage of the OMDD-A having less 
depth is offset by the fact that more nodes are generated at 
each level. However, since augmented nodes are only tested 
for isomorphism with other nodes on the same level, the 
amount of isomorphism in the diagram increases. This leads 
to a far superior performance compared to deciding vertices 
and edges one at a time. For comparison, an OBDD-A 
equivalent to the OMDD-A in Fig. 6 would contain 31 non-
terminal nodes in 9 levels. Hence, for this example OMDD-
A uses only 23% (7/31) of the nodes of the OBDD-A.  

TestNode (Ni): 
// Let lb be the least path length in Mx to a vertex vb∈VIi 

// Let lt be the least path length in Mx to target vt 
1. if VSi = {} then return 1.   // a failure node 
2. else if vt∉VSi then  
3. return 3.  // a non-terminal node 
4. for each Mx∈VIi do  // for each component 
5. if (lb < lt-1) then 
6.   return 3. // a non-terminal node 
7. return 2. //a success node 

Merge( Ni, Nj): 
// Let VSi=VSj={va, vb, … , vk)  
 1.  for each My← {(va, Ly

a), (vb, Ly
b), …, (vk, Sy

k), Py}∈ VIj do 
 2. for each Mx ←{(va, Lx

a), (vb, Lx
b), …, (vk, Lx

k), Px} ∈ VIi do 
 3.    if Mx = My then  
 4. Mx ← {(va, Lx

a), (vb, Lx
b), …, (vk, Lx

k,), Px+Py }.   
 5. break. 
 6.  if no Mx was equal to My then //i.e., Step 3 was always False 
 7. add My to VIi 
 8.   Replace old Ni on QN with updated Ni 
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Figure 6: OMDD-A with Non-Terminal Nodes Merged 

E. Creating an OMDD-A for Computing EHC 
The function in Fig. 7 constructs an OMDD-A to 

compute the EHC and REL. The function first creates a root 
node N0, and places it in a queue QC, which is used to hold 
all nodes at the level currently being decided. The other 
queue, QN, is used to hold the child nodes created at the next 
lower level, and is initialized to null. The decision variable, 
DV, and all length probabilities, Pr(L), are initialized to 0. 

Lines 3 to 21 are a loop that first checks if QC is empty; 
QC being empty indicates that we have finished a level of the 
diagram. If QC and QN are both empty the algorithm 
terminates. If QC is empty but QN is non-empty, we 
increment DV and move the contents of QN to QC to start 
generating the next level of the diagram. 

 

 
Figure 7.  The OMDD-A function 

The next step (line 8) removes the first Ni from QC. We 
generate the D = 2d children of Ni, and label them Nd*i+1 to 
Nd*i+D where d is the number of undecided edges adjacent to 
vertex vDV, (i.e., all edges of the form (vDV,vx), (vx,vDV), or 
{vDV,vx} where x > DV). The first of these child nodes, 
Nd*i+1, is the negative child that represents the case where the 
vDV is DOWN or vDV is UP and all edges grouped with it are 
DOWN. All other nodes represent vDV being UP and some 
combination of the edges grouped with it being UP. Each Nj 

contains information on the state of the CN, in particular the 
length of the shortest reaching path to each vertex in VSj. All 
non-terminal child nodes which are isomorphic with the 
nodes in QC are merged while others are added to the end of 
QC (lines 11 to 17).  

Failed terminal nodes are discarded. Success nodes have 
their information added to the relevant length probabilities, 
Pr(L), before being discarded. For example if a component in 
the success node has a path of length 3 to the target vertex 
with a probability of 0.081, then Pr(3) is increased by 0.081. 
The sum of these length probabilities produces REL, and can 
be used to calculate EHC using Equation (1). 

IV. SIMULATION RESULTS AND DISCUSSIONS 
OMDD-A has been implemented in C++ and tested on a 

Pentium computer (2 Xeon 3.2GHz processors, 1MB cache, 
2GB RAM) for evaluating the REL and EHC of a variety of 
networks. Each reported CPU time is averaged over five runs 
for each simulation. Execution was halted after 5 hours 
(CPU time). Further, terminal nodes are excluded when 
stating the number of nodes since non-terminal nodes incur 
more of a processing cost and since the number of (merged) 
terminal nodes is fixed for the EHC of a given network. 

Other than OBDD-A, we know of no other method that 
calculates EHC for networks with both node and edge 
failure. Thus, explicit comparison is made only between the 
OBDD-A and OMDD-A methods.  

A. Computing the EHC using OMDD-A 
Both the OMDD-A and OBDD-A were first applied to 

the the 19 benchmark networks from [1]. While OMDD-A 
was able to compute the EHC of the networks, OBDD-A 
failed to compute the metrics for networks 13, 17 and 19 in 5 
hours of CPU time. We observed that the efficiency of both 
implementations is strongly affected by the maximum 
boundary set size of the network [4].  

For those networks solvable by both, the OMDD-A 
requires less nodes than the OBDD-A. This result is 
consistent with that in [15],[16] for OMDD and OBDD. For 
these networks, the OMDD-A requires at most 22.6% of the 
nodes of the OBDD-A. The most telling difference was for 
the network from Fig. 7 of [1] (|V|=7, |E|=21), with the 
OBDD-A generating 292,504 nodes (out of a possible 228) 
and the OMDD-A only 102 nodes. Further, OMDD-A 
reduces the height of OBDD-A (28 levels) to only 7. 

The comparison of execution time yields a similar result. 
As an example, for the network from Fig. 18 from [1] (with 
13 vertices and 22 edges) OMDD-A took just 0.5% of that of 
OBDD-A (0.7s to 159.6s). 

In order to compare our results with Soh et. al.[7] we 
generated random networks using BRITE and applied the 
OMDD-A algorithm. Our algorithm took longer to complete 
as compared to [7], but the orders of magnitude were the 
same. In addition it must be noted that our algorithm 
considers both node and edge failure, which means the 
problem solved by OMDD-A is in the order of 150 variables 
instead of 50 for SDP. Further OMDD-A can compute the 
EHC of some networks (e.g., 2×100 grid) that cannot be 
solved using the SDP approach. 

1. Create root node N0 
2. QC←{N0}, QN←{ }, DV←0, and Pr(L) ← 0 (for all 0≤L≤|E|). 
3. if QC = { } then 
4.  if QN = { }then 
5.   calculate REL and EHC from Pr(L) 
6.  else  
7.   QC ← QN, QN ← { } and DV ← DV + 1. 
8. remove the first node Ni from QC. 
9. for each combination of unmarked edges (vDV,vx), (vx,vDV), or 

{vDV,vx}: 
10.   create child N based on UP edges 
11.  if N is non-terminal then 
12.  for each Nq∈QN do 
13.   if N is isomorphic to Nq then 
14.    call Merge(Nq, N). 
15.    break. 
16.  if no Nq was isomorphic to N then 
17.   add N to QN. 
18.  else if N is a success node then 
19.  store results in Pr(L). 
20. mark all edges used in step 9 above as decided 
21. goto 3. 
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Figure 8: EHC with Different Component Reliability Scenarios 

Fig. 8 shows the effect of component reliability on EHC. 
We calculated the EHC of the 2×50 grid network, and 
considered three cases: (i) only edge failure, (ii) only vertex 
failure, (iii) both failures. The curve for EHC is similar for 
all cases. Note, the result for case (iii) is skewed the most to 
the right, and that for case (ii) is skewed the most to the left 
(line with diamond). This shows that vertex failure has the 
least impact on path length, since for larger p it has the 
lowest EHC. 

B. Effect of Boundary Set on Performance 
The implementation was also tested on other networks 

with comparable results. For the 2×100 grid network from 
[2] the OMDD-A generates 18.8% (593 compared to 3155) 
of the nodes of the OBDD-A. Similar results were produced 
for other 2×w grids tested. On networks with a larger 
maximum boundary set (Bmax) [4], such as the 4×4 grid, the 
OMDD-A was able to compute the answer (generating 3098 
nodes in 2.87 CPU seconds) while the OBDD-A failed to 
complete within a reasonable amount of time. 

TABLE I.  IMPACT OF BMAX ON NODES GENERATED BY  OMDD-A 

Grid Bmax Nodes Grid Bmax Nodes
2×10 2 53 2×12 2 65 
3×7 3 879 3×8 3 1678 
4×5 4 26824 3×6 4 447666
To demonstrate the effect of Bmax we tested our algorithm 

on a number of grid networks with a similar number of 
vertices but varying Bmax. Table I shows that the number of 
OMDD-A nodes generated increases exponentially as Bmax 
increases. Note that the number of nodes is also influenced 
by other factors, such as the ordering of the vertices and 
edges in the network. 

V. CONCLUSION 
We have shown that OMDD-A is more time and space 

efficient than OBDD-A for computing the REL and EHC 
when network edges and vertices can fail. In our simulations, 
OMDD-A generates from under 1% to around 25% of the 
nodes of the OBDD-A. Since the complexity of OMDD-A is 
not directly related to the number of paths, our technique is 
suitable for networks (e.g., grid) with extremely large 
pathsets, not solvable by the existing techniques [6]-[9]. 

We are investigating more effective variable orderings 
and groupings for the OMDD-A.  We will investigate other 
methods of storing network information in augmented nodes, 
including boundary sets [4] and the connectivity matrix. 
These approaches may reduce processing time and memory 

use, but it is not clear if they can be modified to efficiently 
record the path lengths of visited vertices. 
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