
Multi-Site Software Engineering Ontology Instantiations

Management using Reputation Based Decision Making
Pornpit Wongthongtham, Farookh K Hussain, Elizabeth Chang, Tharam Dillon

 Digital Ecosystems and Business Intelligence Institute
Curtin University of Technology

GPO Box U1987,Perth ,WA 6845,Australia
{Pornpit.Wongthongtham, Farookh.Hussain, Elizabeth.Chang,

Tharam.Dillon}@cbs.curtin.edu.au

Topics: Multi-Site Software Development, Software Engineering Ontology,

Reputation, Trust.

Abstract
In this paper we explore the development of systems for software engineering

ontology instantiations management in the methodology for multi-site distributed

software development. Ultimately the systems facilitate collaboration of teams in

multi-site distributed software development. In multi-site distributed environment,

team members in the software engineering projects have naturally an interaction with

each other and share lots of project data/agreement amongst themselves. Since they

are not always residing at the same place and face-to-face meetings hardly happen,

there is a need for methodology and tools that facilitate effective communication for

efficient collaboration. Whist multi-site distributed teams collaborate, there are a lot

of shared project data updated or created. In a large volume of project data, systematic

management is of importance.

Software engineering knowledge is represented in the software engineering

ontology whose instantiations, which are undergoing evolution, need a good

management system. Software engineering ontology instantiations signify project

information which is shared and has evolved to reflect project development, changes

in the software requirements or in the design process, to incorporate additional

functionality to systems or to allow incremental improvement, etc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195650255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

The term “Ontology” is derived from its usage in philosophy where it means the

study of being or existence as well as the basic categories (Witmer 2004). Therefore,

it is used to refer to what exists in a system model.

Definition 1: An ontology, in the area of computer science, is the effort to

formulate an exhaustive and rigorous conceptual schema within a given domain,

typically a hierarchical data structure containing all the relevant elements and their

relationships and rules (regulations) within the domain (Wikipedia 2006b).

Definition 2: An ontology, in the artificial intelligence study, is an explicit

specification of a conceptualisation (Gruber 1993ab). In such an ontology, definitions

associate the names of concepts in the universe of discourse e.g. classes, relations,

functions) with describing what the concepts mean, and formal axioms that constrain

the interpretation and well-formed used of these terms (Beuster 2002).

For example, by default, all computer programs have a fundamental ontology

consisting of a standard library in a programming language, or files in accessible file

systems, or some other list of ‘what exists’. However, the representations are poor for

some certain problem domains, so more specialised schema must be created to make

the information useful and for that we use an ontology.

To represent the software engineering knowledge, the whole set of software

engineering concept representing generic software engineering knowledge is captured

as domain knowledge in ontology. A particular project or a particular software

development probably uses only part of the whole sets of software engineering

concepts. For example, if a project uses purely object oriented methodology, and then

the concept of a data flow diagram may not be necessarily included. Instead, it

includes concepts like class diagram, activity diagram and so on. The specific

software engineering concepts used for the particular software development project

representing specific software engineering knowledge are captured as sub domain

knowledge in ontology. The generic software engineering knowledge represents all

software engineering concepts, while specific software engineering knowledge

represents some concepts of software engineering for the particular project needs. In

each project, there exists project information or actual data including project

agreement and project understanding. The project information especially meets a

particular project need and is needed with the software engineering knowledge to

define instance knowledge in ontology. Note that the domain knowledge is separate

from instance knowledge. The instance knowledge varies depending on its use for a

particular project. The domain knowledge is quite definite, while the instance

knowledge is particular to a project. Once all domain knowledge, sub domain

knowledge and instance knowledge are captured in ontology, it is available for

sharing among software engineers through the Internet. All team members, regardless

of where they are, can query the semantic linked project information and use it as the

common communication and knowledge basis of raising discussion matters,

questions, analysing problems, proposing revisions or designing solutions, etc.

Ontology is machine-understandable. A machine, in the form of application, can

use the software engineering knowledge represented in the ontology and carry out

software engineering knowledge management. Software engineering knowledge

management refers to the ways that project information, a concrete state of the

conceptual structures of software engineering domain, are gathered, managed, and

maintained for remote teams’ collaboration in multi-site software development. In

order to make such project information assets available for transfer across sites, a

range of specific software development processes is identified and captured as

knowledge, know-how, and expertise (Wikipedia 2006a) which is in the form of

ontology. Software engineering knowledge management is specifically tied to the

objective of providing unified semantic knowledge sharing and improved

understanding within distributed teams, transparent and understandable task

accomplishment for remote teams, aware of current project state, etc. In order to

explore software engineering knowledge management as part of the solution, in the

following sections we clarify instantiations retrieval and instantiations manipulation.

Software engineering knowledge, formed in the ontology, represents abstraction

of software engineering domain concepts and instantiations. The abstraction is

divided into generic software engineering knowledge and specific software

engineering knowledge. The abstraction of generic knowledge represents the whole

software engineering concepts, while the abstraction of specific knowledge represents

the software engineering concepts used for some particular projects. The

instantiations knowledge simply represents the project information. The abstraction of

the specific software engineering knowledge has its instantiations being used to store

data instances of the multi-site projects. Each abstraction of the specific software

engineering knowledge can have multiple instantiations in different circumstances of

the projects. The corresponding concrete data instances are stored as instantiations.

The abstraction and its instantiations are made explicit and enable retrieval by remote

team members.

Sowa (Sowa 1984) stated that natural languages are too ambiguous. In order to

eliminate ambiguity, project information is captured corresponding to its abstraction.

This makes project information assumptions explicit as its abstraction is made explicit

in the ontology. Explicit instantiations of project information knowledge share

meaning and understanding amongst distributed teams. It leverages remote team

perspective. Project information is formulated corresponding with software

engineering concept structures in the ontology. This makes project information easy

to navigate and be retrieved punctually. A navigational view and integrated view of

the retrieved instantiations of knowledge assist team members with team

collaboration.

In order to understand systems of software engineering ontology instantiations

management and its architecture, in the next section we analyse instantiations in the

software engineering ontology and define instantiations transformation. Accordingly,

management systems of safeguard, ontology, and decision maker are introduced and

discussed.

2. Software Engineering Ontology Instantiations

Software engineering ontology instantiations are derived as a result of populating

software engineering project information and are referred to as ontology instances of

ontology classes. Instantiations are also known as instance knowledge of the software

engineering ontology. In other words, once the software engineering ontology is

designed and created, it needs to be populated with data relating to the project. This

process is usually accomplished by mapping various project data and project

agreement to the concepts defined in the software engineering ontology. Once

mappings have been created, project information, including project data, project

agreement, and project understanding, is in a semantically rich form and management

is needed to maintain the instantiations.

2.1 Instantiations Analysis
The software engineering ontology contains abstractions of the software

engineering domain concepts and instantiations. There are two types of the abstraction

which are the generic software engineering and the specific software engineering. The

abstraction of the generic one represents the concepts that are common to a whole set

of software engineering concepts, while the abstraction of the specific one represents

the set of software engineering concepts that are specifically used for some categories

of particular projects. The instantiations, also known as population, are simply the

project data. The abstraction of the specific software engineering ontology has its

instantiations ultilised for storing data instances of the projects. Each abstraction can

have multiple instantiations in different circumstances of projects. The corresponding

concrete data instances are stored as instantiations. In this study, the software

engineering ontology integrates abstractions and instantiations together, rather than

separating them by storing instances in a traditional relational database style linked to

the knowledge base. The latter, SQL queries, can help with the large volume of

concept and instance management and maintenance. Nevertheless, in the software

engineering ontology, the data volume is not very large and coherent integration of

abstraction and instantiations are important in the software engineering projects

especially in multi-site software development environment. Putting them together

instead of separately would be more suitable for this study. For example, each project

contains a different narrow domain (specific software engineering ontology) and

limited numbers of data instances. The domain specific ontologies are locally defined;

that is, they are derived from the generic software engineering ontology so they are

not created with respect to some global declarations. This indicates that abstractions

and instantiations are better stored together instead of separately. In conclusion,

ontology instantiations for software engineering knowledge management actually

means management of the instantiations.

In reality, in software engineering projects, the project data over a period of time

needs to be modified to reflect project development, changes in the software

requirements or in the design process, in order to incorporate additional functionality

to systems or to allow incremental improvement. Since changes are inevitable during

software engineering project development, the instantiations of the software

engineering ontology is continuously confronted with the evolution problem. If such

changes are not properly traced or maintained, this would impede the use of the

software engineering ontology. Due to the complexity of the changes to be made, at

least a semi-automatic process becomes increasingly necessary to facilitate updating

tasks and to ensure reliability. Note that this is not ontology evolution because it does

not change the original concepts and relations in the ontology, rather instantiations of

the ontology change or that conform to the ontology change. Figure 1 shows the

abstraction is fixed but only the instantiations are always changing.

Software Engineering Ontology

Figure 1 Instantiations of the software engineering ontology is the only component

continuously confronted to evolution problem

Thus, software engineering domain changes that are produced by new concepts,

and change in the conceptualisation as the semantics of existing terms are modified

with time, are all outside the scope of this study.

When there are changes made to the instantiations of the ontology, they are all

recorded by a logger object. Basically, instantiations can be updated by three basic

operations: add, delete and modify. The add operation extends the existing

instantiations of the ontology with new instantiations. The delete operation removes

some instantiations from the ontology. The modify operation modifies some

instantiations of the ontology but it still keeps its original construct. Generally, any

update to the instantiations of ontology can be described by a sequence of the three

operations. For example, a delete operation followed by an add operation can be

considered as a replacement operation. Notice that the replacement operation loses its

original construct while the modify operation still maintains its construct.

2.2 Instantiations Transformation
In this section, we particularly report on how software engineering project data

are transformed or mapped into concepts formed in the software engineering ontology

as instance knowledge. Conversely, the instance knowledge can be transformed back

to more presentable and semantic project data e.g. diagram-like project data. Once

transformed, instance knowledge is available for sharing among multi-site teams.

Manipulation of semantics such as instance knowledge can be carried out by users or

remote members. These are shown in Figure 2.

Transforming

Figure 2 Instantiations transformation

An example of transformation is given in Figure 3 which shows a class diagrams

ontology model. Figure 4 shows an example UML class diagram that will be

transformed into the ontology model in Figure 3 as instance knowledge.

Figure 3 Class diagrams ontology relations

Figure 4 An example of an UML class diagram

As from Figure 4, UML classes Customer, RentalCustomer,

InsuranceRegisteredDriver, and RentalRegisterredDriver apply as instances of the

ontology concept Class in class diagrams ontology. Explicit domain knowledge from

concept Class elicit that class consists of its properties, its operations and its

relationships. This is by referring respectively, in the class diagrams ontology model,

to relations Class_Attribute, Class_Operation, and association ontology class

ClassRelationship. The concept Class instance Customer has relation has_Attribute

with concept ClassAttribute instances CustomerID, FirstName, LastName,

DriverLicenceNo, etc. For example, the concept instance DriverLicenceNo has

relations Class_Attribute_Datatype with xsd:string of ‘Integer’ and has relations

Class_Attribute_Visibility with xsd:string of ‘Private’. These are shown below in

Figure 5.

-CustomerID : int
-FirstName : string
-LastName : string
-DriverLicenceNo : int

Customer
<<Concept>>

Class

Customer CustomerID

FirstName

DriverLicenceNo

Class_
Attribute

Integer

Private

Class_Attribute
_Datatype

Class_Attribute
_Visibility

xsd:String

xsd:String

<<Concept>>
ClassAttribute

Class_Attribute_Datatype Single {Integer, Float, String, Character, Boolean}
Class_Attribute_Visibility Single {Public,Private,Protected}

FirstName

Figure 5 Transformation of UML class Customer and its attributes to class diagrams

ontology

For a particular UML class Customer, operation NewCustomer() applies as an

instance of concept ClassOperation in the class diagrams ontology model. The

concept Class instance Customer has relation Class_Operation with concept

ClassOperation instance NewCustomer. The concept instance NewCustomer has

relations Class_Operation_Visibility with xsd:string of ‘Public.’ These are shown

below in Figure 6.

Figure 6 Transformation of UML class Customer and its operation to class diagrams

ontology

For the particular class diagram shown in Figure 4, the concepts of generalisation

relationship and association relationship are applied. An instance of concept

ClassGeneralisation has relations Related_Object_Class_Component with concept

Class instances RentalCustomer and InsuranceRegisteredDriver and has relations

Relating_ Object_Class_Component with concept Class instance Customer. Instance

of concept ClassAssociation has relations Related_Object_Class_Component with

concept Class instance RentalRegisteredDriver, has relations Relating_

Object_Class_Component with concept Class instance RentalCustomer, has relations

Related_Cardinality with xsd:String of ‘1’, has relations Relating_Cardinality with

xsd:String of ‘0..*’, and has relations Related_Role_Name with xsd:String of ‘has’.

These are shown below in Figure 7.

<<Concept>>
ClassGeneralisation

<<Concept>>
Class

<<Concept>>
Class

Rental
Customer

Insurance
RegisteredDriver

Related_Object_
Class_Component

Relating_Object_
Class_Component

Subclass
Instance

Customer

<<Concept>>
Class

<<Concept>>
Class

Rental
Customer

Rental
RegisteredDriver

Related_Object_
Class_Component

Relating_Object_
Class_Component

Association
Instance

<<Concept>>
ClassAssociation

Associated_Object_Class_Component
Multiple ObjectUClassUComponent Class
Related_Cardinality Single String
Relating_Cardinality Single String
Related_Role_Name Single String
Relating_Role_Name Single String

1

xsd:String

0..*

xsd:String

has

xsd:String

Related_
Cardinality Relating_

Cardinality

Related_
Rolename

Customer

RentalCustomer InsuranceRegisteredDriver

RentalCustomerRentalRegisteredDriver
has

1 0..*≡

≡

Figure 7 Transformation of generalisation and association relationships to class

diagrams ontology

All project data/agreements which are instantiations of the software engineering

ontology need management to promote the use of semantic project data for multi-site

distributed software development.

3. Development of Systems for Software Engineering

Ontology Instantiations Management

In this paper we present development of applications in systems to facilitate

software engineering ontology instantiations management. The software engineering

ontology is made available to any application to deploy. The ability to make use of the

software engineering knowledge, described in the software engineering ontology,

enables applications in the systems to have capabilities in managing instance

knowledge in multi-site distributed software development.

Management tasks for software engineering ontology are assigned to the systems

containing a number of sub systems. There is a set of systems to facilitate

management of software engineering ontology named safeguard system, ontology

system, and decision maker system. The architecture of the systems in the multi-site

environment is shown in Figure 8.

Figure 8 Model of Management Systems

Team members, regardless of where they are, connect to the web server via a web

browser. This will enable team members to directly use the system without having to

download any software or install any application. Each team member is served by the

intelligent systems tool as the communication media. This allows direct

communication between different team members using a messaging system and

allows monitoring and recording of the activities of the team members as well. Each

team member is provided with a particular set of access privileges that are dependent

of the role of that team member in the project. The set of sub systems within the

intelligent support systems architecture is comprised of: safeguard system, ontology

system and decision maker system. The safeguard system represents system

authentication for user authorisation and determination of the access level. The

safeguard system communicates with the ontology system if the user / team member

wants to query or update the software engineering ontology. The ontology system

manipulates and maintains the software engineering ontology repository. The decision

maker system operates tasks if an operation needs to be certified. The decision maker

system is responsible for decision making on the matter of updating the software

engineering ontology including acknowledgement of the decision made to all

involved team members. As can be seen from the model of management systems,

only the safeguard system has any connection with the user database. This means that

the safeguard system performs all recording of user activities as well. All other

systems call the safeguard system and pass the information to log all the events that

the system carried out. Thus, tracking can be accomplished by the safeguard system

if needed. Not only does it allow tracing; the safeguard system can determine

bottlenecks, if there are any occurrences, with the use of the timestamp. The ontology

system is the only one manipulating the software engineering ontology. Thus, it is the

only one that has access to the ontology repository. All other systems contact the

ontology system in the cases of wanting to view, query, or update the ontology. The

decision maker system has its own database to store data for decision making

occurring in the systems.

In detail, the functionalities of each system can be observed in Figure 9. The

safeguard system functionalities include system authentication, access level

allocation, solution proposal management and monitoring of the user activities.

Functionalities in the ontology system include navigating, querying and manipulating

software engineering ontology. For the decision maker system, a method of reputation

based voting is used in the system.

Figure 9 Functionalities provided in each system

Every team member can navigate the software engineering ontology but no

changes allow (Figure 9, number 3). A team member can log into systems. Once

logged in, system authentication (Figure 9, number 1) in the safeguard system verifies

user access from user database. Once authorised, the member will be provided the

access privileges from the safeguard system (Figure 9, number 2). The member can

now navigate, query, make changes, raise issue, or propose solution. Navigation,

query, and manipulation of instantiations in software engineering ontology are

functioned by the ontology system (Figure 9, number 3-5). Manipulation of

instantiations is functioned by the ontology system and is recorded into user database

by the safeguard system (Figure 9, number 7). Solution proposal is managed by

safeguard system (Figure 9, number 6). Any decision is made by decision maker

system (Figure 9, number 8).

4. Safeguard of Software Engineering Ontology

To implement security features into the systems, it has been decided to appoint

the safeguard system. The safeguard system implements and enforces the systems’

authentication, the access control policies and member activity log. All these

operations have different logic involved whose details are given in the next following

sections.

4.1 Software Engineering Ontology Access Authentication
Once users log into the system, the user identification will be verified with the

user database handled by relational database. Once authorised, the user can access,

modify or update the ontology depending on the access privileges held by the user

whose details are given in the next section. There are a few security levels, mainly:

• Software engineers – they can be:

o Software engineers, who have no access to updating, but can only

look up, or

o Software engineers who have an access to update project data, or

• Team leader / project manager – they have unlimited access to all functions

such as updates, backups, ontology maintenance and database access.

It should be noted that only the team leader / project manager has access to the

database server. Team leaders, who do not have any of the access levels stated, will

not have access to the specific section of the ontology.

4.2 Determination of the Software Engineering Ontology Access

Level
A user logged into the systems after authentication will be provided with different

services according to different access levels. All team members are provided with the

service to query the software engineering ontology. The list below shows the different

access levels:

• Querying level – only querying service that allows no changing

• Add and modifying level – restricted access to add and modify service of the

software engineering ontology instances (project data). At this level, some

operations may be required to be hold through making decision system e.g.

request for revision of project design model. Simple updates like the status of

the project or documentation update, would immediately be updated to the

software engineering ontology

• Full access level – unrestricted access to all services provided

These access levels are given according to the different status of the team

members. The hierarchy of the software engineering sub-ontology is used to

categorise hierarchy to in order to determine the access to the status of team members.

The team leader is the one who assigns proper access privileges to each member in

the team. For example, the sub-ontology ‘software design’ would require a designer

team or the sub-ontology ‘software requirement’ would demand an analyst team to

access, add, and modify their project data. Nevertheless, the team designer can look

up project requirements through the sub-ontology ‘software requirement’ but no

changes have been allowed, which means they are on the querying level. The team

leader will have full access including monitoring team member activities. The process

of viewing, querying and manipulating software engineering ontology is done by the

ontology system. The safeguard system will only verify the authorisation, the access

level and log activities and then pass the request to the ontology system.

4.3 Monitoring of the User Activities
Every single completed activity will be recorded by the logger application resided

in the safeguard system. This allows monitoring of all the user activities. The

safeguard system is requested by any other systems i.e. ontology system and decision

maker system to record team member activities. Because the safeguard system is the

only system that connects to the user database; thus, if there is any action to log into

the database, it will be done by the safeguard system.

4.4 Solution Proposal Management
In a software engineering project, once issues arrive, one can raise these issues

with the team and the suggested solutions can be proposed by any one in the project

team. All team members then can vote for either the selected solution, or they can

support the original. This is like a communication tool that allows a project team

member to voice opinions or suggestions on the particular issue that has arisen.

Multiple solutions can be proposed for a single issue. After voting, the decision maker

system whose details are in the later section, operates decision making showing the

proposed solution that has been chosen and acknowledged by the team.

Functionalities of a solution proposal management therefore include raising an issue,

proposing possible solutions, voting for a final solution and retrieving all parts of an

issue and its pending proposed solutions.

5. Software Engineering Ontology Management

 The purpose of having an ontology system is to manage connections with the

software engineering ontology. The ontology system is built on top of Jena (Carroll et

al. 2004) which we would like to gratefully acknowledge. Jena developed by the

Hewlett-Packard Company is a Java framework having capacity of manipulating

ontologies (McBride 2001). The version of Jena used is Jena 2.1. The ontology

system provides navigating, querying, and manipulating software engineering

ontology. The design philosophy of the ontology system is to use the in-memory

storage model and serialise it into a physical document stored in the ontology

repository. It is an attempt to minimise the query response time. Note that this is not

like a knowledge base system that uses the data based model to query the ontology

and instance data.

There are three different services here in the ontology system: navigating,

querying and manipulating services which are given in the next sections.

5.1 Navigation of Software Engineering Ontology
In this section, we deal with the accessing of information held in the software

engineering model. Software engineering concept structures are formulated so that it

can easily be navigated. A team member can navigate in the software engineering

ontology for clarification or classification certain concepts. The information provided

is in hierarchical form so upper level concepts or lower level concepts or adjacent

concepts can easily be navigated.

Technically for this function, the ontology system focuses on the software

engineering ontology model, the set of statements that comprises the abstraction and

instantiations. To navigate the software engineering ontology, the ontology system

reads OWL software engineering ontology into a model and then accesses the

individual elements.

5.2 Query of Software Engineering Ontology
The previous section dealt with the case of navigating the software engineering

model. This section deals with searching the software engineering model. As stated in

the earlier section, the in-memory storage model is used hence a query primitive

supports. The query facilities of RDQL (Seaborne Updated February 2004) which is a

data based model held in a persistent store, is not within the scope of this study.

It serves as a searching tool to help narrow down the vast number of concepts in

the ontology. Through the use of the ontology search function, the team member can

re-classify concepts to match their project needs. This leads to the specific ontology.

Note that the information provided by this function is all in XML format, which

means that it can be easily managed to display only a certain part of the information

retrieved or be able to provide a different display interface with the same set of

information retrieved.

5.3 Manipulation of Software Engineering Ontology
This section deals with manipulating the software engineering model. In the

specific software engineering ontology which contains project data, a team member

can add, delete, and update the project data. However, the ontology system will only

allow direct updates for the minor changes/updates. The changes will be recorded and

team members will be advised of the changes. An example of minor changes is

enumerated types where the changes allowed are already fixed and team members

cannot put in other values. Another example of minor changes is a changing of status

of a document with the option of, for example, ‘verified’ or ‘processing’. By default,

any updating apart from the minor changes will be done by the decision maker system

and be recorded. Even the ontology system considers whether they are minor changes

or major changes, though there is an option for a team member to select whether or

not these changes will go through the decision maker system. In the decision maker

system, the changes will not be updated immediately to the specific ontology. They

need to be voted by members of the community and therefore need to be stored in the

decision making database. The process of decision making is handled by the decision

maker system whose details are given in the next section. The ontology system simply

checks whether the update request had been authorised before being updated.

Basically, for major changes, the ontology system will pass the request of changes to

the decision maker system to proceed further with processes of, for example,

gathering information, consulting the ontologies in ontology repository etc. Once it

has passed through the decision maker system, the updating can be done by the

ontology system. Every activity will be recorded and the results of the processes are

sent to the user that made the enquiry and to every team member involved.

5.4 Software Engineering Ontology System Model Packages
The architecture of the ontology system consists of three packages: ‘generic’,

‘specific’ and ‘ontology’. The ‘generic’ package defines the interfaces of the data

structures of generic software engineering ontology and generic software engineering

ontology objects. Likewise, the ‘specific’ package defines the data structures of

specific software engineering ontology interfaces and specific software engineering

ontology objects, such as class and its instances. Both ‘generic’ and ‘specific’

packages provide an in-memory implementation of the data models of generic and

specific ontologies respectively. The ‘ontology’ package provides the utilities for the

ontologies defined in ‘generic’ and ‘specific’ packages.

5.4.1 Generic Package
Generic software engineering ontology can be accessed by anyone without

system authentication. It is used for a search of concepts relating to the software

engineering domain. Unlike specific software engineering ontology, it is meant to be

used for the projects, and therefore system authentication is required. Generic search

allows searching of any concept within the software engineering ontology. Search

results display the contents of the concept the user specifies including its subclasses,

its properties and restrictions. The output is in XML format in order for it to be

displayed easily on the web browser. Basically, the display of the hierarchy of

subclasses can be accomplished using a recursive function. The function will find out

the entire sub concepts of a concept by recursively calling the function itself over and

over again until no more sub concepts can be found.

5.4.2 Specific Package
A specific package provides a set of functionalities that helps the project team to

have a mutual understanding through the use of specific software engineering

ontology. Not only can the project members update project data, but also by

withdrawing partial relevant knowledge from the software engineering ontology,

issues can be discussed and solutions proposed. The set of functionalities includes:

view, query, add, delete and modify instances or simply project data and properties.

To retrieve instances of a concept or ontology class, a function retrieves all direct

instances related to the class or the concept. From here, users can browse this instance

information. All information associated with the instance is like its definition, its

properties (both object properties and data type properties) or its relationships, value

inside those properties and its restriction. The main purpose of retrieving its

relationships are firstly to help the team members understand its underlying concept;

secondly, to help discussion on the issues or solutions; and lastly, to help update

project data to be completed according to its domain concept. It is easy to become

confused if discussion takes place with words only, especially when there are many

ambiguous words in the software engineering domain. Therefore, by retrieving the

relationships associated with instances, it can help team members illustrate what they

truly mean. This is done even better with the Java drawing toolkit which can be used

to draw a relationship diagram.

Manipulating specific software engineering ontology is an essential tool to help

maintain a project because all project data is stored as instance. In reality, project data

are always updated from time to time. When project data need to be updated or added,

a function even helps to check essential parameters needed in order to retrieve from

its associated relationships, its restrictions etc. Updating is divided into two types of

update: minor and major. Any significant changes such as those that annihilate certain

information or add an entirely new instance to a project, are considered as a major

update. Additionally, all object properties are considered as a major update because

they reflect the changes of relationships. Requirements that satisfy the condition of

being a minor update are firstly, any changes made by members in their field of

expertise or simply in their team. For example, a designer making changes in the

domain of project design will have the right to do so, therefore they are considered as

minor updates. However, the designer making changes to the domain of project

implementation will then not have valid rights and the changes will be considered as

major updates instead. All data type properties are also classified as minor updates.

5.4.3 Ontology Package
The ‘ontology’ package is a compilation of functions that provides the utilities for

the ontologies defined in ‘generic’ and ‘specific’ packages. It does not belong to any

category and does not have enough information to create its own category either. The

functions in the package are mainly like (i) getting ontology name space, (ii) search

engine for the ontology system, (iii) ontology class or concept restrictions and

property characteristics checker to specify the range or restrict the values of input, (iv)

converting information into XML format for output and (v) parsing and serialising

ontologies in OWL language.

Firstly, getting ontology namespace is needed to extract the namespace of the

ontology. The OWL file stores all the information of the different URL and

namespace in the header of the file. When OWL file is loaded into the ontology model

by calling the Jena modelfactory (McCarthy 2004), all the URLs and namespace for

the ontology can be retrieved. Since the ontology model loads all URLs first then

loads the namespace of the ontology, the namespace is always the last element. By

using Java’s StringTokeniser (McCarthy 2004) the namespace of the ontology can be

retrieved with ease.

Secondly, a function in the package serves as a search engine for the ontology

system. It especially includes finding any close match of ontology class or concept.

This is useful when the search does not return any exact match to the user.

Ontology restrictions include quantifier restrictions and cardinality restrictions

and ontology property characteristics include functional, inverse functional,

symmetric and transitive properties. Functions of checking all ontology restrictions

and property characteristics are all in the package to restrict the conditions. A function

checks whether there is a minimum cardinality restriction implemented on the concept

or ontology class. Minimum cardinality restriction refers to the minimum number of

properties that must be input in order to satisfy the condition. For maximum

cardinality restriction, a function checks for a maximum number before a new

property value is added. If the maximum cardinality number is reached, adding of a

new property value is disallowed, or else adding of a new property value is allowed. If

there is a cardinality restriction present, it means there can be no more and no less

cardinality than the cardinality specified. The quantifier restrictions of allValueFrom

means that all the values of this property to whom this restriction applies, must have

all values falling within its range. Likewise, someValueFrom restrictions, some values

of the property whom this restriction applies to must have some values falling within

its range. Therefore, the aim of a function for this is to check whether the new value

which is going to be added falls into the category (if so return true; if it does not fall

into the category, return false). These kinds of restrictions are only for adding new

object properties.

Fourthly, a function is to convert information retrieved into XML format for

output. This function is used often to display instance information including its

restrictions information retrieved. All restrictions follow the same output format with

XML tag as the name of the restriction and its value.

Lastly, parsing and serialising ontologies in OWL language are needed for format

translation. A format or syntax translator requires the ability to parse, represent the

results of the parsing into an in-memory ontology model, and then serialise.

Manipulation capabilities for example would also be required, in between the parsing

and serialising processes, in order to allow construction and editing of ontologies. In

the implementation view, parsing is taking the OWL file and converting it to an in-

memory ontology model. Conversely, analogous to the parsing, serialising produces

an OWL concrete syntax in the form of a syntactic OWL file from an in-memory

ontology model.

6. Decision Support

As the name itself suggests, the job of the decision maker system is to make a

decision on an issue such as a major update request. In this study, we have developed

a combination of two techniques to implement the decision maker system. The

decision making is based on members in the teams agreeing to vote, along with the

reputation of each individual member involved in the software engineering project. In

the following sub sections, details of the voting and reputation techniques are

presented. We illustrate the combination of both techniques in the last sub section.

6.1 Voting System
The voting system provides a means for making changes to the reflected project

data or instance knowledge in the software engineering ontology based on votes from

each member of the project teams. Every member in the teams involved in a given

software engineering project has a right to vote for proposed solutions. Everybody’s

vote is worth points. Below is a list of requirements for the voting system.

• A member can work on a project or multiple projects at the same time

• A member can work in a team or in multiple teams

• A member can work in different teams in different projects

• A project involves multiple teams and multiple members

The vote cast by each team member is mathematically weighted by the factor of

which ‘members who actually work on a task have the best understanding of that

task’. In other words, if a member votes on an issue which arises within the area

he/she is working on, presumably this falls within his/her area of expertise, then

his/her vote carries more weight than that of a member who does not have expertise in

the issue area, or who does not really work on it. There are four areas of expertise

categorised by following four software processes in the software engineering domain.

These are software requirement, software design, software construction, and software

testing. Members classified in these areas of expertise are analysts, designers,

programmers or implementers, and tester respectively. Figure 10 gives an example of

this classification. A member, for example, may work in the design team for a

particular project and may also work in the requirements team and construction team

in another project. It is assumed, for example, that the designers of a project who

work on the project design, have expertise in project design, or know more than others

do about about this aspect of a project. Thus, if the project issue relates to project

design, the votes of members in the design team carry more weight than others.

Figure 10 An example of members working in project teams

Table 1 shows an example of three possible solutions named A, B, and C in the

issue of project design. Let us assume that solution A received a single vote from a

designer, solution B received a single vote from an analyst, and solution C received a

single vote from a programmer. The vote of each of these people is weighted by their

expertise in the area of the issue. From the above description, solution A then would

receive the maximum vote points since it has been voted by a member in the design

team who, it is assumed, has some degree of expertise in the project design because

he/she actually works on it.

Solution Requirement

(y)

Design

(x)

Construction

(y)

Testing

(y)

Design Issue

Voting Points

(x>y)

A √ x×1

B √ y×1

C √ y×1

Table 1 An example of the three possible solutions in the issue of project design

6.2 Reputation System
The reputation based system provides a means for making the changes to the

reflected project data in the software engineering ontology based on the reputation of

the team members involved in the software engineering project. Below is a list of

requirements for the voting system.

• A member has a reputation value for a particular area or domain in a

given project

• A member can have a different reputation value for a different area or

domain in a different project

• The reputation value of the team member continues to increase if the team

member votes for the chosen (or correct) solution and vice versa

• The reputation value of the team member decreases if the team member

did not vote for the chosen (or correct) solution and vice versa.

The reputation value of members may change with time. In other words, at a

given time and in a particular area, reputation value may increase, decrease or remain

the same. Figure 11 shows as example of different reputation values in the different

areas of a member working on different projects. Using the Markov Model (Chang,

Dillon & Hussain 2006), the change in the reputation value of each team member in a

given phase is tracked. Additionally, using the Markov Model, we consider what

could be the most probable future reputation value of a given team member in the

category of the issue at a time in which the decision has to be made.

Designer and
programmer
in project #1

Designer in
project #2

Requirements

Design

Construction

Testing

2

Design

Construction

Testing

2

1

1

1

1

2

1

Requirements

Domain
Reputation

Value Domain
Reputation

Value

Figure 11 An example of different reputation value in the different area of expertises

of members working in different project.

The calculation of a user’s reputation value, which is a value of either 1 or 2, is

based on the past reputation points for different domains. In order to calculate a user’s

reputation value, the first step is to calculate the current state value (CSV) which is

the latest up-to-date reputation value; second, calculate the Markov matrix; and third,

multiply CSV with the Markov matrix in order to arrive at the determined reputation

value of the user (Chang, Dillon & Hussain 2006). Along with the explanation, we

will provide an example for further clarity. If the last reputation value is a 2, the CSV

is a matrix []10 . If the last reputation value is a 1, the CSV is a matrix []01 . There

can be only these two possibilities. For example, a set of reputation value list is {2, 2,

1, 2, 2, 2}. As can be seen, the last value is a 2 then the CSV for that member is a

matrix []10 . Once CSV has been found, the Markov matrix is calculated next. The

transition states matrix is needed. Since there are only 1s and 2s, there are four states

of transition namely: 1-1 state, 1-2 state, 2-1 state and 2-2 state. By counting the

numbers of each state, we form the transition states matrix. As from the example,

there is none of 1-1 state; there is one 1-2 state; there is one 2-1 state and there are

three 2-2 states as shown below.

Transition States Matrix = ⎥
⎦

⎤
⎢
⎣

⎡
31
10

By counting a frequency of transition from state 1, in the above example state 1

transition frequency is one and state 2 transition frequency is four. This is used to

calculate the percentage of whether it changes state or stays at the state. For the above

example, 1-1 state has 0/1 that means 0% or 0, 1-2 state has 1/1 that means 100% or

1, 2-1 state has 1/4 that means 25% or 0.25 and 2-2 state has 3/4 which means 75% or

0.75. From here the Markov matrix is as followed.

Markov Matrix = ⎥
⎦

⎤
⎢
⎣

⎡
75.025.0
10

By multiplying the Markov matrix with the CSV, we will be able to obtain the

reputation value of the user. The probability of the reputation value is given below.

Reputation Value Probability = [] []75.025.010
75.025.0
10

=×⎥
⎦

⎤
⎢
⎣

⎡

The probability of the reputation value is in the form of []ba . If the value a is

greater than b, it means the most probable reputation value will be a 1 and if value b is

greater than a, it means the most probable reputation value will be a 2. Therefore, in

this example, the reputation value probability of []75.025.0 where 0.75 is greater

than 0.25, shows that the user’s reputation value is worth 2.

6.3 Reputation based Voting for Making Decision
Whenever issues arise, such as a major update request of project data, the

decision making system sends a message to every team member asking him/her for an

opinion. Subsequently, it then gathers and stores the possible solutions for that

particular issue. Of all the possible solutions, one solution is chosen by asking all

team members to vote for one of the proposed solutions. The reputation based

decision will then determine the total number of votes for each solution and, as

mentioned earlier, each vote is weighted by the expertise of the person casting it in the

area of the problem. Additionally, the reputation value of individual member who

votes is weighted.

For example, assume that a weighting value for member who his/her expertise is

not in the area of the issue is 0.2 and a weighting value for member who his/her

expertise is in the area of the issue is 0.8. Let us follow the previous example of the

three possible solutions named A, B, and C on the project design issue. Let assume

that for the design area, the reputation point of a member who votes for solution A is

1. Since this member’s expertise is in the area of design, which is the area where the

issue is raised, (i.e. project design), this member’s vote would have a value of 0.8 (1

multiplied by 0.8). If the reputation value of a member who votes for solution B is 2,

then this member’s vote would have of value 0.4 (2 multiplied by 0.2) because this

member’s expertise area is requirement (this member is an analyst) while the issue is

about project design. Similarly, if the reputation value of member who votes for

solution C is 1, then this member’s vote would have a value of 0.2 (1 multiplied by

0.2) because this member’s expertise area is construction (this member is a

programmer) while the issue is about project design. Table 2 shows the calculation of

the voting points.

Solution Requirement

Design

Construction

Testing

Design Issue

Voting Points

A 18.0 × 0.8

B 22.0 × 0.4

C 12.0 × 0.2

Table 2 An example of voting point calculation

For a particular issue, whichever solution has the highest vote value will be

chosen. Therefore, from the example, solution A that has the highest vote value is

chosen as a final solution. Once a solution has been chosen and finalised, the project

data in the software engineering ontology will be updated along the lines of the

chosen solution. The system advises all team members of the final decision and

records the event. The users’ reputation points are also updated for future use.

7. Conclusion

Ultimately, the systems facilitate collaboration of teams in multi-site distributed

software development. We have explored the development of systems for

management of software engineering knowledge formed in the software engineering

ontology. We have analysed instantiations in the software engineering ontology.

Instantiations signify project information which is shared and evolved to reflect

project development, changes in the software requirements or in the design process, to

incorporate additional functionality to systems or to allow incremental improvement,

etc. Accordingly, management systems have been introduced and discussed. Detailed

specific management systems of safeguard, ontology, and decision maker have been

given.

8. References

Beuster, G 2002, Ontologies Talk given at Czech Academy of Sciences, Prague, Czech

Republic, from http://www.uni-
koblenz.de/~gb/papers/2002_intro_talk_ontology_bang/agent_ontologies.pdf

Carroll, JJ, Dickinson, I, Dollin, C, Reynolds, D, Seaborne, A & Wilkinson, K 2004,

Jena: Implementing the Semantic Web Recommendations, Digital Media
Systems Laboratory, HP Laboratories Bristol.

Chang, E, Dillon, T & Hussain, FK 2006, Trust and Reputation for Service Oriented

Environment: Technologies For Building Business Intelligence And Consumer
Confidence, John Wiley and Sons.

Gruber, TR 1993a, 'Toward principles for the design of ontologies used for

knowledge sharing', International Workshop on Formal Ontology in
Conceptual Analysis and Knowledge Representation, eds. G N & P R, Kluwer
Academic Publishers, Deventer, The Netherlands, Padova, Italy.

Gruber, TR 1993b, 'A translation approach to portable ontology specification',

Knowledge Acquisition, pp. 199-220.

McBride, B 2001, 'Jena: Implementing the RDF Model and Syntax Specification',

Semantic Web Workshop, WWW2001.

McCarthy, P 2004, Introduction to Jena: use RDF models in your Java applications

with the Jena Semantic Web Framework, SmartStream Technologies, IBM
developerWorks

Seaborne, A Updated February 2004, Jena Tutorial: A Programmer's Introduction to

RDQL, http://jena.sourceforge.net/tutorial/RDQL/index.html,

Sowa, JF 1984, Conceptual Structures: Information Processing in Mind and Machine,

Addison Wesley.

Wikipedia 2006a, Knowledge management From Wikipedia, the free encyclopedia.

Retrieved 13 June 2006, from
http://en.wikipedia.org/wiki/Knowledge_management

Wikipedia 2006b, Ontology (computer science) From Wikipedia, the free

encyclopedia. Retrieved 8 June 2006, from
http://en.wikipedia.org/wiki/Ontology_%28computer_science%29

Witmer, G 2004, Dictionary of Philosophy of Mind - Ontology. Retrieved May 11,

2004 from http://www.artsci.wustl.edu/~philos/MindDict/ontology.html

