
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Using Multi-valued Decision Diagrams to Solve the Expected Hop Count Problem

Johannes U. Herrmann, Sieteng Soh, Geoff West
Department of Computing

Curtin University of Technology
Bentley, Western Australia

e-mail: jherrmann@gmail.com

Suresh Rai
Department of Electrical and Computer Engineering

Louisiana State University
Baton Rouge, LA, USA

Abstract—The Expected Hop Count (EHC) of a computer
communication network has so far been computed for network
models that consider only device or link failure, but not both.
We introduce an Augmented Ordered Multi-valued Decision
Diagram (OMDD-A) to obtain the EHC of a network in which
both devices and links may fail. The OMDD-A approach can
compute the EHC of a 2×100 grid network with 299 paths,
which is unsolvable using existing techniques. We show that
OMDD-A generates significantly fewer nodes than the
corresponding ordered binary decision diagram, leading to
large reductions in processing time.

Keywords- expected hop count, imperfect nodes, imperfect
links, multi-value decision diagram, network reliability

I. INTRODUCTION
Reliability and performability are important for the

design and maintenance of computer communication
networks, road transport, power distribution and many other
networks. Both links and nodes of the network are subject to
failure, which impacts on performance. Network reliability
(REL) has been studied extensively [1]-[5] but only
considers the network connectivity. The performance of a
network is often measured in terms of how long it takes
messages to travel. The Expected Hop Count (EHC) [6]-[9]
computes the number of vertices that a message is expected
to pass through on the shortest active path from source to
target.

AboElFotoh [6] has shown that computing EHC for the
general network, where vertices may fail but edges are
perfect, is #P-hard. A breadth-first-search combined with the
factoring theorem was proposed to calculate EHC for
networks with a single source and target; however the
solution does not scale well with large networks. Soh, et al.
[7] proposed a more efficient sum-of-disjoint products (SDP)
technique that generates all network minpaths, sorts them in
increasing cardinality, and then applies an SDP technique
[1]. It is shown [7] that the SDP technique is significantly
faster than the factoring approach. Neither of these
approaches [6],[7] is feasible for computing EHC for
networks with an extremely large number of paths, such as
the 2×100 grid network with 299 paths. Brooks, et al. [8] use
random graph models to approximate EHC in mobile WSN
for EHC with a single source and target, but assume fallible
edges and perfect vertices. Recently, AboElfotoh, et al. [9]
extended the factoring approach [6] to solve EHC for
multiple sources.

Currently no work considers the more general case where
both links and devices can fail. Since EHC is a #P-Hard
problem [6], existing solutions are exponential in the number
of vertices or edges of the network graph. Ball, et al. [3]
proposed transforming the graph model G(V,E) into one that
considers only edge failures, G’(V’,E’). Since |E’| = |V|+|E|,
the complexity of computing EHC from G’ is exponential in
the sum of the edges and vertices of the original graph.

The Ordered Binary Decision Diagram (OBDD) [10] has
been considered one of the most efficient methods for
representing Boolean functions [11]. OBDDs have been used
to solve REL [2]-[5] but do not store sufficient information
to solve EHC. Decision Diagrams (DDs) with more than two
output values were first suggested in [12] for the simulation
of circuits. This concept was extended in [13], which
presented a formalization of the Multi-variable Decision
Diagram (MDD) and analyzed its properties. Both [14] and
[15] produced formal and efficient implementations of the
MDD. Research has shown that the MDD uses less space
than the equivalent BDD over a wide variety of benchmarks
[15],[16]. MDDs have been applied to a number of areas,
including circuit design and verification [14], Petri nets [17]
and fault tolerant systems [18]. However, to the best of our
knowledge, MDDs have not yet been applied to REL or
other performability measures such as EHC.

In this paper, we propose an Augmented Ordered MDD
(OMDD-A) to compute the EHC of a network when both
edges and vertices are susceptible to failure. Our simulations
in Section IV show that its performance is far superior to that
of the binary equivalent; the Augmented OBDD [19].

The layout of the paper is as follows. Section II discusses
terminology and reviews DDs and their use in REL. Section
III present the OMDD-A to compute EHC. We give results
in section IV and conclusions and future work in Section V.

II. BACKGROUND

A. Network Model and Terminology
We model a computer communication network (CN)

using a graph G=(V,E), where each vertex in V represents a
communication device and every edge in E represents a
communication link between the devices. A vertex vj or edge
ej is said to be UP (DOWN) if it is functioning (failed). Let pj
(ϕj) be the operational probability of vertex vj (edge ej) and
assume all failures are statistically independent.

Let n=|V|, and let the vertices (v0, v1, …, vn-1) of V be
ordered in increasing distance from the source vertex, v0,

2009 International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-3639-2/09 $25.00 © 2009 IEEE

DOI 10.1109/WAINA.2009.124

419

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 26,2010 at 01:33:16 EST from IEEE Xplore. Restrictions apply.

Figure 2: An OBDD (a) and OMDDs (b)-(e) representing f=e0e2+e1e3

(e)(d) (c)

(b)

(a)

with the target vertex vt always labeled as vn-1. When two or
more vertices have the same distance from v0, they are
ordered arbitrarily. Let (vi,vj) ({vi,vj}) denote a directed
(undirected) edge between vertices vi and vj, with i>j for
each {vi,vj}. Fig. 1 shows an example network that illustrates
such an ordering.

A path Pi is a sequence of UP vertices (va, vb, … vk) in V

such that there exist UP edges eab = (va,vb) or {va,vb}, ebc =
(vb,vc) or {vb,vc}, etc. A reaching path Pi to vx is a path from
v0 to vx where each vertex in Pi is traversed only once. A
minpath is a reaching path to vt. A diagram path to node Ni
is a path in a DD starting at the root and leading to Ni. In this
paper, we use node and link to refer to the elements of a DD,
and vertex and edge for those of the CN.

A network state Ω=(VU,EU) of network G=(V,E) is a
partition of G such that all vertices in VU⊆V and edges in
EU⊆E are UP and all other vertices and edges are DOWN.
The probability of a state Ω=(VU,EU) is computed as:
 Pr(Ω)= () ()∏∏∏∏

∉∈∉∈

−
UUUU EeEeVvVv

1p-1p
iiii

iiii ϕϕ ,

since all failures are assumed to be statistically independent.
A state is a success state if it contains at least one minpath.
There are 2|V|+|E| network states in G, but REL and EHC are
computed only from the set of all success states, ΩS.

In addition to the success state information, computing

the EHC requires the length of each success state, Ω∈ΩS,
denoted as 1≤L(Ω)≤n-1. Thus, L(Ω) is the length (the
number of hops or hop count) of the shortest minpath
contained in Ω. We assume that the routing protocol in the
network always finds the shortest available minpath [9].
When this minpath is unavailable the router finds the next
possible shortest minpath. Formally, the EHC is given by:

()

∑

∑

Ω∈Ω

Ω∈Ω

Ω

Ω×Ω

=

S

S

)Pr(

)Pr()(L

EHC
 (1)

B. Multi-valued Decision Diagrams
Figures 2(a) and 2(b) to 2(e) show the BDD and MDDs,

respectively of a Boolean function f=e0e2 + e1e3. Each non-
terminal node (a circle in Fig. 2) in a DD represents the
evaluation of one or more Boolean variables, with one sub-
tree representing each possible combination of values of
these variables. In an Ordered DD (ODD), the variable order
is fixed for all branches/paths of the diagram. Following a
path from the root node, variables are decided in a given
order until a value is returned. This value is stored in the
terminal node of that path (a square in Fig. 2).

Links in Fig. 2 are labeled with the subscript of the
variables that are UP, or are labeled with an ‘X’ in the case
when no variables are UP. When one link represents multiple
combinations of variables, these combinations are separated
by commas. For example, in Fig. 2 (c) the label on the
leftmost edge leaving the root node is “X,0,2”. This label
represents three cases; all variables being DOWN (‘X’),
variable e0 being UP and e1 and e2 being DOWN (‘0’), and e2
being UP and e0 and e1 being DOWN (‘2’) respectively.

Each node in an Ordered BDD (OBDD) such as in Fig.
2(a) represents one Boolean variable, and thus has two
children. By comparison, a node in an Ordered MDD
(OMDD) may represent a group of several variables, and
hence it can have more than two children. For example, the
root node of the OMDD in Fig. 2(b) is evaluating a group of
three variables (e0,e1 and e2) and thus it has 8 children.

An OMDD has a fixed variable grouping at each level of
the diagram, although the number of variables in each
grouping does not have to be identical. Nagayama and Sasao
[16] showed that, over a wide variety of benchmarks, that
such an OMDD uses less space than the equivalent OBDD.
Note that each level of an OMDD represents the evaluation
of one particular variable group.

The efficiency of a DD implementation is measured by
its number of nodes [17] and its depth [16]. A good variable
ordering can effectively reduce the number of nodes and
depth of an OMDD [16]. A better variable ordering may
result in more isomorphism between nodes in the diagram.

Two non-terminal (terminal) nodes are isomorphic if they
have equivalent sub-trees (they produce identical outputs).
Merging isomorphic nodes reduces the size of the ODD; this
operation effectively prunes one of the sub-trees. For
example, we obtain the smaller ODD in Fig. 2(c) by merging
the three isomorphic nodes (labeled g1) and the terminal

 Figure 1. Sample Network

420

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 26,2010 at 01:33:16 EST from IEEE Xplore. Restrictions apply.

nodes in Fig. 2(b). Finding the optimal variable ordering has
been shown an NP-Complete problem [20].

The MDD is a natural extension of the BDD, in that it
has d terminal nodes labeled 0 to d-1, and similar labels are
possible for the outputs of each MDD node. Each non-
terminal node has a fixed number (d) of outputs, although
some implementations remove redundant outputs. A MDD
that has an equal number of outputs for every non-terminal
node (before considering isomorphism) is referred to as
homogeneous; otherwise it is a heterogeneous MDD.

Fig. 2 (e) shows the homogeneous OMDD with variable
grouping g0={e0,e1} and g1={e2,e3}. The OMDD has four
nodes, which is more efficient than the equivalent six node
OBDD in Fig. 2(a). Fig. 2(c) shows a heterogeneous OMDD
with groups g0={e0,e1,e2} and g1={e3}, and Fig. 2(d) shows
another with g0={e0} and g1={e1,e2,e3}; these OMDDs have
less nodes than the homogeneous OMDD in 2(e). In this
example the OMDD with g0={e0,e1,e2} and g1={e3} gives the
optimal result. Unfortunately, finding the optimal grouping is
even more difficult than the NP-complete problem of finding
the optimal variable ordering [20].

C. Decision Diagrams and Network Reliability
The Boolean function f=e0e2+e1e3 can represent the

pathset {e0e2, e1e3} of a network if only edges are
considered. The OBDD in Fig. 2(a) is used to compute REL
for this network with perfect vertices. In the application of
the DD technique to REL [2] the probability that the network
is connected is given by tracing paths upwards from the
success terminal nodes and multiplying by the probability of
the variable(s) being UP or DOWN as appropriate. Since
each traversed path represents a disjoint event the probability
of each such path is summed to give REL.

As an example, consider f = e0e2 + e1e3 as the reliability
function of a network (for paths e0e2 and e1e3), with each
edge having a probability of 0.9 of being UP. Thus, the REL
of the network can be obtained from Fig. 2(a) by following
each diagram path from the root to the success node (marked
as 1), and multiplying by 0.9 for each positive edge and
0.1=(1-0.9) for each negative edge (marked with an ‘X’).
The right-hand diagram path is 210 eee which has a

probability of 0.729. The other diagram paths are 210 eee ,

3210 eeee and 310 eee . Note that the nodes of the DD do not
contain any information other than what is inherent through
their position in the diagram. Therefore the existing OBDD
approaches [2],[4],[5] cannot be used to compute EHC, since
this requires path length information (See Section II A).

OBDD have been efficiently used for computing REL
[2],[5], and fault covering and tolerance [18]. Kuo, et al. [2]
have proposed a recursive EED-ISO algorithm to compute
REL for a network with perfect vertices and failed edges.
The use of node isomorphism in OBDD makes EED-ISO
able to compute REL for a 2×100 grid network with 299
minpaths. Yeh, et al. [5] use the OBDD for calculating REL
for a one-to-many network, where one vertex must be
connected with k-1 other vertices of the network. k-1
different REL are calculated, which are then combined to

give the k-terminal reliability. Although these approaches
[2],[5] are efficient for computing REL, they are not useful
for computing EHC. The method in [2], for example, only
generates OBDD nodes to take advantage of isomorphism
through hash table lookups, but never explicitly links them
into a diagram. The approach can compute REL by
traversing the OBDD nodes, but cannot calculate the EHC,
whose computation requires path length information.

III. AUGMENTED DECISION DIAGRAMS

A. Augmenting Decision Diagram Nodes
For computing EHC, each OMDD node requires more

information than just its position in the diagram. In particular
each node, Ni, must store the state(s) of the CN that it
represents, given the decisions that have been made in the
diagram path(s) that lead to that node. We call the
heterogeneous OMDD that comprises such nodes an
Augmented OMDD (OMDD-A).

State information includes a set VIi of vertex
components, Mx={(va, Lx

a), (vb, Lx
b), …, (vk, Lx

k,), Px}. Each
pair (vj Lx

j) ∈Mx denotes an undecided vertex vj known to be
reachable from v0 along with the length Lx

j of the shortest
reaching path known. The probability Px is the probability of
being in the network state represented by Mx. Section III E
describes how Px is computed. For each VIi we define a
vertex set, VSi={va, vb, … vk}. Each VIi also contains a set
CIi of conditional paths of the form (vx, vy, L) where L is the
length of the shortest path between undecided vertices vx and
vy. When the first vertex, vx, of a conditional path is
reachable (i.e. vx∈VSi) and decided UP, (vx, vy, L) is moved
to VIi as a minpath to vy by appending it to the minpath to vx.

The augmenting information in each OMDD-A node is
computed from its parent nodes (discussed in Section III E).
Each separate component represents a different network state
and the probability of being in this state. Because the
OMDD-A stores state-based information, we can construct
each level using only the nodes of the previous level. It also
allows the tracking of information such as path length
needed to compute EHC. Note that the number of children
does not affect the size of a node since links are not
explicitly stored. However, as the number of components in
a node increases so does the size of the node. This size
increase is generally manageable since less than two levels
of nodes are kept in memory at any one time.

B. Variable Order and Grouping
The depth of an OMDD can be reduced by using variable

partitioning [16]. For the OMDD-A algorithm, we group
each vertex vj with its adjacent edges. Note that both
directions of undirected edges are considered at one time,
hence any edge will only be in one variable grouping. Thus a
node that decides a group consisting of vj with d adjacent
ungrouped edges has 2d+1 children. An undirected edge is
grouped with the first endpoint in the ordering; the use of
conditions ensures that it only has to be considered once.

Note that those 2d children for which vj is DOWN
represent identical network states to the child for which all
edges are DOWN and vj is UP. To reduce the number of

421

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 26,2010 at 01:33:16 EST from IEEE Xplore. Restrictions apply.

nodes of the OMDD-A, we only generate one negative child,
which represents the network state of the 2d+1 identical
children. Hence an OMDD-A node deciding the grouping of
vj and d adjacent edges has only 2d children. The link
connecting a parent node to its negative child is referred to as
the negative link and is marked with an ‘X’. For example,
consider the network in Fig. 1. The OMDD-A partition for
this network is g0={v0,e0,e1}, g1={v1,e2,e3} and g2={v2,e4}.
The negative child for g0 represents the case when either v0 is
DOWN, or e0 and e1 are both DOWN.

C. OMDD-A Node Types
We consider two types of OMDD-A nodes: terminal, and

non-terminal. Our approach processes each non-terminal
node in a breadth-first fashion and completes when there are
no more such nodes. A terminal node can be either a success
node (whose value is a hop count of 1 or more) or a failure
node (with a value of 0). The REL and EHC are computed
from the reaching path probabilities contained in all success
nodes (discussed in Section III E).

Figure 3. The TestNode function

A failure node has no sub-trees containing a success
node. It is favorable to detect failure nodes as early as
possible, since REL are computed only from success nodes.
However the processing cost of testing for failure must be
kept to a minimum. Ni is a failure node if VSi={}; if the node
has no information on any undecided vertices then no new
vertices (including the target) will be reached. However, a
failure Ni may have a non-empty VSi, and detecting such
nodes is computationally expensive. Our TestNode function
in Fig. 3 returns a value 1, 2, or 3 if Ni is a failure, success,
or non-terminal node, respectively. Note that a node that
contains multiple components is not a success node if any of
the components do not meet the criteria. The OMDD-A
implementation removes successful components from the
node as soon as they are detected, and stores their
information to avoid unnecessary overhead.

D. Node Isomorphism
We consider non-terminal nodes Ni and Nj at the same

level of an OMDD-A isomorphic iff VSi=VSj and CIi=CIj.
We check isomorphic nodes only from their equal VS and CI
to tradeoff between the number of isomorphic nodes and the
processing time complexity per node.

Two isomorphic nodes Ni and Nj can be merged into one
node that keeps the VS and CI of merged nodes; without loss
of generality let the resulting node be Ni for i<j. We say
components Mx={(va, Lx

a), (vb, Lx
b), …, (vk, Lx

k,), Px } and
My = {(va, Ly

a), (vb, Ly
b), …, (vk, Ly

k), Py } are equal (and

write Mx=My) iff Lx
α=Ly

α for α =a to k. Fig. 4 shows the
Merge function.

Figure 4. The Merge function

Figure 5: Unmerged OMDD-A

Consider the OMDD-A in Fig. 5, which computes the
EHC of the network in Fig. 1; the diagram has not been
reduced using isomorphism. Links between a node and its
children have been labeled with the edges that are UP (e.g.
01 indicates that both e0 and e1 are UP, in addition to v0
being UP). Negative links are labeled with an X. Terminal
nodes are marked with the EHC, or 0 for a failure node. The
shaded nodes deciding variable group g2 are isomorphic, and
thus are merged before being further processed to create sub-
trees; the resulting OMDD-A is shown in Fig. 6.

While the top two levels of the diagram in Fig. 6 are
unchanged, the third level now has only three non-terminal
nodes instead of seven. Although each g1 node in Fig. 6
could have a maximum of four sub-trees, two have less than
this, and several of the sub-trees consist solely of a terminal
node. This represents a reduction from a theoretical
maximum of 53 (1+4+16+32) nodes to 19 nodes in this
diagram, most of which are terminal nodes.

Terminal nodes are not processed to create sub-trees.
Failure nodes are simply discarded, while success nodes
have their probability contribution stored before being
discarded. For this reason the OMDD-A algorithm does not
merge terminal nodes, and it is more appropriate to compare
diagrams by counting only non-terminal nodes. The OMDD-
A in Fig. 6 has 7 non-terminal nodes.

An OMDD-A has |V| levels, compared to |V|+|E| levels
for OBDD-A. The advantage of the OMDD-A having less
depth is offset by the fact that more nodes are generated at
each level. However, since augmented nodes are only tested
for isomorphism with other nodes on the same level, the
amount of isomorphism in the diagram increases. This leads
to a far superior performance compared to deciding vertices
and edges one at a time. For comparison, an OBDD-A
equivalent to the OMDD-A in Fig. 6 would contain 31 non-
terminal nodes in 9 levels. Hence, for this example OMDD-
A uses only 23% (7/31) of the nodes of the OBDD-A.

TestNode (Ni):
// Let lb be the least path length in Mx to a vertex vb∈VIi

// Let lt be the least path length in Mx to target vt
1. if VSi = {} then return 1. // a failure node
2. else if vt∉VSi then
3. return 3. // a non-terminal node
4. for each Mx∈VIi do // for each component
5. if (lb < lt-1) then
6. return 3. // a non-terminal node
7. return 2. //a success node

Merge(Ni, Nj):
// Let VSi=VSj={va, vb, … , vk)
 1. for each My← {(va, Ly

a), (vb, Ly
b), …, (vk, Sy

k), Py}∈ VIj do
 2. for each Mx ←{(va, Lx

a), (vb, Lx
b), …, (vk, Lx

k), Px} ∈ VIi do
 3. if Mx = My then
 4. Mx ← {(va, Lx

a), (vb, Lx
b), …, (vk, Lx

k,), Px+Py }.
 5. break.
 6. if no Mx was equal to My then //i.e., Step 3 was always False
 7. add My to VIi
 8. Replace old Ni on QN with updated Ni

422

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 26,2010 at 01:33:16 EST from IEEE Xplore. Restrictions apply.

Figure 6: OMDD-A with Non-Terminal Nodes Merged

E. Creating an OMDD-A for Computing EHC
The function in Fig. 7 constructs an OMDD-A to

compute the EHC and REL. The function first creates a root
node N0, and places it in a queue QC, which is used to hold
all nodes at the level currently being decided. The other
queue, QN, is used to hold the child nodes created at the next
lower level, and is initialized to null. The decision variable,
DV, and all length probabilities, Pr(L), are initialized to 0.

Lines 3 to 21 are a loop that first checks if QC is empty;
QC being empty indicates that we have finished a level of the
diagram. If QC and QN are both empty the algorithm
terminates. If QC is empty but QN is non-empty, we
increment DV and move the contents of QN to QC to start
generating the next level of the diagram.

Figure 7. The OMDD-A function

The next step (line 8) removes the first Ni from QC. We
generate the D = 2d children of Ni, and label them Nd*i+1 to
Nd*i+D where d is the number of undecided edges adjacent to
vertex vDV, (i.e., all edges of the form (vDV,vx), (vx,vDV), or
{vDV,vx} where x > DV). The first of these child nodes,
Nd*i+1, is the negative child that represents the case where the
vDV is DOWN or vDV is UP and all edges grouped with it are
DOWN. All other nodes represent vDV being UP and some
combination of the edges grouped with it being UP. Each Nj

contains information on the state of the CN, in particular the
length of the shortest reaching path to each vertex in VSj. All
non-terminal child nodes which are isomorphic with the
nodes in QC are merged while others are added to the end of
QC (lines 11 to 17).

Failed terminal nodes are discarded. Success nodes have
their information added to the relevant length probabilities,
Pr(L), before being discarded. For example if a component in
the success node has a path of length 3 to the target vertex
with a probability of 0.081, then Pr(3) is increased by 0.081.
The sum of these length probabilities produces REL, and can
be used to calculate EHC using Equation (1).

IV. SIMULATION RESULTS AND DISCUSSIONS
OMDD-A has been implemented in C++ and tested on a

Pentium computer (2 Xeon 3.2GHz processors, 1MB cache,
2GB RAM) for evaluating the REL and EHC of a variety of
networks. Each reported CPU time is averaged over five runs
for each simulation. Execution was halted after 5 hours
(CPU time). Further, terminal nodes are excluded when
stating the number of nodes since non-terminal nodes incur
more of a processing cost and since the number of (merged)
terminal nodes is fixed for the EHC of a given network.

Other than OBDD-A, we know of no other method that
calculates EHC for networks with both node and edge
failure. Thus, explicit comparison is made only between the
OBDD-A and OMDD-A methods.

A. Computing the EHC using OMDD-A
Both the OMDD-A and OBDD-A were first applied to

the the 19 benchmark networks from [1]. While OMDD-A
was able to compute the EHC of the networks, OBDD-A
failed to compute the metrics for networks 13, 17 and 19 in 5
hours of CPU time. We observed that the efficiency of both
implementations is strongly affected by the maximum
boundary set size of the network [4].

For those networks solvable by both, the OMDD-A
requires less nodes than the OBDD-A. This result is
consistent with that in [15],[16] for OMDD and OBDD. For
these networks, the OMDD-A requires at most 22.6% of the
nodes of the OBDD-A. The most telling difference was for
the network from Fig. 7 of [1] (|V|=7, |E|=21), with the
OBDD-A generating 292,504 nodes (out of a possible 228)
and the OMDD-A only 102 nodes. Further, OMDD-A
reduces the height of OBDD-A (28 levels) to only 7.

The comparison of execution time yields a similar result.
As an example, for the network from Fig. 18 from [1] (with
13 vertices and 22 edges) OMDD-A took just 0.5% of that of
OBDD-A (0.7s to 159.6s).

In order to compare our results with Soh et. al.[7] we
generated random networks using BRITE and applied the
OMDD-A algorithm. Our algorithm took longer to complete
as compared to [7], but the orders of magnitude were the
same. In addition it must be noted that our algorithm
considers both node and edge failure, which means the
problem solved by OMDD-A is in the order of 150 variables
instead of 50 for SDP. Further OMDD-A can compute the
EHC of some networks (e.g., 2×100 grid) that cannot be
solved using the SDP approach.

1. Create root node N0
2. QC←{N0}, QN←{ }, DV←0, and Pr(L) ← 0 (for all 0≤L≤|E|).
3. if QC = { } then
4. if QN = { }then
5. calculate REL and EHC from Pr(L)
6. else
7. QC ← QN, QN ← { } and DV ← DV + 1.
8. remove the first node Ni from QC.
9. for each combination of unmarked edges (vDV,vx), (vx,vDV), or

{vDV,vx}:
10. create child N based on UP edges
11. if N is non-terminal then
12. for each Nq∈QN do
13. if N is isomorphic to Nq then
14. call Merge(Nq, N).
15. break.
16. if no Nq was isomorphic to N then
17. add N to QN.
18. else if N is a success node then
19. store results in Pr(L).
20. mark all edges used in step 9 above as decided
21. goto 3.

423

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 26,2010 at 01:33:16 EST from IEEE Xplore. Restrictions apply.

50
52
54
56
58
60
62

0.0
5

0.1
5

0.2
5

0.3
5

0.4
5

0.5
5

0.6
5

0.7
5

0.8
5

0.9
5

p

EHC
Both
Vertex
Edge

Figure 8: EHC with Different Component Reliability Scenarios

Fig. 8 shows the effect of component reliability on EHC.
We calculated the EHC of the 2×50 grid network, and
considered three cases: (i) only edge failure, (ii) only vertex
failure, (iii) both failures. The curve for EHC is similar for
all cases. Note, the result for case (iii) is skewed the most to
the right, and that for case (ii) is skewed the most to the left
(line with diamond). This shows that vertex failure has the
least impact on path length, since for larger p it has the
lowest EHC.

B. Effect of Boundary Set on Performance
The implementation was also tested on other networks

with comparable results. For the 2×100 grid network from
[2] the OMDD-A generates 18.8% (593 compared to 3155)
of the nodes of the OBDD-A. Similar results were produced
for other 2×w grids tested. On networks with a larger
maximum boundary set (Bmax) [4], such as the 4×4 grid, the
OMDD-A was able to compute the answer (generating 3098
nodes in 2.87 CPU seconds) while the OBDD-A failed to
complete within a reasonable amount of time.

TABLE I. IMPACT OF BMAX ON NODES GENERATED BY OMDD-A

Grid Bmax Nodes Grid Bmax Nodes
2×10 2 53 2×12 2 65
3×7 3 879 3×8 3 1678
4×5 4 26824 3×6 4 447666
To demonstrate the effect of Bmax we tested our algorithm

on a number of grid networks with a similar number of
vertices but varying Bmax. Table I shows that the number of
OMDD-A nodes generated increases exponentially as Bmax
increases. Note that the number of nodes is also influenced
by other factors, such as the ordering of the vertices and
edges in the network.

V. CONCLUSION
We have shown that OMDD-A is more time and space

efficient than OBDD-A for computing the REL and EHC
when network edges and vertices can fail. In our simulations,
OMDD-A generates from under 1% to around 25% of the
nodes of the OBDD-A. Since the complexity of OMDD-A is
not directly related to the number of paths, our technique is
suitable for networks (e.g., grid) with extremely large
pathsets, not solvable by the existing techniques [6]-[9].

We are investigating more effective variable orderings
and groupings for the OMDD-A. We will investigate other
methods of storing network information in augmented nodes,
including boundary sets [4] and the connectivity matrix.
These approaches may reduce processing time and memory

use, but it is not clear if they can be modified to efficiently
record the path lengths of visited vertices.

REFERENCES
[1] S. Soh and S. Rai, "CAREL: Computer Aided Reliability Evaluation

for Distributed Computing Networks," IEEE Trans. Parallel and
Distributed Systems, vol. 2, Mar. 1991, pp. 199-213.

[2] S.-Y. Kuo, S.-K. Lu, and F.-M. Yeh, "Determining terminal-pair
reliability based on edge expansion diagrams using OBDD," IEEE
Trans. Reliability, vol. 48, Dec. 1999, pp. 234-246.

[3] M. O. Ball, C. J. Colbourn, and J. S. Provan, "Network Reliability,"
in Network Models. vol. 7, M. O. Ball, T. L. Magnanti, C. L. Monma,
and G. L. Nemhauser, Eds.: Elsevier, 1985, pp. 673-762.

[4] G. Hardy, C. Lucet, and N. Limnios, "Computing all-terminal
reliability of stochastic networks with Binary Decision Diagrams," in
11th International Symposium on Applied Stochastic Models, 2005.

[5] F.-M. Yeh, S.-K. Lu, and S.-Y. Kuo, "OBDD-based evaluation of k-
terminal network reliability," IEEE Trans. Reliability, vol. 51, Dec.
2002, pp. 443-451.

[6] H. M. F. AboElFotoh, “Algorithms for Computing Message Delay for
Wireless Networks,” Networks, vol. 27, Dec. 1997, pp. 117-124.

[7] S. Soh, W. Lau, and S. Rai, “On Computing the Reliability and
Expected Hop Count of Wireless Communication Networks,” Int.
Journal Performability Engineering (IJPE), vol. 3, no. 2, April 2007,
pp. 267-279.

[8] R.R. Brooks, B. Pillai, S. Racunas, and S. Rai, “Mobile network
analysis using probabilistic connectivity matrices,” IEEE Trans. Syst.
Man and Cybernetics, Part C, vol. 37, no. 4, Nov. 2007, pp. 694-702.

[9] H.M.F. AboElFotoh, S.S. Iyengar, and K. Chakrabarty, “Computing
reliability and message delay for cooperative wireless distributed
sensor networks subject to random failures,” IEEE Trans. Reliability,
vol. 54, no. 1, Mar. 2005, pp. 145-155.

[10] R.E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary
Decision Diagrams,” ACM Computing Surveys, vol. 24, no. 3, Sep.
1992, pp. 293-318.

[11] F. M. Yeh and C. S. Lin, "Building BDDs with ordering-reshuffle
strategy," Electronics Letters, vol. 29, Aug.1993, pp. 1540-1541.

[12] E. Cerny and J. Gecsei, "Simulation of MOS Circuits by Decision
Diagrams," IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 4, pp. 685-693, Oct. 1985.

[13] A. Srinivasan, T. Ham, S. Malik, and R. K. Brayton, "Algorithms for
discrete function manipulation," in IEEE Intl Conf. Computer-Aided
Design, Santa Clara, CA, 1990, pp. 92-95.

[14] P. C. McGeer, K. L. McMillan, A. Saldanha, A. L. Sangiovanni-
Vincentelli, and P. Scaglia, "Fast discrete function evaluation using
decision diagrams," in 1995 IEEE/ACM Intl Conf. Computer-Aided
Design, San Jose, CA, 1995, pp. 402-407.

[15] D. M. Miller and R. Drechsler, "Implementing a multiple-valued
decision diagram package," in 28th IEEE Intl Symp. Multiple-Valued
Logic, Fukuoka, 1998, pp. 52-57.

[16] S. Nagayama and T. Sasao, "On the optimization of heterogeneous
MDDs," IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 24, pp. 1645-1659, Nov. 2005.

[17] A. S. Miner and G. Ciardo, "Efficient reachability set generation and
storage using decision diagrams," in 20th Intl Conf. Application and
Theory of Petri Nets, 1999, pp. 6-25.

[18] R. Gulati and J. B. Dugan, "A modular approach for analyzing static
and dynamic fault trees," Proc. Annu. Reliability and Maintainability
Symp., Philadelphia, PA, 1997, pp. 57-63.

[19] J. Herrmann, S. Soh, and G. West, "An OBDD Approach for
Computing Expected Hop Count of Communication Networks," in
PEECS Perth, Australia: Curtin University of Technology, 2007.

[20] B. Bollig and I. Wegener, "Improving the variable ordering of
OBDDs is NP-complete," IEEE Trans. Computers, vol. 45, Sep.
1996, pp. 993-1002.

424

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on February 26,2010 at 01:33:16 EST from IEEE Xplore. Restrictions apply.

