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Abstract—This paper proposes the use of metrics to refine
system design for soft errors protection in systemon chip
architectures. Specifically this research shows thase of metrics
in design space exploration that highlight where irthe structure
of the model and at what point in the behaviour, potection is
needed against soft errors. As these metrics imprewthe ability of
the system to provide functionality, they are refered to here as
reliability metrics. Previous approaches to preventsoft errors
focused on recovery after detection. Almost no reaech has been
directed towards preventive measures. But in realine systems,
deadlines are performance requirements that absolety must be
met and a missed deadline constitutes an erroneoastion and a
possible system failure. This paper focuses on a gwentive
approach as a solution rather than recovery after dtection. The
intention of this research is to prevent serious ks of system
functionality or system failure though it may not be able to
eliminate the impact of soft errors completely

Index Terms—Reliability Metrics, Real-Time Systems, and
Soft Errors Protection

I. INTRODUCTION

S}ft error is a temporary unintended change of statiein

a logic circuit that lasts for a few state tramsis only. Soft
error, also known as transient faults or Single Evdpset
(SEU), is a rare phenomenon and usually not cafatsitr [9],
[18]. These types of faults could be induced byralparticles
from the naturally occurring radioactive impuritiekigh
energy neutrons induced by cosmic rays, and lowegne
cosmic neutron interactions with 10B found in bpitmspho-
silicat glass (BPSG) [3], [17]. Though soft errdis not affect
the internal structure of the semiconductor, theyentheless
lead to malfunctions and even failures of the éir€zi, [9],
and [10].

huge difference in balance, are also threatenedrdnsient
faults [6]. For example, if a soft error causes>10 bit flips in
the most significant bit of the register storing thmount of
money deposited in a bank account then the effeghtrbe an
unexpected change in balance. Mission critical atdbd
applications, and even the execution of simple oG,
where a corrupted intermediate value can corrugt al
subsequent computations, are vulnerable to softrefil9],
[27].

Technology scaling, drastic shrinking in device esiz
associated with reduction in operating voltagesianckase in
clock frequencies result in increased suscepfjbild soft
errors [1], [2], [4], [14], [16], and [21]. Manufauring design
at advanced technology nodes-such as 90 nm, 65anmh,
onward-system level soft errors are much more fatthan
in the previous generations [18]. Soft errors haaditionally
been associated with the corruption of computer argm
content. This phenomenon was reported as early9ag.1
Since 1978, dense memory circuits, both DRAM and\BR
have been known to be susceptible to soft errouvsezh by
alpha particles from IC packaging and cosmic rdy.[In the
nanometer era, soft errors are no longer confimechémory
cell upsets and can impact field-level productatality for
logic and latches. Additionally, with deeper pipéatig, the
number of logic stages between latches becomeslesmal
increasing the probability of transient faults if@ich [5].
Individual registers in a processor require an kitant
amount of overhead due to these errors. Attack on a
microprocessor, which is the core part of compsteatems,
makes the problem more critical. Exponential growttthe
number of on-chip transistors, coupled with redurtiin
voltage levels, has made microprocessors extremely
vulnerable to transient faults. The high clock rafemodern
processors exacerbates the problem by increasirg
probability that an incorrect signal in a combina#l circuit is

th

Soft errors are a great concern for designing higlatched by a flip-flop [15]. This places designers an

availability systems or systems used in electrdwistile
environments such as outer space [14], [22]. Tleesws are
also severe in those systems where reliability igreat
concern [13]. Space programs, where a system caffootl
malfunction while in flight, are vulnerable to tsaent faults.
Banking transactions, where a momentary failure oause a
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unfamiliar realm in which logically correct implem@ations
alone cannot ensure correct program execution. Assalt,
soft errors in flip-flops need immediate attentiand due to
technological advancements, solutions  to handle
combinational logic errors are essential.

Traditional approaches to prevent transient fafdtsis on
recovery after detection. Almost no research hasedon



preventive measures. Avionic systems, or any réake t
applications, cannot even tolerate recovery delagnithere is
a fault. In real-time systems, hard deadlines @aropmance
requirements that absolutely must be met. A misteatlline

constitutes an erroneous action and a possiblemyilure.

In these systems, late data is bad data. For exantplould

be awkward to have to reset the flight control catap

because of a fault while the plane is in the aieaBlures are
needed to maintain functionality at all times. Rasearch has
mostly considered using redundant hardware or swoéwor

both, but this does not guarantee that real-tinter@ can be
met.

The aim of this paper is to examine a preventiveregch
as a solution rather than recovery after detect@tusing on
a preventive approach means that it is first negcgsso
consider what changes could affect the functiopalisired,
and then relate that to a demand for more robustimeshe
systems model. That requires some detailed assesshe
both the functions to be provided and the structans
behaviour of the model. Whatever protection is nated will
flow through to the remaining stages and eventuaiig as
some form of hardware or software, or both.

Clearly, testing conclusively across all structbedaviour
coordinates is a near-impossible task. Simplifarats needed.
This paper proposes the usage of metrics to retthgcsize of
the test space. These metrics are simply heurittias are
used to scan the system model and flag at whattstes
behaviour coordinate a problem can arise. The aimot to
scan all points but look for key indicators thaghiight
particular conditions that need to be addressedisTine
metric output will be some priority or it will beraeasure of
how long the impact of a transient fault may lasij so on.

Il. RELATED WORK

Researchers have evolved several measures to tpsotiec
errors. Current approaches to soft error mitigaioe shown
in Figure 1.

Soft Error Mitigation
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Figure 1. Soft Error Mitigation

Hardware solutions on soft error mitigation teclueis
mainly emphasize circuit level solutions, logic éégolutions
and architectural solutions. At the circuit levidle solution is
mainly to increase the critical charge of a circudde [8].
Logic level solutions [3], [4], [6], [11], and [18mainly
propose detection and recovery in combinationatuiis by
using redundant or self-checking circuits. For ephan to
validate the output of combinational circuits, théschniques
used output parity generation. Validation of flipgs is done
by providing redundant latches or by using scgnffthps to
hold redundant copies of flip-flop data. Architeetiusolutions
include dynamic implementation verification archtige
(DIVA) [29], and block-level duplication used in MB Z-
series machines [17].

Software based approaches include redundant pregram
detect and/or recover the problem [28], task dagilbn [20],
by allocating, binding and scheduling resourcessome
definite ways [9] and by dual use of super scaktacaths
[27]. Hardware and software co-design approachgs(2],
[12], [23], [24], [25], and [26] use the parallefogessing
capacity of chip multiprocessors (CMPs) and redandaulti
threading to detect and recover the problem.

Cazeaux et al. [8] showed circuit level fault
tolerance/hardening techniques by keeping thecatitharge
(Qcrit Which is a function of transistor sizingf the circuit
node as high as possible. They did not considerasisues of
transient faults, such as cross section of the ,nade charge
collection efficiency of the node.

Tosun et al. [9] described the reliability model
allocating, binding and scheduling resources inata dlow
graph based on resources’ reliability. This apphnopovides
no solutions when all proposed versions were taied it still
could not meet the performance bound. But for tiead
systems, solution(s) must be there to avoid sydtelure or
serious system loss.

Mitra et al. [18] used the inherent redundancy aithes
with the Muller C-element to detect and toleraté sarors in
latches and flip-flops. C-element has two inputsl ame
output. If the two inputs match, the C-element aassan
inverter. If the input doesn’t match then the poerd value is
retained. C-element tolerates any errors in trehést and flip-
flops when the clock is 0, i.e. the latch is vulige to error.
They did not cover bus lines, memory and registes.f

Xie et al. [20] proposed the reliability-aware ogithesis
paradigm where they improved reliability of the teys via
task duplication. In their system, only a few wasére
duplicated that are defined by them as criticaft 8oor may
arise in any one of the tasks and its consequeaneaffect
others as well.

Gomaa et al. [24] has developed a chip level reduotiy
threaded multiprocessor with recovery (CRTR) schdore
transient fault detection and recovery. There artamn faults
from which CRTR cannot recover. If a register vakieritten
prior to committing an instruction, and if a faglrrupts that
register after the committing of the instructiorethCRTR
fails to recover that problem. Since CRTR commite t
leading thread before checking and the trailingedhr after

by



checking, and uses the trailing thread state foovery, if any
fault arises in the trailing thread itself, ther tlecovery may
be wrong.

Chip level Redundant Threading (CRT) [25] used adlo

greater the probability is of interruption by treerg fault for
the whole system. The next phase is to alter theLUM
representation of the system model by replacingctiitical
component with any other component(s) where FamthFan

Value Queue (LVQ) such that redundant executions c®ut will be lesser and no larger than a user ddftheeshold

always see an identical view of memory. AlthoughQV
produced an identical view of memory for both legdand

trailing threads, integrating this into the chip ltiprocessor

environment requires significant changes.

DIVA [29] in its method of fault protection assumduat
the checker is always correct and it proceeds usirg
checker’s result in case of a mismatch. Faultshen checker
itself must be detected through alternative tealesq

Xinping Zhu et al. [2] proposed a prototype of ailfa
tolerant multiprocessors system on chip. In thewppsed
work, they did not discuss the issue of bandwigtuirement
and latency during inter-processor communicatiarg they
also did not discuss the protection over memory egister
files.

In
processors with Recovery (SRTR) scheme [26], thera
probability of a fault corrupting both threads srtbe leading
thread and trailing thread execute on the sameepsot.
SRTR checks speculative values to detect faults imd

scheme of Dependence-Based checking Elision (DBCE)

encounters problem with masking instructions, whiohy
mask a fault in its inputs by producing the cormatput even
if an input is faulty.

Reinhardt et al. [28] described the concept of epha
replication for aiding the design of fault
simultaneously and Redundantly Threaded (SRT) psmrs.
In short, the parts of the processor that fall ioketshe sphere
are not replicated and must be protected by otteamsy such
as information redundancy.

Ill. METHODOLOGYOF THE RESEARCH

Modern embedded systems design begins by constguati
single abstract model that captures the functiondémanded
in the requirements specifications. In this reseatéML has
been chosen as a modeling tool. This research a&sstimat
such a model might be created without considefimegeffect
of transient faults. Specifically, this researchl wkamine the
use of metrics in design space exploration thahllgbts
where in the structure of the model, and at whattpia the
behaviour, protection is needed against transeuits. Figure
2 symbolizes the plan in short.

The plan of using these metrics is outlined brigflythe
following paragraphs.

A. FanlInand Fan Out

This metric measures the number of components ctethe
to and from a particular component. ‘Fan In’ reprds the
number of connections to that component and ‘Fam’ O
represents the number of connections from that oowpt.
This metric finds out a set of components which |ddoe
interrupted if any transient fault arises in thamponent. The
larger the number, the more critical the compongnand the

the Simultaneously and Redundantly Threaded

tolerant

value. So, the process is iterated until all ofecbmponents do
not cross the threshold value for Fan In and Fan Ou

Requirement Specification for
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Figure 2: Methodology of Proposed Research

B. Functional Distance

This metric measure the functional distance of denfopom
starting node. Usually, if any transient fault esisat any
hardware or software component then its effectinant to
the next hardware or software module(s). If thdtfatarts at
the beginning, then a devastating effect is alngestain. So,
to prevent serious loss of system functionality system
failure, preventive measure(s) should be propoatiely
increased with the increase of closeness of thesadth the
starting node.

C. Feedback or Recursion of Components

The above metric measures the number of feedback or

recursion with a component. If any component or s@gtion
is recursively used in the system model, then gaaticular
component or section is more critical than a nanirgive
one. And the number of iterations performed on aoge
obviously represents the seriousness of the négess$i
LPrecaution measure at that component/section.

D. Higher order Bit/Byte

A change in the most significant bit is more damgghan a
change in the least significant bit of the regiskar example,
if a transient fault causes-2 0 bit flips in the most significant



bit of the register storing the amount of moneyatited in a
bank account, then the effect might be an unexdedtange
in balance; whereas, a change in the least signifibit is not
as serious as in the most significant bit. So,Higher order
byte/bit attracts more precaution than the lowee.omhis
paper tries to highlight those portion(s) in the Ulvhodel,
where this type of risk arises and then it triealter the model
to such an extent where the risk is minimal.

IV. EXPERIMENTALANALYSIS

To investigate the performance of the planned w®tri
several small example programs were written in duds-+
environment. Binary Editors was used to open theatyi
equivalence of source code and executable filesltd-avere
injected manually. Results were verified for th@teases: one
is where metrics were considered and another onvehese
metrics were not considered. An error free exarmas used
for the reference.

The first experiment was done using ‘Fan In’ andrfout’
metric. This experiment can be described as follows

Suppose X is a large unit that is composed by Al Bn

Example 1 (some statements) uses X as an undiedabl
component and if Y needs to use A then A must be

represented by X-B.
Example 1

Y=(X-B) +Z; here X-B represents A since X is undividable.
W=Y+Z

If there is an error in B (but A is error free) thé will
certainly affect Y, and W. And if there is an eriorA then it
will also affect Y, and W. But in Example 2 (sontatements)
if X can be divided into two separate componentsaid B
then an error in B will not affect Y, and W. Onlg arror in A
can affect Y, and W.

Example 2

Y=A+Z
W=Y+Z

The codes were written in Turbo C++ language, audts
were injected using binary editors which can show bit
combination of codes. And the results show that wKeis
undividable then for error in B, it will affect thealue of Y,
and W. But when X is divided into A, and B thenrthés no
change in the value of Y, and W for the error inTBis result
verifies that the components with higher Fan in &ad out
should be divided into effective sub-componentsvioled it
will not affect other constraints such as proceagsiime,
power requirement or device size.

The next experiment was done using ‘Functional dDisg¢’
metric. Example 3 (some statements) shows the woikp
statements from a normal program.

Example 3
Y=A-B+Z
X=A+C

WeY+Z
P=W+Z

In above examples, if there is a soft error in first
Instruction (say a bit change in B) then all othrestructions
that are using Y will be affected by the error. Teeult was
checked by injecting soft error at different leeé&lposition of
the instructions. This example not only proves theginning
instructions need much care to protect soft ernor dso
beginning modules need extra care to protect sat.e

Thirdly the effect of ‘Feedback or Recursion of
Components’ were verified by injecting soft error those
variables that are recursively used and/or feeddshseveral
times and the frequent variables of a examplenarag This
experiment finds that these variables spread emare than
those other variables do.

Table 1 describes the experiment in short. Firgtiroa
shows the serial number of examples taken intowatdor

Table 1. Effect of Soft Error in several examples

Examples’ How Soft Errors were | Number
Identification Injected of
affected
data
1 (Considering| Faultinjected into B 2
Fan In and Fan
Out)
2 (Considering Do Nil
Fan In and Fan
Out)
3 Fault injected into A at] 4
the first statement
3 Fault injected into Z 3
when it was used at firgt

the experiment. Second column shows where the esofir
(only a bit change; either-20 or 0—1) were made. Third
column shows the total number of variables thatevadfected
due to only one bit change. At first fault was oigel into B of
Example 1. This fault affects 2 more data as a egmsnce.
Second row describes that fault in B has no impaEixample
2 which is derived by considering Fan In and Fan. @bird
row shows that if the fault occur at the beginniofthe
program (here in A at the first statement) theis éffecting 4
more data consecutively. It emphasized that thanbew
modules of any hardware or software model needaextr
precaution than others. And similarly in fourth easince
fault in the most frequent variable causing morenaging,
any feedback or recursion of components of a matehcts
more attention than others.

V. CONCLUSIONS

The literature on transient fault protection is egkably
small in spite of its increasing importance. As egaize
decreases, so its incidence increases. At presenimber of
fabrication plants are operating at 65 nm line hédtwith new
ones announced being of even smaller dimensiomsogtl no
research has focused on preventive measure(stkte tthis
problem. Though recovery after detection may ofger



temporary solution, for real time safety criticgpéications
research must focus on preventive measure(s). @highting
the key points where protection is needed, thisspahows

the methodology to prevent serious loss of system
functionality or system failure.
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