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Abstract: Fusion nuclear reactions, in which multiple atomic nuclei collide to form a single atomic nucleus, can only occur at
extremely high temperatures, where all matter is in the plasma state. In the majority of today’s experimental fusion reactors, the
fusion plasma is confined to a torus shape using a magnetic confinement system called a tokamak. The performance of a tokamak
depends crucially on the current spatial profile, which is related to the poloidal magnetic flux. Accordingly, in this paper, we
investigate a finite-time optimal control problem in which the aim is to drive the current spatial profile to within close proximity
of a desired target profile, subject to a parabolic PDE governing the evolution of the poloidal magnetic flux. To solve this optimal
control problem, we first use the finite element method to approximate the PDE model by an ODE model. Then, we apply the
control parameterization and time-scaling techniques to obtain an approximate finite-dimensional optimization problem, which
can be solved using sequential quadratic programming methods. Simulation results using experimental data from the DIII-D
tokamak in San Diego, California demonstrate the effectiveness of the proposed approach.
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1 Introduction

The evolution of the poloidal magnetic flux can be de-
scribed by the following parabolic PDE [1]:

1

ϑ1(ρ̂)

∂ψ(ρ̂, t)

∂t
=
u1(t)

ρ̂

∂

∂ρ̂

[
ρ̂D(ρ̂)

∂ψ(ρ̂, t)

∂ρ̂

]
+ ϑ2(ρ̂)u2(t),

(1)

with the Neumann boundary conditions

∂ψ(0, t)

∂ρ̂
= 0,

∂ψ(1, t)

∂ρ̂
= u3(t), (2)

and the initial condition

ψ(ρ̂, 0) = ψ0(ρ̂), (3)

where t denotes time; ρ̂ denotes normalized radius; ψ(ρ̂, t)
denotes the poloidal magnetic flux around the tokamak; and
ϑ1(ρ̂), ϑ2(ρ̂) and D(ρ̂) are given functions. The auxiliary
functions u1(t), u2(t) and u3(t) depend on the total power
P (t), the total plasma current I(t), and the average density
n̄(t) according to the following equations:

u1(t) = n̄(t)
3
2 I(t)−

3
2P (t)−

3
4 , (4a)

u2(t) = I(t)−1P (t)
1
2 , (4b)

u3(t) = κI(t), (4c)

where κ is a given constant. Note that n̄(t), I(t), and P (t)
are the control inputs for the physical actuators.

The output toroidal current spatial profile is defined in
terms of the magnetic flux as follows:

ω(ρ̂, t) =
∂ψ(ρ̂, t)

∂ρ̂
.
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The current spatial profile is crucial to magnetohydrody-
namic stability and efficient steady-state operation [2, 3].
In practical operation, the aim is to make the current pro-
file ω(ρ̂, t) match a given target profile ωd(ρ̂) at the terminal
time t = T . Thus, the problem is to minimize the following
cost functional:

J(n̄, I, P ) =
1

2

∫ 1

0

Γ0(ω(ρ̂, T )− ωd(ρ̂))2dρ̂

+

∫ T

0

(Γ1n̄(t) + Γ2I(t) + Γ3P (t))dt,

(5)

where Γ0, Γ1, Γ2 and Γ3 are non-negative weighting fac-
tors. The actuator inputs must satisfy the following physical
bound constraints:

a1 ≤ n̄(t) ≤ b1, a2 ≤ I(t) ≤ b2, a3 ≤ P (t) ≤ b3, (6)

where ai and bi, i = 1, 2, 3, are given constants.
Using subscript notation for the derivatives, equation (1)

with boundary conditions (2) and initial condition (3) can be
written as

ψt(ρ̂, t)

ϑ1(ρ̂)
=
u1(t)

ρ̂

[
ρ̂D(ρ̂)ψρ̂(ρ̂, t)

]
ρ̂

+ ϑ2(ρ̂)u2(t), (7a)

ψρ̂(0, t) = 0, ψρ̂(1, t) = u3(t), t ∈ [0, T ], (7b)
ψ(ρ̂, 0) = ψ0(ρ̂), ρ̂ ∈ [0, 1]. (7c)

We now state our optimal control problem formally as fol-
lows: Given the PDE system (7), find control signals n̄(t),
I(t) and P (t) to minimize the cost functional (5) subject to
the constraints (6). We refer to this problem as Problem P.

Problem P has been considered previously in references
[1, 4]. In these references, discretize-then-optimize com-
putational approaches are developed for computing the op-
timal control signals: first the parabolic PDE (1) is ap-
proximated by a system of ODEs (using the proper orthog-
onal decomposition method in [1] and the finite element



method in [4]); then the resulting ODE optimal control prob-
lem is converted into a finite-dimensional optimization prob-
lem using the control parameterization method [5]. Ref-
erence [1] uses a piecewise-linear control parameterization
scheme in which the control function is approximated by a
piecewise-linear function defined in terms of a finite num-
ber of decision parameters. Reference [4] uses a piecewise-
constant control parameterization scheme in which the con-
trol heights are the decision variables to be chosen optimally.
The disadvantage of these existing control parameterization
schemes is that they are based on an equally-spaced par-
tition of the time horizon: the break-points/discontinuities
of the piecewise-linear and piecewise-constant approximate
controls are pre-specified at equidistant points. Equidis-
tant break-points/discontinuities are unlikely to be optimal
in terms of minimizing the current profile matching error.
Thus, in this paper, we propose a superior approach in which
the partition points are chosen optimally via numerical opti-
mization techniques, along with the parameters defining the
approximate controls. This requires the use of a novel time-
scaling transformation, as directly optimizing variable par-
tition points is well known to cause computational difficul-
ties [6]. Numerical results show that optimizing the partition
points leads to significant reductions in matching error and
input energy compared with the methods in [1, 4].

2 Finite Element Approximation

Let η(ρ̂) be a trial function. Multiplying both sides of (7a)
by ρ̂η(ρ̂) and then integrating the resulting equation over
[0, 1] gives

∫ 1

0

ρ̂η(ρ̂)ψt(ρ̂, t)

ϑ1(ρ̂)
dρ̂

=

∫ 1

0

u1(t)η(ρ̂)
∂

∂ρ̂

[
ρ̂D(ρ̂)ψρ̂(ρ̂, t)

]
dρ̂

+

∫ 1

0

ρ̂η(ρ̂)ϑ2(ρ̂)u2(t)dρ̂.

Using integration by parts and applying equation (7b), we
obtain

∫ 1

0

ρ̂η(ρ̂)ψt(ρ̂, t)

ϑ1(ρ̂)
dρ̂ = D(1)η(1)u1(t)u3(t)

− u1(t)

∫ 1

0

ρ̂D(ρ̂)ψρ̂(ρ̂, t)η
′(ρ̂)dρ̂

+ u2(t)

∫ 1

0

ρ̂ϑ2(ρ̂)η(ρ̂)dρ̂.

(8)

We partition the spatial domain [0,1] intoN subintervals Ii =
[(i− 1)∆, i∆], i = 1, 2, . . . , N , where ∆ = 1/N . Then, we
assume that the magnetic flux profile ψ(ρ̂, t) can be approx-
imated by a linear combination of basis B-spline functions
βi(ρ̂), i = 0, 1, . . . , N , corresponding to this partition:

ψ(ρ̂, t) ≈
N∑
i=0

xi(t)βi(ρ̂), (9)

where xi(t), i = 0, 1, . . . , N, are weighting functions. Sub-
stituting (9) into (8) yields

N∑
i=0

∫ 1

0

ρ̂η(ρ̂)

ϑ1(ρ̂)
ẋi(t)βi(ρ̂)dρ̂ = D(1)η(1)u1(t)u3(t)

− u1(t)

N∑
i=0

∫ 1

0

ρ̂D(ρ̂)xi(t)β
′
i(ρ̂)η′(ρ̂)dρ̂

+ u2(t)

∫ 1

0

ρ̂ϑ2(ρ̂)η(ρ̂)dρ̂.

(10)

By choosing η(ρ̂) = βj(ρ̂), j = 0, 1, . . . , N , as the trial
functions, equation (10) can be rewritten in matrix form as
follows:

Aẋ(t) = −u1(t)Bx(t) + u2(t)c + u1(t)u3(t)d, (11)

where

x(t) = [x0(t), x1(t), . . . , xN (t)]>,

A = [Aij ] =

[∫ 1

0

ρ̂βi(ρ̂)βj(ρ̂)

ϑ1(ρ̂)
dρ̂

]
,

B = [Bij ] =

[∫ 1

0

ρ̂D(ρ̂)β′i(ρ̂)β′j(ρ̂)dρ̂

]
,

c = [cj ] =

[∫ 1

0

ρ̂ϑ2(ρ̂)βj(ρ̂)dρ̂

]
,

d = [dj ] = [D(1)βj(1)] .

Recalling the initial condition (7c), we must have

ψ0(ρ̂) =

N∑
i=0

xi(0)βi(ρ̂). (12)

Multiplying both sides of (12) by βj(ρ̂) and then integrating
over [0, 1] gives

N∑
i=0

[∫ 1

0

βi(ρ̂)βj(ρ̂)dρ̂

]
xi(0) =

∫ 1

0

βj(ρ̂)ψ0(ρ̂)dρ̂. (13)

Define matrix Ā and vector b̄ as follows:

Ā = [Āij ] =

[∫ 1

0

βi(ρ̂)βj(ρ̂)dρ̂

]
,

b̄ = [b̄j ] =

[∫ 1

0

βj(ρ̂)ψ0(ρ̂)dρ̂

]
.

Then equation (13) can be written as

Āx(0) = b̄. (14)

By following the same arguments as in [7], it can be shown
that matrices A and Ā are nonsingular. Consequently, equa-
tions (4), (11), and (14) can be combined to yield the follow-
ing approximate ODE system for PDE system (7):

ẋ(t) = −n̄(t)
3
2 I(t)−

3
2P (t)−

3
4 A−1Bx(t)

+ P (t)
1
2 I(t)−1A−1c

+ κn̄(t)
3
2 I(t)−

1
2P (t)−

3
4 A−1d, (15a)

x(0) = Ā−1b̄. (15b)



Now, based on (9), we consider the following expansion for
the desired output profile ωd(ρ̂):

ωd(ρ̂) =

N∑
i=0

xdi β
′
i(ρ̂), (16)

where xdi , i = 0, 1, . . . , N, are weighting coefficients. To
determine the weighting coefficients, we multiply both sides
of (16) by β′j(ρ̂) and then integrate over ρ̂ ∈ [0, 1] to obtain∫ 1

0

ωd(ρ̂)β′j(ρ̂)dρ̂ =

N∑
i=0

[∫ 1

0

β′i(ρ̂)β′j(ρ̂)dρ̂

]
xdi . (17)

Define matrix Â and vector b̂ as follows:

Â = [Âij ] =

[∫ 1

0

β′i(ρ̂)β′j(ρ̂)dρ̂

]
,

b̂ = [b̂j ] =

[∫ 1

0

ωd(ρ̂)β′j(ρ̂)dρ̂

]
.

Then we can rewrite (17) as

b̂ = Âxd,

where xd = [xd0, x
d
1, . . . , x

d
N ]>. As with matrices A and Ā,

it can be shown that matrix Â is nonsingular. Therefore, the
coefficients for the desired output profile are given by

xd = Â−1b̂. (18)

Using the expansion (9), the actual output profile ω(ρ̂, T ) at
the terminal time T is approximated as follows:

ω(ρ̂, T ) =
∂ψ(ρ̂, T )

∂ρ̂
≈

N∑
i=0

xi(T )β′i(ρ̂). (19)

Substituting (16) and (19) into the cost functional (5), we
obtain

J(n̄, I, P )

=
1

2
Γ0

N∑
i=0

N∑
j=0

(xi(T )− xdi )Âij(xj(T )− xdj )

+

∫ T

0

(Γ1n̄(t) + Γ2I(t) + Γ3P (t)) dt

=
1

2
Γ0

[
x(T )− xd

]>
Â
[
x(T )− xd

]
+

∫ T

0

(Γ1n̄(t) + Γ2I(t) + Γ3P (t)) dt,

(20)

where xd = Â−1b̂ as in (18). Problem P, the original PDE
optimal control problem, is now approximated by the fol-
lowing ODE optimal control problem, which we call Prob-
lem Q: Given the ODE system (15), find control signals n̄(t),
I(t) and P (t) to minimize the cost functional (20) subject to
the constraints (6).

3 Numerical Solution Procedure

3.1 Piecewise-linear Control Parameterization
To solve Problem Q, we subdivide the time horizon [0, T ]

into p subintervals [γk−1, γk), k = 1, 2, . . . , p, where γ0 =

0 and γp = T , and the interior knot points γk, k =
1, 2, . . . , p − 1, are free decision parameters. The following
constraints are imposed on the subinterval lengths:

τmin ≤ γk − γk−1 ≤ τmax, k = 1, 2, . . . , p. (21)

Here, τmin > 0 and τmax > 0 are the minimum and max-
imum subinterval durations, respectively. We approximate
the derivatives of the control signals as follows:

˙̄n(t) ≈
p∑
k=1

σk1χ[γk−1,γk)(t), (22a)

İ(t) ≈
p∑
k=1

σk2χ[γk−1,γk)(t), (22b)

Ṗ (t) ≈
p∑
k=1

σk3χ[γk−1,γk)(t), (22c)

where χ[γk−1,γk) : R → R is the indicator function defined
by

χ[γk−1,γk)(t) =

{
1, if t ∈ [γk−1, γk),

0, otherwise.

According to (22), the derivative of each control signal is ap-
proximated by a piecewise-constant function with disconti-
nuities at the internal knot points γ1, γ2, . . . , γp−1. Thus, the
control signals are piecewise-linear with jumps in the deriva-
tive at γ1, γ2, . . . , γp−1. We introduce new state variables
xN+1(t) = n̄(t), xN+2(t) = I(t) and xN+3(t) = P (t)
governed by the following dynamics (for i = 1, 2, 3):

ẋN+i(t) =

p∑
k=1

σki χ[γk−1,γk)(t), t ∈ [0, T ], (23a)

xN+i(0) = x0N+i, (23b)

where x0N+1 is the initial value of n̄(t), x0N+2 is the initial
value of I(t), and x0N+3 is the initial value of P (t). Then,
the dynamic system (15) becomes

ẋ(t) = −x
3
2

N+1(t)x
− 3

2

N+2(t)x
− 3

4

N+3(t)A−1Bx(t)

+ x−1N+2(t)x
1
2

N+3(t)A−1c

+ κx
3
2

N+1(t)x
− 1

2

N+2(t)x
− 3

4

N+3(t)A−1d, (24a)

x(0) = Ā−1b̄. (24b)

Recall that the control variables n̄(t), I(t), and P (t) must
satisfy the bound constraints (6). Thus, we impose the fol-
lowing continuous inequality constraints on the new state
variables xN+1(t), xN+2(t) and xN+3(t):

ai ≤ xN+i(t) ≤ bi, t ∈ [0, T ], i = 1, 2, 3. (25)

Clearly, since xN+1(t), xN+2(t) and xN+3(t) are
piecewise-linear with break-points at t = γ1, γ2, . . . , γp−1,
the continuous inequality constraints (25) are equivalent to
the following constraints:

ai ≤ xN+i(tk) ≤ bi, k = 0, 1, . . . , p, i = 1, 2, 3. (26)

Such constraints are special cases of the well-known canon-
ical form in the optimal control literature (see [5]).



Now, under the approximation (22), the cost functional
(20) becomes

Jp(σ,γ) =
1

2
Γ0

[
x(T )− xd

]>
Â
[
x(T )− xd

]
+

3∑
i=1

p∑
k=1

∫ γk

γk−1

ΓixN+i(t)dt,
(27)

where σ = [σki ] and γ = [γk]. Our approximate prob-
lem, called Problem R, is stated as follows: Given the ODE
system (23)-(24), find a control parameter vector σ and a
break-point vector γ such that the cost functional (27) is
minimized subject to constraints (21) and (26).

3.2 Time-scaling Transformation
The computational difficulties caused by variable partition

points are well known [6]. To overcome these difficulties,
we transform the old time variable t ∈ [0, T ] into a new
time variable s ∈ [0, p] through the following differential
equation:

dt(s)

ds
= ζk, s ∈ [k − 1, k), k = 1, 2, . . . , p, (28)

with the boundary conditions

t(0) = 0, t(p) = T, (29)

where ζk = γk − γk−1, k = 1, 2, . . . , p, are new decision
parameters.

Integrating (28)-(29) gives

t(s) =

∫ s

0

dt(η)

dη
dη =

bsc∑
k=1

ζk+ζbsc+1(s−bsc), s ∈ [0, p].

Hence,

t(k) =

k∑
l=1

ζl =

k∑
l=1

(γl − γl−1) = γk, k = 0, 1, . . . , p.

This shows that s = k in the new time horizon corresponds
to t = tk in the original time horizon.

Let ζ = [ζ1, ζ2, . . . , ζp]
>. Clearly, in view of (21), the

vector ζ ∈ Rp must satisfy the following constraints:

τmin ≤ ζk ≤ τmax, k = 1, 2, . . . , p, (30a)
ζ1 + ζ2 + · · ·+ ζp = T. (30b)

Let x̃(s) = x(t(s)) and x̃N+i(s) = xN+i(t(s)). Then un-
der the time-scaling transformation (28)-(29), the ODE sys-
tem (24) becomes

˙̃x(s) = −ζkx̃
3
2

N+1(s)x̃
− 3

2

N+2(s)x̃
− 3

4

N+3(s)A−1Bx̃(s)

+ ζkx̃
−1
N+2(s)x̃

1
2

N+3(s)A−1c

+ κζkx̃
3
2

N+1(s)x̃
− 1

2

N+2(s)x̃
− 3

4

N+3(s)A−1d, (31a)

s ∈ [k − 1, k), k = 1, 2, . . . , p, (31b)

x̃(0) = Ā−1b̄. (31c)

Moreover, the ODEs (23) become (for i = 1, 2, 3):

˙̃xN+i(s) = ζkσ
k
i , s ∈ [k − 1, k), k = 1, 2, . . . , p, (32a)

x̃N+i(0) = x0N+i. (32b)

Since t(k) = γk, the canonical constraints (26) become

ai ≤ x̃N+i(k) ≤ bi, k = 0, 1, . . . , p, i = 1, 2, 3. (33)

Under the time-scaling transformation defined by (28)-(29),
the cost functional (27) becomes

J̃p(σ, ζ) =
1

2
Γ0

[
x̃(p)− xd

]>
Â
[
x̃(p)− xd

]
+

3∑
i=1

p∑
k=1

∫ k

k−1
ζkΓix̃N+i(s)ds.

(34)

The following dynamic optimization problem, which we call
Problem S, is equivalent to Problem R: Given the ODE sys-
tem (31)-(32), find a control parameter vectorσ and a subin-
terval duration vector ζ such that the cost functional (34) is
minimized subject to the constraints (30) and (33).

3.3 Solving Problem S
To solve Problem S using existing nonlinear optimization

techniques, we need the gradients of the cost functional (34)
and the canonical constraints (33) with respect to the deci-
sion parameters [8]. We now show that these gradients can
be computed by solving a set of auxiliary ODEs.

We first define the state variations with respect to σki and
ζk as follows:

φki(s) =
∂x̃(s)

∂σki
, ϕk(s) =

∂x̃(s)

∂ζk
. (35)

Next, define

g(x̃(s), x̃N+1(s), x̃N+2(s), x̃N+3(s))

= −x̃
3
2

N+1(s)x̃
− 3

2

N+2(s)x̃
− 3

4

N+3(s)A−1Bx̃(s)

+ x̃−1N+2(s)x̃
1
2

N+3(s)A−1c

+ κx̃
3
2

N+1(s)x̃
− 1

2

N+2(s)x̃
− 3

4

N+3(s)A−1d,

and

ḡ(s) = g(x̃(s), x̃N+1(s), x̃N+2(s), x̃N+3(s)).

The next two results show how to compute the state varia-
tions defined in (35). These results can be proved in a similar
manner to the corresponding results in [4, 5].

Theorem 1 For each k = 1, 2, . . . , p and i = 1, 2, 3, the
state variation with respect to σki satisfies the following dy-
namic system:

φ̇ki(s) = ζl
∂ḡ(s)

∂x̃
φki(s) + ζl

∂ḡ(s)

∂x̃N+i

∂x̃N+i(s)

∂σki
, (36a)

s ∈ [l − 1, l), l = k, k + 1, . . . , p,

φki(s) = 0, s ≤ k − 1, (36b)

where

∂x̃N+i(s)

∂σki
=


ζl(s− (l − 1)), if k = l,

ζk, if k < l,

0, if k > l.



Theorem 2 For each k = 1, 2, . . . , p, the state variation
with respect to ζk satisfies the following dynamic system:

ϕ̇k(s) = ζl
∂ḡ(s)

∂x̃
ϕk(s)

+ ζl

3∑
i=1

∂ḡ(s)

∂x̃N+i(s)

∂x̃N+i(s)

∂ζk
+ δklḡ(s), (37a)

s ∈ [l − 1, l), l = k, k + 1, . . . , p,

ϕk(s) = 0, s ≤ k − 1, (37b)

where δkl denotes the Kronecker delta function, and

∂x̃N+i(s)

∂ζk
=


σli(s− (l − 1)), if k = l,

σki , if k < l,

0, if k > l.

Using Theorems 1 and 2, we can solve (36) and (37) nu-
merically to determine the state variations (35). The gradient
of the canonical constraints (33) can then be immediately
evaluated. For the gradient of the cost functional (34), we
have

∂J̃p(σ, ζ)

∂σki
= Γ0

[
x̃(p)− xd

]>
Âφki(p)

+

p∑
l=1

∫ l

l−1
ζlΓi

∂x̃N+i(s)

∂σki
ds,

and

∂J̃p(σ, ζ)

∂ζk
= Γ0

[
x̃(p)− xd

]>
Âϕk(p)

+

3∑
i=1

p∑
l=1

∫ l

l−1
ζlΓi

∂x̃N+i(s)

∂ζk
ds+

3∑
i=1

∫ k

k−1
Γix̃N+i(s)ds.

These gradient formulas can be incorporated into existing
nonlinear programming algorithms to solve Problem S.

4 Simulation Results

We now apply the computational method proposed in Sec-
tions 2 and 3 to an example. This example, which comes
from reference [1], is based on experimental data from the
DIII-D tokamak in San Diego, California. The functions
D(ρ̂), ϑ1(ρ̂), and ϑ2(ρ̂) in the PDE model (1) are given in
reference [1]. The initial magnetic flux profile is taken from
shot #129412 from the DIII-D tokamak [1]. For the spatial
discretization of the PDE system, we use the first-order basis
B-spline functions βi(ρ̂), i = 0, 1, . . . , N , defined by

βi(ρ̂) =


1 +Nρ̂− i, if ρ̂ ∈ [(i− 1)∆, i∆],

1−Nρ̂+ i, if ρ̂ ∈ [(i− 1)∆, i∆],

0, otherwise,

where N is the number of subintervals in the spatial domain
and ∆ = 1/N is the subinterval length. In our numerical
simulations, we used N = 5 subintervals, which proved to
be sufficient for high-accuracy solutions.

In applying the control parameterization technique, we
subdivide the time interval [0, T ] = [0, 1.2] into p

Method ME (×106) IE (×106) Cost (×106)

(i) 1.4156 5.1441 6.5597
(ii) 1.8949 5.1889 7.0838
(iii) 1.3023 4.7619 6.0642

Table 1: Optimal cost values for the example in Section 4
(ME = Matching Error, IE = Input Energy).

subintervals. The control input functions are approxi-
mated by piecewise-linear functions with break-points at
γ1, γ2, . . . , γp−1, where γ0 = 0 and γp = 1.2. The lower
and upper bounds in (6) are given by: a1 = 0.01 [1019m−3],
b1 = 10.5 [1019m−3], a2 = 0.01 [MA], b2 = 10.9 [MA],
a3 = 0.01 [MW], b3 = 10 [MW]. Furthermore, the weight-
ing factors in the objective functional (5) are Γ0 = 10−2,
Γ1 = 10−25, Γ2 = 10−12, Γ3 = 10−12, and the desired
target profile ωd(ρ̂) is the same as in [1].

Using the MATLAB optimization software FMINCON,
we implemented three different methods to solve Problem P:
(i) piecewise-linear control parameterization with fixed par-
tition points (method from [1]); (ii) piecewise-constant con-
trol parameterization with fixed partition points (method
from [4]); and (iii) piecewise-linear control parameteriza-
tion with variable partition points (the new method described
in this paper). The solutions from methods (i) and (ii) are
shown in Figure 1; the solution from method (iii) is shown
in Figure 2. The optimal cost values are shown in Table 1.
Note that our new method gives cost improvements of 7.6%
and 14.4% over the methods in [1] and [4], respectively.
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(a) Optimal control input n̄(t).
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(b) Optimal control input I(t).

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

16

18
x 10

5

Time [s]

P
[W

]

 

 

Piecewise−linear
Piecewise−constant

(c) Optimal control input P (t).
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(d) Optimal ω-profile at the terminal time.

Fig. 1: Optimal solution in Section 4 for p = 8 (fixed partition points).

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

9

10
x 10

18

Time [s]

n̄
[m

−
3
]
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(b) Optimal control input I(t).
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(c) Optimal control input P (t).
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(d) Optimal ω-profile at the terminal time.

Fig. 2: Optimal solution in Section 4 for p = 8 (variable partition points).


