
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, 
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



 

  
Abstract—This paper proposes the use of metrics to refine 

system design for soft errors protection in system on chip 
architectures. Specifically this research shows the use of metrics 
in design space exploration that highlight where in the structure 
of the model and at what point in the behaviour, protection is 
needed against soft errors. As these metrics improve the ability of 
the system to provide functionality, they are referred to here as 
reliability metrics. Previous approaches to prevent soft errors 
focused on recovery after detection. Almost no research has been 
directed towards preventive measures. But in real-time systems, 
deadlines are performance requirements that absolutely must be 
met and a missed deadline constitutes an erroneous action and a 
possible system failure. This paper focuses on a preventive 
approach as a solution rather than recovery after detection. The 
intention of this research is to prevent serious loss of system 
functionality or system failure though it may not be able to 
eliminate the impact of soft errors completely. 

 
Index Terms—Reliability Metrics, Real-Time Systems, and 

Soft Errors Protection 

I. INTRODUCTION 

Soft error is a temporary unintended change of state within 

a logic circuit that lasts for a few state transitions only. Soft 
error, also known as transient faults or Single Event Upset 
(SEU), is a rare phenomenon and usually not catastrophic [9], 
[18]. These types of faults could be induced by alpha particles 
from the naturally occurring radioactive impurities, high 
energy neutrons induced by cosmic rays, and low-energy 
cosmic neutron interactions with 10B found in boro-phospho-
silicat glass (BPSG) [3], [17]. Though soft errors do not affect 
the internal structure of the semiconductor, they nevertheless 
lead to malfunctions and even failures of the circuit [7], [9], 
and [10]. 

Soft errors are a great concern for designing high 
availability systems or systems used in electronic-hostile 
environments such as outer space [14], [22]. These errors are 
also severe in those systems where reliability is a great 
concern [13]. Space programs, where a system cannot afford 
malfunction while in flight, are vulnerable to transient faults. 
Banking transactions, where a momentary failure may cause a 
                                                           
Corresponding Author’s e-mail: muhammad.sadi@postgrad.cutrtin.edu.au 

huge difference in balance, are also threatened by transient 
faults [6]. For example, if a soft error causes 1 → 0 bit flips in 
the most significant bit of the register storing the amount of 
money deposited in a bank account then the effect might be an 
unexpected change in balance. Mission critical embedded 
applications, and even the execution of simple programs, 
where a corrupted intermediate value can corrupt all 
subsequent computations, are vulnerable to soft errors [19], 
[27]. 

Technology scaling, drastic shrinking in device sizes, 
associated with reduction in operating voltages and increase in 
clock frequencies result in increased susceptibility to soft 
errors [1], [2], [4], [14], [16], and [21]. Manufacturing design 
at advanced technology nodes-such as 90 nm, 65 nm, and 
onward-system level soft errors are much more frequent than 
in the previous generations [18]. Soft errors have traditionally 
been associated with the corruption of computer memory 
content. This phenomenon was reported as early as 1954. 
Since 1978, dense memory circuits, both DRAM and SRAM, 
have been known to be susceptible to soft errors caused by 
alpha particles from IC packaging and cosmic rays [15]. In the 
nanometer era, soft errors are no longer confined to memory 
cell upsets and can impact field-level product reliability for 
logic and latches. Additionally, with deeper pipelining, the 
number of logic stages between latches becomes smaller, 
increasing the probability of transient faults into latch [5]. 
Individual registers in a processor require an exorbitant 
amount of overhead due to these errors. Attack on a 
microprocessor, which is the core part of computer systems, 
makes the problem more critical. Exponential growth in the 
number of on-chip transistors, coupled with reduction in 
voltage levels, has made microprocessors extremely 
vulnerable to transient faults. The high clock rate of modern 
processors exacerbates the problem by increasing the 
probability that an incorrect signal in a combinational circuit is 
latched by a flip-flop [15]. This places designers in an 
unfamiliar realm in which logically correct implementations 
alone cannot ensure correct program execution. As a result, 
soft errors in flip-flops need immediate attention and due to 
technological advancements, solutions to handle 
combinational logic errors are essential. 

Traditional approaches to prevent transient faults focus on 
recovery after detection. Almost no research has done on 

A Design Approach for Soft Errors Protection in 
Real-Time Systems 

Muhammad Sheikh Sadi, D. G. Myers, and Cesar Ortega Sanchez  
Curtin University of Technology, Perth, Australia 



 

preventive measures. Avionic systems, or any real time 
applications, cannot even tolerate recovery delay when there is 
a fault. In real-time systems, hard deadlines are performance 
requirements that absolutely must be met. A missed deadline 
constitutes an erroneous action and a possible system failure. 
In these systems, late data is bad data. For example, it would 
be awkward to have to reset the flight control computer 
because of a fault while the plane is in the air. Measures are 
needed to maintain functionality at all times. Past research has 
mostly considered using redundant hardware or software, or 
both, but this does not guarantee that real-time criteria can be 
met.  

The aim of this paper is to examine a preventive approach 
as a solution rather than recovery after detection. Focusing on 
a preventive approach means that it is first necessary to 
consider what changes could affect the functionality desired, 
and then relate that to a demand for more robustness in the 
systems model. That requires some detailed assessment of 
both the functions to be provided and the structure and 
behaviour of the model. Whatever protection is nominated will 
flow through to the remaining stages and eventually end as 
some form of hardware or software, or both.  

Clearly, testing conclusively across all structure-behaviour 
coordinates is a near-impossible task. Simplification is needed. 
This paper proposes the usage of metrics to reduce the size of 
the test space. These metrics are simply heuristics that are 
used to scan the system model and flag at what structure-
behaviour coordinate a problem can arise. The aim is not to 
scan all points but look for key indicators that highlight 
particular conditions that need to be addressed. Thus the 
metric output will be some priority or it will be a measure of 
how long the impact of a transient fault may last, and so on. 

II. RELATED WORK 

Researchers have evolved several measures to protect soft 
errors.  Current approaches to soft error mitigation are shown 
in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hardware solutions on soft error mitigation techniques 
mainly emphasize circuit level solutions, logic level solutions 
and architectural solutions. At the circuit level, the solution is 
mainly to increase the critical charge of a circuit node [8]. 
Logic level solutions [3], [4], [6], [11], and [18] mainly 
propose detection and recovery in combinational circuits by 
using redundant or self-checking circuits. For example, to 
validate the output of combinational circuits, these techniques 
used output parity generation. Validation of flip-flops is done 
by providing redundant latches or by using scan flip-flops to 
hold redundant copies of flip-flop data. Architectural solutions 
include dynamic implementation verification architecture 
(DIVA) [29], and block-level duplication used in IBM Z-
series machines [17]. 

Software based approaches include redundant programs to 
detect and/or recover the problem [28], task duplication [20], 
by allocating, binding and scheduling resources in some 
definite ways [9] and by dual use of super scalar data paths 
[27]. Hardware and software co-design approaches [1], [2], 
[12], [23], [24], [25], and [26] use the parallel processing 
capacity of chip multiprocessors (CMPs) and redundant multi 
threading to detect and recover the problem. 

Cazeaux et al. [8] showed circuit level fault 
tolerance/hardening techniques by keeping the critical charge 
(Qcrit which is a function of transistor sizing) of the circuit 
node as high as possible. They did not consider other issues of 
transient faults, such as cross section of the node, and charge 
collection efficiency of the node. 

Tosun et al. [9] described the reliability model by 
allocating, binding and scheduling resources in a data flow 
graph based on resources’ reliability. This approach provides 
no solutions when all proposed versions were tried and it still 
could not meet the performance bound. But for real-time 
systems, solution(s) must be there to avoid system failure or 
serious system loss.   

Mitra et al. [18] used the inherent redundancy of latches 
with the Muller C-element to detect and tolerate soft errors in 
latches and flip-flops. C-element has two inputs and one 
output. If the two inputs match, the C-element acts as an 
inverter. If the input doesn’t match then the previous value is 
retained. C-element tolerates any errors in the latches and flip-
flops when the clock is 0, i.e. the latch is vulnerable to error. 
They did not cover bus lines, memory and register files. 

Xie et al. [20] proposed the reliability-aware co-synthesis 
paradigm where they improved reliability of the system via 
task duplication.  In their system, only a few tasks are 
duplicated that are defined by them as critical. Soft error may 
arise in any one of the tasks and its consequence can affect 
others as well. 

Gomaa et al. [24] has developed a chip level redundantly 
threaded multiprocessor with recovery (CRTR) scheme for 
transient fault detection and recovery. There are certain faults 
from which CRTR cannot recover. If a register value is written 
prior to committing an instruction, and if a fault corrupts that 
register after the committing of the instruction then CRTR 
fails to recover that problem. Since CRTR commits the 
leading thread before checking and the trailing thread after 

Hardware 
Based 

approach 

Hardware-Software 
co-design based 

approach 

Software 
Based 

approach 

Cicrcuit 
Level 

Solutions 

Logic 
Level 

Solution
s 

Architecture 
Level 

Solutions 

Soft Error Mitigation 

Figure 1. Soft Error Mitigation 



 

checking, and uses the trailing thread state for recovery, if any 
fault arises in the trailing thread itself, then the recovery may 
be wrong. 

Chip level Redundant Threading (CRT) [25] used a load 
Value Queue (LVQ) such that redundant executions can 
always see an identical view of memory. Although LVQ 
produced an identical view of memory for both leading and 
trailing threads, integrating this into the chip multiprocessor 
environment requires significant changes. 

DIVA [29] in its method of fault protection assumed that 
the checker is always correct and it proceeds using the 
checker’s result in case of a mismatch. Faults in the checker 
itself must be detected through alternative techniques. 

Xinping Zhu et al. [2] proposed a prototype of a fault 
tolerant multiprocessors system on chip. In their proposed 
work, they did not discuss the issue of bandwidth requirement 
and latency during inter-processor communication, and they 
also did not discuss the protection over memory and register 
files. 

In the Simultaneously and Redundantly Threaded 
processors with Recovery (SRTR) scheme [26], there is a 
probability of a fault corrupting both threads since the leading 
thread and trailing thread execute on the same processor. 
SRTR checks speculative values to detect faults and its 
scheme of Dependence-Based checking Elision (DBCE) 
encounters problem with masking instructions, which may 
mask a fault in its inputs by producing the correct output even 
if an input is faulty. 

Reinhardt et al. [28] described the concept of sphere of 
replication for aiding the design of fault tolerant 
simultaneously and Redundantly Threaded (SRT) processors. 
In short, the parts of the processor that fall outside the sphere 
are not replicated and must be protected by other means, such 
as information redundancy. 

III.  METHODOLOGY OF THE RESEARCH 

Modern embedded systems design begins by constructing a 
single abstract model that captures the functionality demanded 
in the requirements specifications. In this research, UML has 
been chosen as a modeling tool. This research assumes that 
such a model might be created without considering the effect 
of transient faults. Specifically, this research will examine the 
use of metrics in design space exploration that highlights 
where in the structure of the model, and at what point in the 
behaviour, protection is needed against transient faults. Figure 
2 symbolizes the plan in short. 

The plan of using these metrics is outlined briefly in the 
following paragraphs. 

A.  Fan In and Fan Out 

This metric measures the number of components connected 
to and from a particular component. ‘Fan In’ represents the 
number of connections to that component and ‘Fan Out’ 
represents the number of connections from that component. 
This metric finds out a set of components which could be 
interrupted if any transient fault arises in that component. The 
larger the number, the more critical the component is, and the 

greater the probability is of interruption by transient fault for 
the whole system. The next phase is to alter the UML 
representation of the system model by replacing the critical 
component with any other component(s) where Fan In and Fan 
Out will be lesser and no larger than a user defined threshold 
value. So, the process is iterated until all of the components do 
not cross the threshold value for Fan In and Fan Out.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B.  Functional Distance 

This metric measure the functional distance of a node from 
starting node. Usually, if any transient fault arises at any 
hardware or software component then its effect continues to 
the next hardware or software module(s). If the fault starts at 
the beginning, then a devastating effect is almost certain. So, 
to prevent serious loss of system functionality or system 
failure, preventive measure(s) should be proportionately 
increased with the increase of closeness of the nodes with the 
starting node. 

C.  Feedback or Recursion of Components 

The above metric measures the number of feedback or 
recursion with a component. If any component or any section 
is recursively used in the system model, then that particular 
component or section is more critical than a non-recursive 
one. And the number of iterations performed on any node 
obviously represents the seriousness of the necessity of 
precaution measure at that component/section. 

D. Higher order Bit/Byte 

A change in the most significant bit is more damaging than a 
change in the least significant bit of the register. For example, 
if a transient fault causes 1 → 0 bit flips in the most significant 

Abstract Model in UML 

Vulnerable 
to 

Transient 
Faults 

Y 

N 

Consider 
Fan in and 
Fan out, 

Functional 
Distance, 

Feedback or 
Recursion of 
Components, 
Higher order 

Bit/Byte 

Synthesize Model 

Figure 2: Methodology of Proposed Research 

Requirement Specification for 
Embedded Systems 



 

bit of the register storing the amount of money deposited in a 
bank account, then the effect might be an unexpected change 
in balance; whereas, a change in the least significant bit is not 
as serious as in the most significant bit. So, the higher order 
byte/bit attracts more precaution than the lower one. This 
paper tries to highlight those portion(s) in the UML model, 
where this type of risk arises and then it tries to alter the model 
to such an extent where the risk is minimal. 

IV. EXPERIMENTAL ANALYSIS 

To investigate the performance of the planned metrics, 
several small example programs were written in Turbo C++ 
environment. Binary Editors was used to open the binary 
equivalence of source code and executable files. Faults were 
injected manually. Results were verified for the two cases: one 
is where metrics were considered and another one is where 
metrics were not considered. An error free example was used 
for the reference. 

The first experiment was done using ‘Fan In’ and ‘Fan Out’ 
metric. This experiment can be described as follows: 

Suppose X is a large unit that is composed by A, and B. 
Example 1 (some statements) uses X as an undividable 
component and if Y needs to use A then A must be 
represented by X-B. 

Example 1  

Y=(X-B) +Z; here X-B represents A since X is undividable. 
W=Y+Z 

If there is an error in B (but A is error free) then it will 
certainly affect Y, and W. And if there is an error in A then it 
will also affect Y, and W. But in Example 2 (some statements) 
if X can be divided into two separate components A, and B 
then an error in B will not affect Y, and W. Only an error in A 
can affect Y, and W. 

Example 2 

Y=A+Z 
W=Y+Z 

The codes were written in Turbo C++ language, and faults 
were injected using binary editors which can show the bit 
combination of codes. And the results show that when X is 
undividable then for error in B, it will affect the value of Y, 
and W. But when X is divided into A, and B then there is no 
change in the value of Y, and W for the error in B. This result 
verifies that the components with higher Fan in and Fan out 
should be divided into effective sub-components provided it 
will not affect other constraints such as processing time, 
power requirement or device size. 

The next experiment was done using ‘Functional Distance’ 
metric. Example 3 (some statements) shows the following 
statements from a normal program. 

Example 3 

Y=A-B+Z 
X=A+C 
W=Y+Z 
P=W+Z 

In above examples, if there is a soft error in the first 
Instruction (say a bit change in B) then all other instructions 
that are using Y will be affected by the error. The result was 
checked by injecting soft error at different level of position of 
the instructions. This example not only proves that beginning 
instructions need much care to protect soft error but also 
beginning modules need extra care to protect soft error. 

Thirdly the effect of ‘Feedback or Recursion of 
Components’ were verified by injecting soft error in those 
variables that are recursively used and/or feed backed several 
times and  the frequent variables of a example program. This 
experiment finds that these variables spread error more than 
those other variables do. 

Table 1 describes the experiment in short. First column 
shows the serial number of examples taken into account for  

Table 1. Effect of Soft Error in several examples 

Examples’ 
Identification 

How Soft Errors were 
Injected 

Number 
of 

affected 
data 

1 ( Considering 
Fan In and Fan 

Out) 

Fault injected into B 2 

2 (Considering 
Fan In and Fan 

Out) 

Do Nil 

3 Fault injected into A at 
the first statement 

4 

3 Fault injected into Z 
when it was used at first 

3 

 
the experiment. Second column shows where the soft error 
(only a bit change; either 1→0 or 0→1) were made. Third 
column shows the total number of variables that were affected 
due to only one bit change. At first fault was injected into B of 
Example 1. This fault affects 2 more data as a consequence. 
Second row describes that fault in B has no impact in Example 
2 which is derived by considering Fan In and Fan Out. Third 
row shows that if the fault occur at the beginning of the 
program (here in A at the first statement) then it is affecting 4 
more data consecutively. It emphasized that the beginning 
modules of any hardware or software model need extra 
precaution than others. And similarly in fourth case, since 
fault in the most frequent variable causing more damaging, 
any feedback or recursion of components of a model attracts 
more attention than others. 

V. CONCLUSIONS 

The literature on transient fault protection is remarkably 
small in spite of its increasing importance. As gate size 
decreases, so its incidence increases. At present, a number of 
fabrication plants are operating at 65 nm line widths, with new 
ones announced being of even smaller dimensions. Almost no 
research has focused on preventive measure(s) to tackle this 
problem. Though recovery after detection may offer a 



 

temporary solution, for real time safety critical applications 
research must focus on preventive measure(s). By highlighting 
the key points where protection is needed, this paper shows 
the methodology to prevent serious loss of system 
functionality or system failure. 

REFERENCES 
[1] Smolens, J.C., et al.,"Reunion: Complexity-Effective Multicore 

Redundancy," in IEEE/ACM International Symposium on  
Microarchitecture, MICRO-39, Dec. 2006, pp. 223 - 234  

[2] Xinping, Z. and Q. Wei.,"Prototyping a fault-tolerant multiprocessor 
SoC with run-time fault recovery," in 43rd ACM/IEEE Design 
Automation Conference, 24-28 July. 2006, pp. 53 - 56. 

[3] Zhang, M.,"Analysis and design of soft-error tolerant circuits," Ph.D. 
Thesis, University of Illinois at Urbana-Champaign, United States -- 
Illinois. 2006. 

[4] Zhang, M., et al.,"Sequential Element Design With Built-In Soft Error 
Resilience," Very Large Scale Integration (VLSI) Systems, IEEE 
Transactions on, vol. 14, no. 12, pp. 1368-1378, 2006. 

[5] Narayanan, V. and Y. Xie,"Reliability concerns in embedded system 
designs," in Computer, vol. 39, no. 1, pp. 118-120, 2006. 

[6] S. Mitra, M.Z., N. Seifert, TM Mak and K. Kim. Soft and IFIP,"Soft 
Error Resilient System Design through Error Correction," in VLSI-SoC, 
2006. 

[7] Mukherjee, S.S., J. Emer, and S.K. Reinhardt. ,"The soft error problem: 
an architectural perspective," in 11th International Symposium on High-
Performance Computer Architecture, San Francisco, CA, USA: IEEE 
(Comput. Soc.), 2005, pp.  243 - 247. 

[8]  Cazeaux, J.M., et al.,"On transistor level gate sizing for increased 
robustness to transient faults," in 11th IEEE International On-Line 
Testing Symposium, IOLTS 2005, 6-8 July. 2005, pp.  23 - 28.  

[9] Tosun, S., et al.,"Reliability-centric high-level synthesis," in 
Proceedings Design, Automation and Test in Europe, 2005, pp. 1258 - 
1263. 

[10] Crouzet, Y., J. Collet, and J. Arlat.,"Mitigating soft errors to prevent a 
hard threat to dependable computing," in 11th IEEE International On-
Line Testing Symposium, IOLTS. 2005, pp. 295-298. 

[11] Krishnamohan, S.,"Efficient techniques for modeling and mitigation of 
soft errors in nanometer-scale static CMOS logic circuits,” Ph.D. Thesis, 
Michigan State University, United States -- Michigan. 2005. 

[12] Rashid, M.W., et al.,"Power-efficient error tolerance in chip 
multiprocessors," Micro, IEEE, vol. 25, no. 6, pp. 60-70, 2005. 

[13] Gold, B.T., et al.,"TRUSS: a reliable, scalable server architecture," 
Micro, IEEE, vol. 25, no. 6, pp. 51-59, 2005. 

[14] Saggese, G.P., et al.,"An experimental study of soft errors in 
microprocessors," Micro, IEEE, vol. 25, no. 6, pp. 30-39, 2005. 

[15] Iyer, R.K., et al.,"Recent advances and new avenues in hardware-level 
reliability support," Micro, IEEE, vol. 25, no. 6, pp. 18-29, 2005. 

[16] Borkar, S.,"Designing reliable systems from unreliable components: the 
challenges of transistor variability and degradation," Micro, IEEE, vol. 
25, no. 6, pp. 10-16, 2005. 

[17] Meaney, P.J., et al.,"IBM z990 soft error detection and recovery," 
Device and Materials Reliability, IEEE Transactions on, vol. 5, no. 3, 
pp. 419-427, 2005. 

[18] Mitra, S., et al.,"Robust system design with built-in soft-error 
resilience," Computer, vol. 38, no. 2, pp. 43-52, 2005. 

[19] Tosun, S.,"Reliability-centric system design for embedded systems," 
Ph.D. Thesis, Syracuse University, United States -- New York, 2005. 

[20] Xie, Y., et al.,"Reliability-aware co-synthesis for embedded systems," in 
15th IEEE International Conference on Application-Specific Systems, 
Architectures and Processors. 2004, pp.  41 - 50.  

[21] Srinivasan, J., et al.,"The case for lifetime reliability-aware 
microprocessors," in 31st Annual International Symposium on Computer 
Architecture, 19-23 June. 2004, pp. 276- 287. 

[22] Wang, N.J., et al.,"Characterizing the effects of transient faults on a 
high-performance processor pipeline," in International Conference on 
Dependable Systems and Networks, 28 June-1 July. 2004, pp. 61 - 70. 

[23] Kosovets, N.A. and L.N. Kosovets,"A fault-tolerant real-time 
multiprocessor with a built-in recovery mechanism," Cybernetics and 
Systems Analysis, vol.  40, no. 5, pp. 772, 2004. 

[24] Mohamed, A.G., et al.,"Transient-fault recovery for chip 
multiprocessors," IEEE Micro, vol. 23, no. 6, pp. 76, 2003. 

[25] Mukherjee, S.S., M. Kontz, and S.K. Reinhardt.,"Detailed design and 
evaluation of redundant multi-threading alternatives," in 29th Annual 
International Symposium on Computer Architecture, 2002, pp. 99-110. 

[26] Vijaykumar, T.N., I. Pomeranz, and K. Cheng.,"Transient-fault recovery 
using simultaneous multithreading," in 29th Annual International 
Symposium on Computer Architecture, 2002, pp. 87-98. 

[27] Ray, J., J.C. Hoe, and B. Falsafi.,"Dual use of superscalar datapath for 
transient-fault detection and recovery," in 34th ACM/IEEE International 
Symposium on Microarchitecture, 1-5 Dec. 2001, pp. 214 - 224. 

[28] Reinhardt, S.K. and S.S. Mukherjee.,"Transient fault detection via 
simultaneous multithreading," in 27th International Symposium on 
Computer Architecture, 2000, pp. 25- 36. 

[29] Austin, T.M.,"DIVA: a reliable substrate for deep submicron 
microarchitecture design," in 32nd Annual International Symposium on 
Microarchitecture, 16-18 Nov. 1999, pp. 196 - 207. 

 


