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Abstract. In this paper we employ the Rosenbrock system matrix pencil for the computation
of output-nulling subspaces of linear time-invariant systems which appear in the solution of a large
number of control and estimation problems. We also consider the problem of finding friends of
these output-nulling subspaces, i.e., the feedback matrices that render such subspaces invariant with
respect to the closed-loop map and output-nulling with respect to the output map, and which at
the same time deliver a robust closed-loop eigenstructure. We show that the methods presented in
this paper offer considerably more robust eigenstructure assignment than the other commonly used
methods and algorithms.
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1. Introduction. In the last 40 years, geometric control has played a funda-
mental role not only in the solution of important control and estimation problems—
including disturbance decoupling, unknown-input observation, noninteracting and
model matching control, fault detection and isolation, and LQ and H2-optimal control
problems, to name a few—but also in the understanding of several structural proper-
ties of both linear and nonlinear systems. At the same time, several polynomial and
structural approaches have been introduced, offering a deeper insight and understand-
ing of the properties of dynamical systems. Given the large number of contributions
in this area, it would be impossible to quote even a fraction of the relevant references,
and we consequently direct the interested reader to the comprehensive monographs
[27], [4], [25], [7], which provide surveys of the extensive literature in this area.

The main subspaces that underpin the classic geometric theory of linear time-
invariant (LTI) systems are the so-called controlled and conditioned invariant sub-
spaces. The most important types of controlled invariant subspaces are usually
referred to as output-nulling subspaces. These are subspaces of initial states of an
LTI system for which a control function exists that maintains the entire state tra-
jectory on that subspace and at the same time maintains the output at zero. For
finite-dimensional systems over a field, such control laws can always be expressed
as a static state feedback u = F x, where F is called a friend of the output-nulling
subspace. In the control and estimation problems noted above, the solution requires
the computation of a decoupling filter (which may be a controller or an observer,
depending on the problem under consideration), which in turn typically requires
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ROBUST EIGENSTRUCTURE ASSIGNMENT 961

the computation of a friend of the appropriate output-nulling (or its dual) sub-
space.

A related family of subspaces that also plays a pivotal role in control and estima-
tion problems are the so-called reachability subspaces (often referred to as controlla-
bility subspaces). Moreover, the so-called stabilizability output-nulling subspaces are
crucial in the solution of these problems with stability requirements.

This paper investigates several aspects related to the computation of basis matri-
ces for these subspaces and the computation of their corresponding friends. Except
for stabilizability and detectability subspaces, which require eigenspace computations,
the traditional algorithms employed to compute the aforementioned subspaces are
based on monotonic sequences of subspaces that converge in a finite number of steps
(typically not greater than the system order) to the desired subspace. An alterna-
tive approach was taken by Moore and Laub in [13], who proposed an algorithm for
the computation of the largest output-nulling reachability subspace that employs the
Rosenbrock system matrix pencil. That paper made a number of restrictive assump-
tions, and perhaps for this reason the methods in [13] have been given only marginal
attention. An approach via the special coordinate basis (SCB), which avoided the
restrictive assumptions of [13], was given in [5], [6], [7].

From the perspective of the controller design, the computation of the friends of
an output nulling subspace is equally as important as (if not more important than)
the computation of a basis matrix for the output-nulling subspace itself, as it is
employed in virtually all control and estimation problems for which a geometric solu-
tion is available. Indeed, when we consider problems such as disturbance decoupling
(with unknown, measurable, and previewed signals) with state and measurable feed-
back, noninteraction, model matching, fault detection, unknown-input observation,
and even H2-optimal control and filtering problems (to name just a few examples),
the computation of basis matrices for output-nulling and input-containing subspaces
is crucial to determine necessary and sufficient solvability conditions. In the case the
problem at hand is solvable, the computation of the associated friends provides the
actual solution to the problem.

The computation of the friends was considered in [4] and is summarized in
Appendix A. In the publicly available MATLAB GA toolbox,1 the effesta.m routine
is used for computing the friends. Similarly, the SCB method of [5] was incorporated
into the computation of the friends in the MATLAB Linsyskit toolbox;2 the atea.m
routine is used for computing the friends and is described in [10]. However, it has been
acknowledged by many authors [13], [8] that a major drawback of the applicability of
the geometric approach is the lack of algorithms for the computation of friends that
deliver a robust closed-loop eigenstructure, in which the closed-loop eigenvalues are
rendered insensitive to perturbations in the state matrices. The classical methods for
the computation of friends do not attempt to address the robustness aspects of the
problem and leave unexploited all the degrees of freedom in the computation of the
friend.

In this paper we add to this classical literature on the computation of basis ma-
trices for these subspaces, and we also consider the problem of computing the as-
sociated friends in a robust manner. Taking inspiration from the pioneering work of

1The geometric approach toolbox GA for MATLAB is freely downloadable at
www3.deis.unibo.it/Staff/FullProf/GiovanniMarro/geometric.htm.

2The Linear Systems Toolkit is available on request from the first author of [7]; see
http://vlab.ee.nus.edu.sg/∼bmchen/.
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962 LORENZO NTOGRAMATZIDIS AND ROBERT SCHMID

[13], we employ the Rosenbrock system matrix pencil to obtain an algorithm for the
computation of a basis matrix for the largest output-nulling reachability subspace
R� of an LTI system. Our method avoids the unnecessarily restrictive assumptions
made in that paper and shows that computational methods based on the Rosenbrock
matrix pencil can be used under the same general conditions as the subspace recur-
sion methods of [4] and the SCB methods of [5]. Moving beyond [13], we next offer
a method for the computation of a friend F that assigns any desired spectrum of
the closed-loop mapping restricted to this subspace. For simplicity of exposition, in
this paper we restrict our attention to the case of distinct eigenvalues and invariant
zeros.

Our procedure parameterizes the friends that achieve the desired spectrum, and
the parametric form is shown to be exhaustive of all the friends that deliver the spec-
ified closed-loop spectrum. Next, the parametric form is extended to accommodate
all friends that also assign the free eigenvalues of the closed-loop that are external to
R�; see also [22]. A similar parametric form is proposed for the friends of the largest
output-nulling subspace V�, as well as for the friends of the largest stabilizability
output-nulling subspace V�

g . Finally we extend the procedure again and obtain a
parametric form for all the friends that assign any desired inner and outer closed-loop
spectrum.

The degrees of freedom associated with the computation of friends of an output-
nulling subspace invites the formulation of optimization problems whose goal is to
exploit the available freedom to address objectives such as minimum gain or improved
robustness of the closed-loop eigenstructure. We propose a nonlinear unconstrained
optimization problem to find a friend that minimizes the Frobenius condition num-
ber of the matrix of closed-loop eigenvectors, which is a commonly used robustness
measure. Next, we propose a nonlinear unconstrained optimization problem that min-
imizes the Frobenius norm of the friend. We then show how these two optimization
problems can be combined to minimize a weighted sum of the robustness and mini-
mum gain measures, to be solved by gradient search methods.

Finally, we offer some performance comparisons of our method against those of [4]
and [7]. We consider an example system and compare the robustness of the associated
eigenstructure, the norms of the feedback gain matrices used, and the numerical
accuracy of the pole placement delivered by each of these methods. We observe
that the method introduced in this paper offers dramatically improved eigenvalue
insensitivity with significantly smaller gain and vastly improved accuracy than the
friends obtained from the GA toolbox and the Linear Systems Toolkit.

To further test the merits of our method against those of [4] and [7], we adopted
a Monte Carlo–style approach in which 10,000 sets of sample systems were randomly
generated, and the three methods were applied to each system to compute the friend
that assigned a particular inner and outer eigenstructure of the closed loop with
respect to the largest output-nulling reachability subspace. Comparisons were then
made of the robustness, gain, and accuracy of the eigenstructure assignment of each
method. In the vast majority of cases it was found that the methods offered here were
able to deliver a more robust pole assignment with less gain and greater accuracy than
both the alternatives.

Notation. Throughout this paper, the symbol {0} will stand for the origin of
a vector space. For convenience, a linear mapping between finite-dimensional spaces
and a matrix representation with respect to a particular basis are not distinguished
notationally. The image and the kernel of matrix A are denoted by im A and ker A,
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ROBUST EIGENSTRUCTURE ASSIGNMENT 963

respectively. The Moore–Penrose pseudoinverse of A is denoted by A†. When A is
square, we denote by σ(A) the spectrum of A. Given a linear map A : X −→ Y and
a subspace S of Y, the symbol A−1 S stands for the inverse image of S with respect
to the linear map A, i.e., A−1 S = {x ∈ X |Ax ∈ S}. If J ⊆ X , the restriction of
the map A to J is denoted by A |J . If X = Y and J is A-invariant, the eigenvalues
of A restricted to J are denoted by σ (A |J ). If J1 and J2 are A-invariant subspaces
and J1 ⊆ J2, the mapping induced by A on the quotient space J2/J1 is denoted by
A |J2/J1, and its spectrum is denoted by σ (A |J2/J1). The symbol ⊕ stands for the
direct sum of subspaces. The symbol � denotes union with any common elements
repeated. Given a map A : X −→ X and a subspace B of X , we denote by 〈A,B〉
the smallest A-invariant subspace of X containing B. The symbol i stands for the
imaginary unit, i.e., i =

√−1. The symbol ᾱ denotes the complex conjugate of
α ∈ C. Finally, given a matrix M , we denote by Mi its ith row and by M j its jth
column, respectively.

2. Preliminaries. In what follows, whether the underlying system evolves in
continuous or discrete time is irrelevant and, accordingly, the time index set of any
signal is denoted by T, on the understanding that this represents either R+ in the
continuous time or N in the discrete time. The symbol Cg denotes either the open
left-half complex plane C− in the continuous time or the open unit disc C◦ in the
discrete time. Consider an LTI system Σ governed by

Σ :

{
ρ x(t) = Ax(t) +B u(t), x(0) = x0,

y(t) = C x(t) +Du(t),
(2.1)

where for all t ∈ T, x(t) ∈ X = Rn is the state, u(t) ∈ U = Rm is the control
input, y(t) ∈ Y = Rp is the output, and A, B, C, and D are appropriate dimensional
constant real-valued matrices. The operator ρ denotes either the time derivative in
the continuous time, i.e., ρx(t) = ẋ(t), or the unit time shift in the discrete time, i.e.,
ρx(t) = x(t+1). Let the system Σ described by (2.1) be identified with the quadruple
(A,B,C,D). We assume with no loss of generality that all the columns of

[
B
D

]
and

all the rows of [C D] are linearly independent.3

We define the Rosenbrock system matrix pencil as

PΣ(λ)
def
=

[
A− λ I B

C D

]
, λ ∈ C;(2.2)

see [17]. The invariant zeros of Σ are identified with the values of λ ∈ C for which the
rank of PΣ(λ) is strictly smaller than its normal rank.4 More precisely, the invariant
zeros are the roots of the nonzero polynomials on the principal diagonal of the Smith
form of PΣ(λ); see [1]. Given an invariant zero λ = z ∈ C, the rank deficiency of PΣ(λ)
at the value λ = z is the geometric multiplicity of the invariant zero z and is equal

3If
[

B

D

]
has nontrivial kernel, a subspace U0 of the input space exists that does not influence the

local state dynamics. By performing a suitable (orthogonal) change of basis in the input space, we
may eliminate U0 and obtain an equivalent system for which this condition is satisfied. Likewise, if
[C D] is not surjective, there are some outputs that result as linear combinations of the remaining
ones, and these can be eliminated using a dual argument by performing a change of coordinates in
the output space.

4The normal rank of a rational matrix M(λ) is defined as normrankM(λ)
def
= maxλ∈C rankM(λ).

The rank of M(λ) is equal to its normal rank for all but finitely many λ ∈ C.
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964 LORENZO NTOGRAMATZIDIS AND ROBERT SCHMID

to the number of elementary divisors (invariant polynomials) of PΣ(λ) associated
with the complex frequency λ = z. The degree of the product of the elementary
divisors of PΣ(λ) corresponding to the invariant zero z is the algebraic multiplicity of
z; see [12].

Given λ ∈ C, we use the symbol NΣ(λ) to denote a basis matrix for the null-space
of PΣ(λ). We denote by d the dimension of the null-space of PΣ(λ)—or, equivalently,
the number of columns of NΣ(λ)—when λ is not an invariant zero, and by dz the
dimension of the null-space of PΣ(z)—or, equivalently, the number of columns of
NΣ(z)—when z is an invariant zero. Thus, if the set of invariant zeros of Σ is not
empty, we have in general dz > d. Clearly d = n+m− normrankPΣ.

For any matrix M with n + m rows, we define the matrices π{M} and π{M}
obtained by taking the upper n and lower m rows of M , respectively.

We recall that the reachable subspace from the origin is the smallest A-invariant
subspace of X containing the image of B and is denoted by R0 = 〈A, imB〉. An
output-nulling subspace V of Σ is a subspace of X which satisfies the inclusion[

A

C

]
V ⊆ (V ⊕ {0}) + im

[
B

D

]
,(2.3)

which is equivalent to the existence of a matrix F ∈ Rm×n such that

(A+B F )V ⊆ V ⊆ ker(C +DF ).(2.4)

Any real matrix F satisfying (2.4) is referred to as a friend of V . We denote by
F(V) the set of friends of V . The set of output-nulling subspaces of Σ is closed under
subspace addition.5 The sum of all the output-nulling subspaces of Σ is the largest
output-nulling subspace of Σ and is denoted by V�. The subspace V� represents the
set of all initial states of Σ for which a control input exists such that the corresponding
output function is identically zero. Since we are considering finite-dimensional LTI
systems over a field, such an input function can always be implemented as a static
state feedback of the form u(t) = F x(t), where F ∈ F(V�).

The so-called output-nulling reachability subspace on V�, herein denoted R�, is
the smallest (A+B F )-invariant subspace of X containing the subspace V�∩B ker D,
where F ∈ F(V�), i.e.,

R� = 〈A+B F,V� ∩B kerD〉, where F ∈ F(V�).(2.5)

Loosely speaking, R� represents the subspace of the state-space containing the
states that are reachable from the origin with trajectories that correspond to identi-
cally zero output [25, Chapter 8].

Let F ∈ F(V�). The closed-loop spectrum can be partitioned as σ(A + B F ) =
σ(A+B F | V�) � σ(A +B F | X/V�), where

• σ(A+B F | V�) is the spectrum of A+BF restricted to V�, and its elements
are referred to as inner eigenvalues of the closed loop with respect to V�. If
σ(A+B F | V�) ⊂ Cg, we say that V� is inner stabilizable.

• σ(A + B F | X/V�) is the spectrum of the mapping induced by A + B F on
the quotient space X/V�. Its elements are referred to as outer eigenvalues of
the closed loop with respect to V�. If σ(A + B F | X/V�) ⊂ Cg, we say that
V� is outer stabilizable.

5It is easy to see that the set of output-nulling subspaces of Σ is a modular upper semilattice
with respect to the standard subspace addition + and with respect to the subspace inclusion ⊆.
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The eigenvalues of A+B F restricted to V� can be further split into two disjoint
sets: the eigenvalues of A + B F restricted to R�, i.e., σ(A + B F |R�), are all freely
assignable6 with a suitable choice of F in F(V�). The eigenvalues induced by the map

A + BF on the quotient space V�/R�, i.e., Γin
def
= σ (A + B F |V�/R�), are fixed for

all the choices of F in F(V�). Thus, V� is inner stabilizable if and only if Γin ⊂ Cg.
Similarly, the eigenvalues σ(A + B F |X/V�) are split into two sets: the eigenvalues
σ(A+B F |(V� +R0)/V�) are all freely assignable by a suitable choice of F in F(V�),

whereas the eigenvalues in Γout
def
= σ(A + B F |X/(V� +R0)) are fixed. Thus, V� is

outer stabilizable if and only if Γout ⊂ Cg. Hence, the set Γin � Γout does not depend
on the choice of the friend F of V�. The elements of Γin are the invariant zeros of Σ
and are therefore also denoted by Z. We also define G def

= Γout.

3. Computation of R� and its associated friends.

3.1. Assignment of the inner eigenstructure of R�. Given a set of h self-
conjugate complex numbers L = {λ1, . . . , λh} containing exactly s complex conjugate
pairs, we say that L is s-conformably ordered if 2 s ≤ h and the first 2 s values of L
are complex, while the remaining are real, and for all odd k ≤ 2 s we have λk+1 = λ̄k.
For example, the sets L1 = {1+ i, 1− i, 3,−4}, L2 = {10 i,−10 i, 2+2 i, 2− 2 i, 7}, and
L3 = {3,−1} are respectively 1-, 2-, and 0-conformably ordered.

The following theorem presents a procedure for the computation of a basis matrix
for R� and, simultaneously, for the parameterization of all the friends of R� that
place the eigenvalues of the closed loop restricted to R� at arbitrary locations. This
procedure aims at constructing a basis for R� starting from basis matrices NΣ(λi)
of the null-spaces of the Rosenbrock matrix relative to an s-conformably ordered set
L = {λ1, . . . , λr}, where r is the dimension of R�. The set L will result as the set of
eigenvalues of the closed loop restricted to R�. No generality is lost by assuming that
for every odd i ∈ {1, . . . , 2 s}, the basis matrix NΣ(λi+1) is constructed asNΣ(λi+1) =
NΣ(λi) = NΣ(λi).

Theorem 3.1 (parameterization of the friends of R�
). Let r = dimR�. Let L =

{λ1, . . . , λr} be s-conformably ordered with elements all different from the invariant

zeros of the system. Let K
def
= diag{k1, . . . , kr}, where ki ∈ C

d (recall that d =
n + m − normrankPΣ) for each i ∈ {1, . . . , 2 s}, and for all odd i ≤ 2 s we have
k̄i = ki+1, and ki ∈ Rd for i ∈ {2 s+ 1, . . . , r}. Let MK be an (n +m) × r complex
matrix given by

MK
def
=

[
NΣ(λ1) NΣ(λ2) . . . NΣ(λr)

]
K(3.1)

and let for all i ∈ {1, . . . , r}

mK,i
def
=

⎧⎪⎨
⎪⎩
Re{M i

K} if i ≤ 2 s is odd,

Im{M i
K} if i ≤ 2 s is even,

M i
K if i > 2 s.

(3.2)

Finally, let

XK
def
= π {[mK,1 mK,2 . . . mK,r]},(3.3)

YK
def
= π {[mK,1 mK,2 . . . mK,r]}.(3.4)

6An assignable set of eigenvalues here is always intended to be a set of complex numbers which
is mirrored with respect to the real axis.
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966 LORENZO NTOGRAMATZIDIS AND ROBERT SCHMID

The following statements hold:
• The matrix XK is generically full column-rank with respect to the parameter
matrix K = diag{k1, . . . , kr}, i.e., rankXK = r for every K except possibly
for those lying in a set of Lebesgue measure zero.

• For all K such that rankXK = r, the identity R� = imXK holds.
• The set of all friends of R� such that σ(A+B F | R�) = L is parameterized as

FK = YK X†
K ,(3.5)

where K is such that rankXK = r.
Proof. First, we show that the set of parameter matricesK such that rankXK < r

has Lebesgue measure zero. From [13, Proposition 4], every choice of a distinct com-
plex conjugate set L = {λ1, . . . , λr} which does not contain invariant zeros is such
that the rank of π{[NΣ(λ1) NΣ(λ2) . . . NΣ(λr)]} is equal to r. Thus, for almost all
choices of K we have rank π {MK}= r. To see this, let us partition

[NΣ(λ1) NΣ(λ2) . . . NΣ(λr)] in (3.1) as
[ ΦΣ

ΨΣ

]
, where ΦΣ and ΨΣ have n and m

rows, respectively. Since as mentioned rank ΦΣ = r from [13, Proposition 4], we can

denote by {Φβ1

Σ ,Φβ2

Σ , . . . ,Φβr

Σ } a basis for imΦΣ. If rank(ΦΣK) is smaller than r,

i.e., say, r − 1, then the rank of the matrix [Φβ1

Σ kβ1 Φβ2

Σ kβ2 . . . Φβr

Σ kβr
] cannot be

greater than r − 1. This means that one column of such matrix is linearly depen-
dent of all the remaining ones. For the sake of argument, assume this is the last
column. This means that there exist coefficients α1, . . . , αr−1 not all equal to zero
such that Φβr

Σ kβr =
∑r−1

h=1 αh Φ
βh

Σ kβh
which has a unique solution in kβr . This im-

plies that rank(ΦΣ K) = r may fail only when kβr = (Φβr

Σ )†
∑r−1

h=1 αh Φ
βh

Σ kβh
, hence

on an (r− 1)-dimensional hyperplane in the r-dimensional parameter space.7 The set
of parameters that can potentially lead to a loss of rank in XK is given by the union
of a finite number of hyperplanes of dimension at most r − 1 within the parameter
space. This set therefore has empty interior and thus also zero Lebesgue measure.

We now prove the second and third points. Let K be such that rank π {MK} = r,

and let MK be partitioned as MK =
[ v′

1 v′
2 ... v′

r

w′
1 w′

2 ... w′
r

]
where for each i ∈ {1, . . . , r}, there

hold

(A− λi In) v
′
i +Bw′

i = 0,(3.6)

C v′i +Dw′
i = 0.(3.7)

For odd i ≤ 2 s, as λi = λ̄i+1 and ki = k̄i+1, we have v̄′i = v′i+1 and w̄′
i = w′

i+1. Let

U
def
= 1

2

[ 1 i
1 −i

]
, and for each odd i ≤ 2 s let [vi vi+1]

def
= [v′i v′i+1]U and [wi wi+1]

def
=

[w′
i w′

i+1]U . Then, we have

vi =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (v

′
i + v′i+1) if i ≤ 2 s is odd,

1
2 i (v

′
i − v′i−1) if i ≤ 2 s is even,

v′i if i > 2 s,

wi =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (w

′
i + w′

i+1) if i ≤ 2 s is odd,

1
2 i (w

′
i − w′

i−1) if i ≤ 2 s is even,

w′
i if i > 2 s,

which are real-valued. It follows that the matrices XK and YK in (3.3)–(3.4) can be
written as XK = [v1 . . . v2 s | v2 s+1 . . . vr] and YK = [w1 . . . w2 s |w2 s+1 . . . wr].

7Notice that even with this choice of kβr we could still have rank(ΦΣ K) = r due to the contri-
bution given by the remaining columns of ΦΣ.
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Since for this choice of K the rank of XK is also equal to r, (3.5) is a solution of
the linear equation FK XK = YK . This means that FK v′i = w′

i for all i ∈ {1, . . . , r}.
Moreover, FK [vi vi+1] = [wi wi+1] for all odd i ∈ {1, . . . , 2 s}. From (3.6)–(3.7)

we get
[ A+B FK

C+DFK

]
v′i =

[ v′
i

0

]
λi. Since for all odd i ≤ 2 s we have v′i+1 = vi + i vi+1

and v′i = vi − i vi+1, for such i we obtain
[ A+BFK

C+DFK

]
vi =

[ vi Re{λi}+vi+1 Im{λi}
0

]
and[ A+BFK

C+DFK

]
vi+1 =

[ vi+1 Re{λi}−vi Im{λi}
0

]
. These two equations can be written together

as [
A+BFK

C +DFK

] [
vi vi+1

]
=

[
vi vi+1

0 0

][
Re{λi} −Im{λi}
Im{λi} Re{λi}

]
.

Thus, by defining Λi,i+1 =
[Re{λi} −Im{λi}
Im{λi} Re{λi}

]
for all i ∈ {1, . . . , 2 s − 1} and Λi = λi

for all i ∈ {2 s+ 1, . . . , r}, we get[
A+BFK

C +DFK

]
XK =

[
XK

0

]
Λ,

where Λ = diag{Λ1,2,Λ3,4, . . . ,Λ2 s−1,2 s,Λ2 s+1, . . . ,Λr}. This equation says that
(i) the columns of XK form a basis for R�; (ii) FK is a friend of R�; and (iii) the
eigenvalues of (A + B FK) restricted to R� are the eigenvalues of Λ, i.e., the desired
closed-loop eigenvalues L.

It remains to be shown that this parameterization is exhaustive, i.e., the set of
all friends of R� such that the eigenvalues of the closed loop restricted to R� are
equal to L is parameterized in K as in (3.5). In other words, given L and a friend
F of R� such that (A + B F )R� ⊆ R� ⊆ ker(C + DF ) with σ(A + B F | R�) = L,
we need to show that there exists K such that, building XK and YK as in (3.3)–

(3.4), there holds F = YK X†
K . First, notice that the set of friends F of R� such

that σ(A + B F | R�) = L is parameterized as the solutions of the linear equation
F R = −Ω, where Ω satisfies the linear equation

[
A
C

]
R =

[
R
0

]
Λ +

[
B
D

]
Ω with a

certain Λ such that σ(Λ) = L and where R is a basis matrix of R�; see (7.2) in
Appendix A. Let F be any of such friends of R�. The associated matrix Λ is such
that σ(Λ) = L satisfies

[ A+B F

C+DF

]
R =

[
R
0

]
Λ. Consider a change of coordinates T that

brings Λ into the Jordan real canonical form.8 Let the blocks be ordered in such a
way that the s complex conjugate pairs of eigenvalues are first. We can write[

A+B F

C +DF

]
RT =

[
R

0

]
T T−1ΛT︸ ︷︷ ︸

ΛJ

,(3.8)

where ΛJ = diag{Λ1,2,Λ3,4, . . . ,Λ2 s−1,2 s,Λ2 s+1, . . . ,Λr} with Λi,i+1 =[Re{λi} −Im{λi}
Im{λi} Re{λi}

]
for all i ∈ {1, . . . , 2 s − 1} and Λi = λi for all i ∈ {2 s + 1, . . . , r}.

Notice that RT is also a basis matrix for R�. Let X = RT and Y = F RT . We find[
A B

C D

][
X

Y

]
=

[
X

0

]
ΛJ .(3.9)

8Since we are considering the case of distinct eigenvalues, all Jordan chains have unit length.
The order of the Jordan mini-blocks associated with real and pairs of complex conjugate eigenvalues
is one and two, respectively.
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968 LORENZO NTOGRAMATZIDIS AND ROBERT SCHMID

We can denote by v1, . . . , vr the r columns of X and by w1, . . . , wr the r columns of
Y . Thus, there holds

[
A B

C D

][
vi vi+1

wi wi+1

]
=

[
vi vi+1

0 0

][
Re{λi} −Im{λi}
Im{λi} Re{λi}

]
,

where i ≤ 2 s is odd and
[
A B
C D

] [ vi
wi

]
=

[ vi
0

]
λi if i > 2 s. By setting v′i+1 = vi + i vi+1

and v′i = vi − i vi+1 with i ≤ 2 s odd and v′i = vi for i > 2 s, and similarly for w′
i+1

and w′
i, we find

[
A B

C D

][
v′i
w′

i

]
=

[
v′i
0

]
λi and

[
A B

C D

][
v′i+1

w′
i+1

]
=

[
v′i+1

0

]
λ̄i(3.10)

for i ∈ {1, . . . , 2 s} with i odd, while for i ∈ {2 s+ 1, . . . , r} we have

[
A B

C D

][
v′i
w′

i

]
=

[
v′i
0

]
λi.(3.11)

Hence, writing (3.10) and (3.11) together yields

[
A B

C D

][
v′1 v′2 . . . v′r
w′

1 w′
2 . . . w′

r

]
=

[
λ1 v

′
1 λ2 v

′
2 . . . λr v

′
r

0 0 . . . 0

]
,

which implies that
[ v′

i

w′
i

] ∈ ker
[A−λi I B

C D

]
for each i ∈ {1, . . . , r}. Hence, a ma-

trix K exists for which X = XK and Y = YK , where XK and YK are given in
(3.3)–(3.4).

Example 3.1. Consider a quadruple (A,B,C,D), where

A =

⎡
⎢⎣
0 0 0

0 3 0

0 0 0

⎤
⎥⎦ , B =

⎡
⎢⎣
1 0

2 0

0 3

⎤
⎥⎦ , C =

[
0 0 0

]
, D =

[
0 4

]
.

The only invariant zero of this system is z = 0. Using the standard algorithms
of the geometric approach, it is easy to verify that R� is spanned by the first two
canonical basis vectors of R3. Hence, r = dimR� = 2. Let us choose, for example,
L = {λ1, λ2} = {−2,−4}. Basis matrices for kerPΣ(−2) and kerPΣ(−4) are given,
respectively, by NΣ(−2) = [5 4 0 | − 10 0]� and NΣ(−4) = [7 8 0 | − 28 0]�.
Thus, (3.1) becomes

MK =

⎡
⎢⎢⎢⎢⎢⎢⎣

5 7

4 8

0 0
−10 −28

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦K, where K =

[
k1 0

0 k2

]
.

D
ow

nl
oa

de
d 

06
/2

4/
14

 to
 1

34
.7

.2
48

.1
30

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST EIGENSTRUCTURE ASSIGNMENT 969

By choosing, for example, k1 = k2 = 1, we find XK =
[ 5 7

4 8

0 0

]
and YK =

[−10 −28

0 0

]
.

Thus, as expected imXK = R�, and FK = YK X†
K =

[ 8/3 −35/6 0

0 0 0

]
is a friend of R�

that delivers the desired closed-loop eigenstructure. Indeed, it can be immediately
verified that (A+B FK)R� ⊆ R� ⊆ ker(C+DFK), and the eigenvalues of (A+B FK)
restricted to R� are indeed {−2,−4}.

Example 3.2. Consider the following quadruple:

A =

⎡
⎢⎢⎢⎢⎣
−2 1 0 3

0 0 0 0

0 0 0 2

3 0 0 0

⎤
⎥⎥⎥⎥⎦, B =

⎡
⎢⎢⎢⎢⎣

0 1

0 0

0 0

−2 0

⎤
⎥⎥⎥⎥⎦, C =

[
0 1 0 0

]
, D =

[
0 0

]
.

In this case, using the standard algorithms of the geometric approach, we see that
R� is spanned by the first, third, and fourth canonical basis vectors of R4. Let
L = {λ1, λ2, λ3} = {−1− i,−1 + i,−2}. It is easy to see that with this choice of the
closed-loop eigenvalues, (3.1) becomes

MK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

50 0 50 0 8 0

0 0 0 0 0 0

18 i −2 −18 i −2 1 1

9− 9 i 1 + i 9 + 9 i 1− i −1 −1
84 i 84 −i 11 −1

23− 23 i −3− 3 i 23 + 23 i −3 + 3 i 3 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 0 0

k12 0 0

0 k11 0

0 k12 0

0 0 k31

0 0 k32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Choosing, for example, k11 = 0, k12 = i, k31 = 1, and k32 = 0, we find v′1 =
[0 0 −2 i −1 + i]�, v′2 = [0 0 2 i −1− i]�, v′3 = [8 0 1 −1]�, w′

1 =
[−1 3− 3 i]�, w′

2 = [−1 3 + 3 i]�, w′
3 = [11 3]�. We now compute

v1 =
1

2
(v′1 + v′2) =

⎡
⎢⎢⎢⎢⎣

0

0

0

−1

⎤
⎥⎥⎥⎥⎦ , v2 =

1

2 i
(v′2 − v′1) =

⎡
⎢⎢⎢⎢⎣

0

0

2

−1

⎤
⎥⎥⎥⎥⎦ , v3 = v′3 =

⎡
⎢⎢⎢⎢⎣

8

0

1

−1

⎤
⎥⎥⎥⎥⎦ ,

w1 =
1

2
(w′

1 + w′
2) =

[
−1

3

]
, w2 =

1

2 i
(w′

2 − w′
1) =

[
0

3

]
, w3 = w′

3 =

[
11

3

]
.

Hence, XK = [v1 v2 v3] and YK = [w1 w2 w3]. We have imXK = R�.Thus, by

defining Λ1,2 =
[ Re{λ1} −Im{λ1}
Im{λ1} Re{λ1}

]
=

[−1 1

−1 −1

]
and Λ3 = {λ3} = {−2}, and with FK =

YK X†
K =

[ 23
16 0 1

2 1

0 0 0 −3

]
which in fact satisfies

[ A+B FK

C+DFK

]R� ⊆ R� ⊕ {0} with σ(A +

B FK | R�) = {−1− i,−1 + i,−2}, we find
[ A+B FK

C+DFK

]
XK =

[XK

0

]
diag{Λ1,2,Λ3}.

Remark 3.1. In Theorem 3.1 we assumed that L = {λ1, . . . , λr} does not contain
invariant zeros of the system. This requirement in inherited from [13, Proposition
4]. This fact seems to suggest that the parameterization offered in Theorem 3.1 is
less complete than the one which follows from the classic approach, which is given in
Appendix A, since the latter is not restricted to only delivering the friends such that
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the eigenvalues of the closed loop restricted to R� are not coincident with invariant
zeros. On the other hand, in the second part of the proof of Theorem 3.1 we showed
that the parameterization (3.5) is exhaustive—and to prove that point we did not
need to use the assumption on the absence of invariant zeros from within L. Thus,
for every invariant zero zi of Σ, in the null-space of PΣ(zi) there must exist at least
a direction which is common to R�, or else we would not be able to assign the
corresponding zero as eigenvalue of the closed loop restricted to R�. Thus, we have the
following.

Corollary 3.2. Let the set of invariant zeros of Σ be denoted by Z = {z1, . . . , zt}.
We have

R� ∩ imπ{NΣ(zi)} = {0} ∀ i ∈ {1, . . . , t}.(3.12)

A direct consequence of Corollary 3.2 is that if L contains one or more invariant zeros,
for example, λi = z ∈ Z, (3.1) becomes

MK =
[
NΣ(λ1) . . . NΣ(λi) . . . NΣ(λr)

]
diag{k1, . . . , ki, . . . , kr}.

In view of (3.12) there exists a value ki ∈ C
dz such that for almost all choices of kj ,

j ∈ {1, . . . , r}\{i}, the rank of XK is equal to r, imXK = R�, and FK = YK X†
K is a

friend of R� such that σ(A+B FK | R�) = {λ1, . . . , λi, . . . , λr}. More specifically, we
can chose a basis NΣ(z) to be partitioned as [N ′

Σ(z) N ′′
Σ(z)], where N ′

Σ(z) is a basis

for R� ∩ imπ{NΣ(z)}, and ki =
[ k′

i

k′′
i

]
is partitioned accordingly. Hence, there must

hold k′′i = 0.
Example 3.3. Consider the system in Example 3.1. As mentioned, this system

has an invariant zero at z = 0. We want to find the friend that assigns L = {−2, 0}
as the eigenvalues of the closed loop restricted to R�. Thus, we compute a basis of

the null-space PΣ(0), which is spanned by the basis matrix NΣ(0) =
[
1 0 0 0 0
0 0 1 0 0

]�
.

Therefore, R� ∩ imπ{NΣ(0)} = im
[ 1

0

0

]
. In (3.1) we need to choose a value of the

parameter matrix K that selects precisely this column vector. In the present case, we
need

MK =

⎡
⎢⎢⎢⎢⎢⎢⎣

5 1 0

4 0 0

0 0 1
−10 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦K, where K =

⎡
⎣k1 0
0 k′2
0 k′′2

⎤
⎦ ,

with k′′2 = 0. Choosing, for example, k1 = 1 and k′2 = 2 yields XK =
[ 5 2

4 0

0 0

]
and

YK =
[−10 0

0 0

]
, which lead to FK = YK X†

K =
[ 0 −5/2 0

0 0 0

]
. Thus, imXK = R� and

σ(A+B FK | R�) = {0,−2}.
Remark 3.2. The method presented in Theorem 3.1 can also be generalized to

a set of closed-loop eigenvalues L with arbitrary multiplicity. The details on the
case of repeated closed-loop eigenvalues will not be provided in this paper. However,
we can notice that from Theorem 3.1 it follows that d = dim (kerPΣ(λ)) represents
the maximum number of Jordan mini-blocks of size 1 that can be obtained for a
repeated closed-loop eigenvalue λ. Indeed, suppose λ1, . . . , λν are such that λ1 has
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multiplicity d and d+ν = r, which means that the multiplicity of all other eigenvalues
is one. Choosing k1 to be a real d×d matrix (assuming for simplicity that λ1 is real),
while k2, . . . , kν are as described by Theorem 3.1, we can compute MK , XK , and YK

using (3.1), (3.3), and (3.4), and FK = YK X†
K guarantees that σ(A + B F | R�) =

{λ1, . . . , λν}, where λ1 has multiplicity equal to d. Notice that it may not be possible
to assign a further eigenvalue with the same multiplicity, unless Jordan mini-blocks
of order greater than one are allowed to be assigned in the closed-loop map. Indeed,
it may very well happen that kerPΣ(λ1) ∩ kerPΣ(λ2) = {0}. If this is the case, the
largest multiplicity that we can assign to λ2 with Jordan mini-blocks of order 1 is
equal to dim (kerPΣ(λ2)/(kerPΣ(λ1) ∩ kerPΣ(λ2))), and so forth.

3.2. Algorithm for the computation of a basis matrix for R�. The fol-
lowing algorithm provides a method for the computation of a basis of subspace R�

of the system Σ = (A,B,C,D) and also produces a friend F of R�. We assume that
r = dimR� is not known a priori. For simplicity, assume L = {λ1, . . . , λn} to be any
set of n distinct real numbers, all different from the invariant zeros of the system.

Algorithm 3.1.

1. Determine e = rankπ{NΣ(λ1)}. If e = 0, then R� = {0} and r = 0. If e ≥ 1,
then continue as below.

2. Select a nonzero coefficient vector k1 ∈ Rd and compute s1 = NΣ(λ1) k1,
v1 = π{s1}, V1 = v1, w1 = π{s1}, and W1 = w1; then test the condition

1 < rank [V1 | π{NΣ(λ2)}].(3.13)

If condition (3.13) fails, then set imax := 1 and go to step 6.
3. While 2 ≤ i ≤ n, successively obtain nonzero coefficient vectors ki ∈ Rd such

that

si = NΣ(λi)ki, vi = π{si}, wi = π{si},(3.14)

Vi = [Vi−1 | vi], Wi = [Wi−1 |wi],

and test the condition

i = rankVi.(3.15)

If this condition fails, choose a different ki to satisfy (3.15).
4. Test the condition

i < rank [Vi | π{NΣ(λi+1)}].(3.16)

5. For each i such that condition (3.16) holds, select a new coefficient vector
ki+1, evaluate (3.14), and check that Vi+1 satisfies (3.15). Then test (3.16).

6. Let imax be the first i such that (3.16) is false. Then, rankVimax is maximal
and r = imax. Denote X := Vimax and Y := Wimax , and define an m× n real
gain matrix F as F = Y X†. Thus, R� = imX and F is a friend of X such
that σ(A+B F | R�) = {λ1, . . . , λr}.

3.3. Assignment of the complete eigenstructure of R�. In the previous
section, we showed how to construct a friend F of the subspace R� that arbitrarily
assigns all the eigenvalues of the closed loop restricted to R�. However, we also know
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that the spectrum induced by the map A+B F on the quotient space (R0 +R�)/R�

(where we recall that R0
def
= 〈A, imB〉 is the classic reachable subspace from the

origin) is assignable using a friend F . Since R� ⊆ R0, these eigenvalues coincide with
those induced by the map A+B F on the quotient space R0/R�; see, e.g., [22]. The
following result shows how Theorem 3.1 can be adapted to this case.

Theorem 3.3 (parameterization of friends of R� with complete spectrum as-
signment). Let r = dimR� and r0 = dimR0. Let Lin = {λ1, . . . , λr} be sin-
conformably ordered with elements all different from the invariant zeros, and let
Lout = {μr+1, . . . , μr0} be sout-conformably ordered with elements all different from

the uncontrollable eigenvalues of the pair (A,B) with Lin ∩ Lout = ∅. Let K
def
=

diag{k1, . . . , kr} be defined as in Theorem 3.1 for L = Lin. Moreover, let K ′ def
=

diag{k′r+1, . . . , k
′
r0}, where k′i ∈ Cm for each i ∈ {r + 1, . . . , r + 2 sout}, and for

all odd i − r ∈ {1, . . . , 2 sout − 1}, we have k̄′i = k′i+1, whereas k′i ∈ R
m for i ∈

{r + 2 sout + 1, . . . , r0}. Let MK,K′ be an (n+m)× r0 complex matrix given by

MK,K′ =
[
NΣ(λ1) . . . NΣ(λr) SΣ(μr+1) . . . SΣ(μr0)

]
diag{K,K ′},(3.17)

where SΣ(μ) represents a basis matrix for ker [A − μ In B ], and let mK,K′,i be de-
fined as

mK,K′,i =

⎧⎪⎨
⎪⎩
Re{M i

K,K′} if i ≤ 2 sin is odd or if i− r ∈ {1, . . . , 2 sout} is odd,

Im{M i
K,K′} if i ≤ 2 sin is even or if i− r ∈ {1, . . . , 2 sout} is even,

M i
K,K′ if i ∈ {2 sin + 1, . . . , r} ∪ {r + 2 sout + 1, . . . , r0}.

Let XK,K′ = π{[mK,K′,1 . . . mK,K′,r0 ]} and YK,K′ = π{[mK,K′,1 . . . mK,K′,r0 ]}.
For almost every choice of K and K ′ we have rank π {[mK,K′,1 . . . mK,K′,r]} =

r and rankXK,K′ = r0. Moreover, the set of all friends of R� such that σ(A +
B F | R�) = Lin and σ(A+B F | R0/R�) = Lout is parameterized in K and K ′ as

FK,K′ = YK,K′ X†
K,K′ ,(3.18)

where K and K ′ are such that rankXK,K′ = r0 (and therefore, for such K and K ′,
the matrix XK,K′ represents a basis for R0 adapted to R�).

Proof. First, notice that when μ ∈ C is not an uncontrollable eigenvalue, the
dimension of the null-space of SΣ(μ) is equal to m (while if μ is uncontrollable, such
dimension is strictly greater than m). The argument in the proof of Theorem 3.1
shows that almost every choice of K and K ′ guarantees that the rank of XK,K′ is
r0; see also [2, Lemma 2.4]. Thus, (3.18) is a solution of FK,K′ XK,K′ = YK,K′ . Let

K and K ′ be such that rankXK,K′ = r0, and let MK,K′ =
[ v′

1 ... v′
r v′

r+1 ... v′
r0

w′
1 ... w′

r w′
r+1 ... w′

r0

]
,

where for each i ∈ {1, . . . , r}, (3.6)–(3.7) hold, while for each i ∈ {r + 1, . . . , r0}
there holds (A − μi In) v

′
i + Bw′

i = 0. Consider again the matrix U = 1
2

[ 1 i
1 −i

]
. For

each odd i ≤ 2 sin and if i − r ∈ {1, . . . , 2 sout} is odd, let [vi vi+1] = [v′i v′i+1]U
and [wi wi+1] = [w′

i w′
i+1]U . Then, we have FK,K′ [v1 . . . vr vr+1 . . . vr0 ] =

[w1 . . . wr |wr+1 . . . wr0 ], which implies
[
A+B FK,K′
C+DFK,K′

]
vi =

[ vi
0

]
λi for all i ∈

{1, . . . , r} and (A+B FK,K′) vi = μi vi for all i ∈ {r + 1, . . . , r0}. Thus
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A+B FK,K′

C +DFK,K′

] [
v1 . . . vr vr+1 . . . vr0

]

=

[
v1 . . . vr vr+1 . . . vr0

0 . . . 0 � . . . �

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

. . . 0

λr

μr+1

0
. . .

μr0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(where the diagonal structure of the matrix in the right-hand side assumes for sim-
plicity that all the λi and μi are real). We prove that the parameterization (3.18)—for
K and K ′ such that rankXK,K′ = r0—is exhaustive. Let F be a friend of R� such
that σ(A+B F | R�) = Lin and σ(A+B F | R0/R�) = Lout. Consider a basis matrix
R0 = [R Rc ] of R0 adapted to R�, i.e., such that R is a basis for R�. Since R0 is
(A+B F )-invariant, we can write[

A+B F

C +DF

] [
R Rc

]
=

[
R Rc

0 �

] [
Λin Γ

0 Λout

]
(3.19)

for a certain matrix Γ, where σ(Λin) = Lin and σ(Λout) = Lout. Let us consider a

change of coordinates T =
[ T11 T12

0 T22

]
partitioned conformably with R0 = [R Rc] in

which T11 is such that T−1
11 ΛinT11 = ΛJ

in, T22 is such that T−1
22 ΛoutT22 = ΛJ

out, where
ΛJ
in and ΛJ

out are in the real Jordan form with the same spectrum as Λin and Λout,
respectively, and T12 satisfies the Lyapunov equation

Λin T12 − T12Λ
J
out = −ΓT22,

which always admits a unique solution T12 since Lin and Lout are disjoint. It follows
that

T−1

[
Λin �

0 Λout

]
T =

[
ΛJ
in 0

0 ΛJ
out

]
.

In view of the special structure of T , the matrix X = [R Rc]T = [RT11 �] is still
a basis matrix of R0 adapted to R�. Defining Y = F [R Rc]T , we can therefore
rewrite (3.19) as [

A B

C D

] [
X1 X2

Y1 Y2

]
=

[
X1Λ

J
in X2 Λ

J
out

0 �

]
,(3.20)

where X = [X1 X2] and Y = [Y1 Y2] have been partitioned conformably with
R0. We denote by v1, . . . , vr, vr+1, . . . , vr0 the r0 columns of X and by w1, . . . , wr,
wr+1, . . . , wr0 the r0 columns of Y . As already seen in Theorem 3.1, for i ≤ r we

can redefine vectors v′i and w′
i such that

[
A B
C D

] [ v′
i

w′
i

]
=

[ λi v
′
i

0

]
, which implies that
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974 LORENZO NTOGRAMATZIDIS AND ROBERT SCHMID

[ v′
i

w′
i

] ∈ ker
[A−λi I B

C D

]
for each i ∈ {1, . . . , r}. In the same way, from (3.20) we can

define v′i and w′
i for i > r such that

[
A B

] [v′i
w′

i

]
= v′i μi ∀i ∈ {r + 1, . . . , r0}.

Thus,
[ v′

i

w′
i

] ∈ kerSΣ(μi). This means that K and K ′ exist such that X =

π{MK,K′} and Y = π{MK,K′}, as required. This also implies that if R0 ⊃ R�, for
all μ ∈ C there holds imπ{SΣ(μ)} ∩ R� = {0}.

Example 3.4. Consider the system in Example 3.1. Since the pair (A,B) is reach-
able, we can compute a friend F of R� by assigning a further eigenvalue of (A+B F )
which corresponds to the map induced by A + BF on the quotient space R0/R� =
X/R�. Assume that Lin = L = {−2,−4} and Lout = {−6}. We have already com-
puted NΣ(−2) = [5 4 0 | −10 0]� and NΣ(−4) = [7 8 0 | −28 0]�. A
basis matrix of ker[A− (−6) I3 B] is given, for example, by SΣ(−6) =[ 3 4 0 −18 0

0 0 −1 0 2

]�
. Thus, choosing for exampleK = diag{k1, k2} = diag{1, 1} andK ′ =

k′3 =
[
0
1

]
we get XK,K′ = diag

{[
5 7
4 8

]
,−1

}
and YK,K′ =

[−10 −28 0

0 0 2

]
. Then, with

FK,K′ = YK,K′ X†
K,K′ = YK,K′ X−1

K,K′ =
[ 8/3 −35/6 0

0 0 −2

]
, we find (A + B FK,K′)R� ⊆

R� ⊆ ker(C +DFK,K′); moreover, the eigenvalues of (A+B FK,K′) restricted to R�

are {−2,−4}, while the eigenvalue induced by (A+B FK,K′) on R0/R� is −6.

4. Computation of V� and the associated friends. We now address the
problem of the computation of the largest output-nulling subspace V� of the system
Σ and the computation of the friends that assign any desired eigenstructure.

Theorem 4.1 (parameterization of the friends of V�
). Let r = dimR�. Let

all the invariant zeros of the system be distinct. Let Z = {zr+1, zr+2, . . . , zr+t} be
the sz-conformably ordered set of invariant zeros of Σ. Let L = {λ1, . . . , λr} be s-

conformably ordered such that L ∩ Z = ∅. Let K
def
= diag{k1, . . . , kr} be defined as

in Theorem 3.1. Let H
def
= diag{hr+1, . . . , hr+t}, where hi ∈ Cdim(kerPΣ(zi)) for each

i ∈ {r + 1, . . . , r + 2 sz}, and for all odd i− r ∈ {1, . . . , 2 sz − 1}, we have h̄i = hi+1,
whereas hi ∈ Rdim(kerPΣ(zi)) for i ∈ {r + 2 sz + 1, . . . , r + t}. Let MK,H be a complex
matrix given by

MK,H =
[
NΣ(λ1) . . . NΣ(λr) NΣ(zr+1) NΣ(zr+2) . . . NΣ(zr+t)

]
diag{K,H}

and let for all i ∈ {1, . . . , r + t}

mK,H,i =

⎧⎪⎨
⎪⎩
Re{M i

K,H} if i ≤ 2 s is odd or if i− r ∈ {1, . . . , 2 sz} is odd,

Im{M i
K,H} if i ≤ 2 s is even or if i− r ∈ {1, . . . , 2 sz} is even,

M i
K,H if i ∈ {2 s+ 1, . . . , r} ∪ {r + 2 sz + 1, . . . , r + t}.

Finally, let

XK,H = π {[mK,H,1 . . . mK,r mK,H,r+1 . . . mK,H,r+t]},(4.1)

YK,H = π {[mK,H,1 . . . mK,H,r mK,H,r+1 . . . mK,H,r+t]}.(4.2)
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For almost every choice of the parameter matrices K = diag{k1, . . . , kr} and H =
diag{hr+1, . . . , hr+t} we have rankXK,H = r + t. Moreover, the set of all friends of
V� such that σ(A +B F | V�) = L ∪ Z is parameterized in K and H as

FK,H = YK,H X†
K,H ,(4.3)

where K,H are such that rankXK,H = r + t (and therefore, for such K and H, the
matrix XK,H represents a basis for V� adapted to R�).

Proof. By partitioning [NΣ(λ1)| . . . |NΣ(λr)|NΣ(zr+1)| . . . |NΣ(zr+t)] as
[ ΦΣ

ΨΣ

]
hav-

ing n and m rows, respectively, then rankΦΣ = r + t by virtue of [13, Proposition
5]. Thus, using the same argument employed in the proof of Theorem 3.1 with the
obvious modifications, we see that for almost every choice of the parameter matri-
ces K and H there holds rankπ{MK,H} = r + t. For such matrices H and K we

can partition MK,H as MK,H =
[ v′

1 ... v′
r v′

r+1 ... v′
r+t

w′
1 ... w′

r w′
r+1 ... w′

r+t

]
, in which (3.6)–(3.7) hold for

i ∈ {1, . . . , r}, while for i ∈ {r + 1, . . . , r + t} there hold

(A− zi In) v
′
i +Bw′

i = 0,(4.4)

C v′i +Dw′
i = 0.(4.5)

Thus, real-valued vectors vi and wi can be defined in the way indicated in the proof
of Theorem 3.1 using U = 1

2

[ 1 i
1 −i

]
whenever λi, λi+1 or zi, zi+1 are complex conju-

gate pairs, so as to obtain XK,H = [v1 . . . vr+t] and YK,H = [w1 . . . wr+t]. Thus,

defining Λ
def
= diag{Λ1,2, . . . ,Λ2 s−1,2 s,Λ2 s+1, . . . ,Λr,Λr+1,r+2, . . . ,Λr+2 sz−1,r+2 sz ,

Λr+2 sz+1, . . . ,Λr+t}, we get
[ A+B FK,H

C+DFK,H

]
XK,H =

[XK,H

0

]
Λ, which proves the result.

In order to prove that the parameterization is exhaustive, consider a basis matrix V
of V� adapted to R�, so that it can be written as V = [R Vc], where R is a basis
for R� for a certain Vc. Thus, the set of friends of V� such that σ(A + B F |R�) = L
and σ(A + B F |V�) = L ∪ Z is parameterized by F [R Vc] = −[Ω1 Ω2], where

[Ω1 Ω2] satisfies
[
A
C

]
[R Vc] =

[R Vc

0 0

]
Λ +

[
B
D

]
[Ω1 Ω2] with a certain Λ such

that σ(Λ) = L ∪ Z, and we can find an invertible matrix T such that T−1ΛT =
diag{ΛL,ΛZ}, where both ΛL and ΛZ are in the real Jordan canonical form and
σ(A +B F |R�) = σ(ΛL) = L and σ(A +B F |V�/R�) = σ(ΛZ) = Z. The rest of the
proof carries over with obvious modifications from that of Theorem 3.1.

Example 4.1. Consider again the system in Example 3.1. We want to com-
pute a basis for V� and a friend of V� such that σ(A + B F | R�) = {−2,−4}.
Since this system has an invariant zero at the origin, this task can be accomplished
with a friend such that σ(A + B F | V�) = {−2,−4, 0}. We have already com-
puted NΣ(−2) = [5 4 0 | −10 0]�, NΣ(−4) = [7 8 0 | −28 0]� and

NΣ(0) =
[
1 0 0 0 0
0 0 1 0 0

]�
. Let

MK,H =

⎡
⎢⎢⎢⎢⎢⎢⎣

5 7 1 0

4 8 0 0

0 0 0 1

−10 −28 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
k1 0 0
0 k2 0
0 0 h31

0 0 h32

⎤
⎥⎥⎦ .

Choosing, for example, k1 = k2 = 1, h31 = 0 and h32 = 1, we find XK,H =
[ 5 7 0

4 8 0

0 0 1

]
,

YK,H =
[−10 −28 0

0 0 0

]
, which yield FK,H = YK,H X†

K.H =
[ 8/3 −35/6 0

0 0 0

]
. Clearly, (A +
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976 LORENZO NTOGRAMATZIDIS AND ROBERT SCHMID

B FK,H)V� ⊆ V� ⊆ ker(C + DFK,H) and σ(A + B FK,H | V�) = σ(A + B FK,H) =
{0,−2,−4} as required.

Remark 4.1. All the considerations of this section on the subspace V� can be
straightforwardly adapted to the case of the largest output-nulling stabilizability sub-
space V�

g . The only modification in the statement of Theorem 4.1 is that Z is the set
of minimum-phase invariant zeros of the system.

5. Computation of friends with inner/output spectral assignment. We
now show that it is always possible to parameterize all the friends that assign the inner
and outer eigenstructure of V� (and therefore also of R�) by means of the formula

FK = YK X−1
K ,

i.e., where this time XK is square and invertible (for almost all choices of the pa-
rameter matrix K). This step is essential in the robust computation of friends. For
simplicity of exposition, we assume that all the inner/outer eigenvalues are assigned
and that all the invariant zeros and uncontrollable modes of the pair (A,B) are real
and distinct. The complex conjugate case follows straightforwardly by applying the
result in Theorem 3.3.

Theorem 5.1 (parameterization of friends of V� with complete spectrum assign-
ment). Let r = dimR�, ν = dimV�, and q = dim(V�+R0). Let Lin = {λ1, . . . , λr} be
real. Let Z = {zr+1, . . . , zν} be the set of invariant zeros. Let Lout = {μν+1, . . . , μq}
also be real. Finally, let G = Γout = {ζq+1, . . . , ζn}. We assume Lin ∩ Z = ∅,
Lin ∩ G = ∅, Lout ∩ Z = ∅, and Lout ∩ G = ∅. Define

MK =
[
NΣ(λ1) . . . NΣ(λr) NΣ(zr+1) . . . NΣ(zν) SΣ(μν+1) . . . SΣ(μq) SΣ(ζq+1) . . . SΣ(ζn)

]
K,

where K = diag{Kλ,Kz,Kμ,Kζ} and
• Kλ = diag{kλ1 , . . . , kλr } with kλi ∈ Rd, and where d = dim (kerPΣ(λ)) when λ
is not an invariant zero;

• Kz = diag{kzr+1, . . . , k
z
ν} with kzi ∈ Rdz , and dz = dim (kerPΣ(z)) when

z ∈ Z;
• Kμ = diag{kμν+1, . . . , k

μ
q } with kμi ∈ Rm, since m = dim (kerSΣ(μ)) when μ

is not in G;
• Kζ = diag{kζq+1, . . . , k

ζ
n} with kζi ∈ Rmζ , and where mζ = dim (kerSΣ(ζ))

when ζ ∈ Γout.
Finally, define

XK = π{MK} ∈ R
n×n and YK = π{MK} ∈ R

m×n.(5.1)

For almost every choice of K, the matrix XK is invertible, and the set of all friends of
V� such that σ(A+BF | R�) = Lin, σ(A+B F | V�/R�) = Z, and σ(A+BF | (R0+
V�)/V�) = Lout is parameterized in K as

FK = YK X−1
K ,(5.2)

where K is such that XK is invertible. Moreover, for such K the first r columns of
XK are a basis for R�, the first ν = r + t columns of XK are a basis for V�, and the
first q are a basis for V� +R0.

Proof. Let K be defined as above, and let the rank of XK = π{Mk} be equal to
n, so that XK is invertible. Let us partition MK as

MK =

[
v1 . . . vr vr+1 . . . vν vν+1 . . . vq vq+1 . . . vn

w1 . . . wr wr+1 . . . wν wν+1 . . . wq wq+1 . . . wn

]
.
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By construction, we have

(A− λi In) vi +Bwi = 0, (A− zj In) vj +Bwj = 0,

C vi +Dwi = 0, C vj +Dwj = 0

for i ∈ {1, . . . , r} and j ∈ {r + 1, . . . , ν}, respectively, and
(A− μi In) vi +Bwi = 0, (A− ζj In) vj +Bwj = 0

for all i ∈ {ν + 1, . . . , q} and j ∈ {q + 1, . . . , n}, respectively. It follows that if K
is such that XK = π{MK} is nonsingular, and we construct FK as FK = YK X−1

K ,
where YK = π{MK}, we find[

A+B FK

C +DFK

] [
v1 . . . vr vr+1 . . . vν vν+1 . . . vq vq+1 . . . vn

]

=

[
v1 . . . vr vr+1 . . . vν vν+1 . . . vq vq+1 . . . vn

0 . . . 0 0 . . . 0 � . . . � � . . . �

]
L,

where L = diag{λ1, . . . , λr, zr+1, . . . , zν , μν+1, . . . , μq, ζq+1, . . . , ζn}. Now we show
that the parameterization is exhaustive. Let F be a friend of V� such that σ(A +
B F |V�) = Lin ∪ Z and σ(A + B F |X/V�) = Lout ∪ G. Consider an n × n matrix
[R Vc V0 Γ], which is such that imR = R�, im[R Vc] = V�, im[R Vc V0] =
V� +R0. Since F is also a friend of R�, and since V� + R0 is (A + B F )-invariant,
we can write

[
A+B F

C +DF

] [
R Vc V0 Γ

]
=

[
R Vc V0 Γ

0 0 � �

]⎡⎢⎢⎢⎢⎣
Lin L1 L2 L3

0 Z L4 L5

0 0 Lout L6

0 0 0 G

⎤
⎥⎥⎥⎥⎦ ,

where σ(Lin) = Lin, σ(Lout) = Lout, σ(Z) = Z, and σ(G) = G. Let us now construct
the change of coordinate matrix

T =

⎡
⎢⎢⎢⎢⎣
T11 T12 T13 T14

0 T22 T23 T24

0 0 T33 T34

0 0 0 T44

⎤
⎥⎥⎥⎥⎦ ,

where T11, T22, T33, and T44 bring Lin, Z, Lout, and G in diagonal form LΔ
in, Z

Δ, LΔ
out,

and GΔ, respectively, i.e., T−1
11 Lin T11 = LΔ

in, T
−1
22 Z T22 = ZΔ, T−1

33 Lout T33 = LΔ
out,

and T−1
44 GT44 = LΔ

out. This is always possible because we are considering the case
of real and distinct eigenvalues and invariant zeros. We then compute T12, T23, T13,
T34, T24, and T14 by solving in the right order the following Lyapunov equations:

Lin T12 − T12Z
Δ = −L1 T22,

Z T23 − T23L
Δ
out = −L4 T33,

Lout T34 − T34 G
Δ = −L6 T44,

Lin T13 − T13L
Δ
out = −L1 T23 − L2 T33,

Z T24 − T24 G
Δ = −L4 T34 − L5 T44,

Lin T14 − T14 G
Δ = −L1 T24 − L2 T34 − L3 T44.
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Since Lin ∩ Z = ∅, Lin ∩ G = ∅, Lout ∩ Z = ∅, and Lout ∩ G = ∅, all these Lyapunov
equations admit a unique solution. The matrix T thus constructed is such that

T−1

⎡
⎢⎢⎢⎢⎣
Lin L1 L2 L3

0 Z L4 L5

0 0 Lout L6

0 0 0 G

⎤
⎥⎥⎥⎥⎦ T =

⎡
⎢⎢⎢⎢⎣
LΔ
in 0 0 0

0 ZΔ 0 0

0 0 LΔ
out 0

0 0 0 GΔ

⎤
⎥⎥⎥⎥⎦ .

Let us now define X
def
= [R Vc V0 Γ]T = [RT11 � � �] and Y

def
= F X . We

find [
A+B F

C +DF

]
X = X · diag{LΔ

in, Z
Δ, LΔ

out, G
Δ},

so that[
A B

C D

][
X1 X2 X3 X4

Y1 Y2 Y3 Y4

]
=

[
X1 L

Δ
in X2 Z

Δ X3 L
Δ
out X4 G

Δ

0 0 � �

]
,

where X = [X1 X2 X3 X4] and Y = [Y1 Y2 Y3 Y4] are partitioned con-
formably with [R Vc V0 Γ]. Let v1, . . . , vr denote the columns of X1, vr+1, . . . , vν
denote the columns of X2, vν+1, . . . , vq denote the columns of X3, and vq+1, . . . , vn
denote the columns of X4. Define the vectors wi in a similar way as the columns of
Y . Thus,

[
A B

C D

][
vi

wi

]
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
vi

0

]
λi, i ∈ {1, . . . , r},

[
vi

0

]
zi, i ∈ {r + 1, . . . , ν},

and

[
A B

] [vi
wi

]
=

{
vi μi, i ∈ {ν + 1, . . . , q},
vi ζi, i ∈ {q + 1, . . . , n}.

As such,
[ vi
wi

] ∈ kerPΣ(λi) for i ∈ {1, . . . , r}, [ vi
wi

] ∈ kerPΣ(zi) for i ∈ {r+1, . . . , ν},[ vi
wi

] ∈ kerSΣ(μi) for i ∈ {ν + 1, . . . , q}, and [ vi
wi

] ∈ kerSΣ(ζi) for i ∈ {q + 1, . . . , n}.
It follows that a matrix K = diag{Kλ,Kz,Kμ,Kζ} exists for which X and Y are
given by X = π{MK} and Y = π{MK}.

We now show that for almost any choice of K, the matrix XK is invertible.
Observe that

rank π{[NΣ(λ1) . . . NΣ(λr)|NΣ(zr+1) . . . NΣ(zν)|SΣ(μν+1) . . . SΣ(μq)|SΣ(ζq+1) . . . SΣ(ζn)]}

is equal to n. Indeed, if such rank was smaller than n, no parameter K would
exist for which a feedback matrix FK constructed as in (5.2) delivers the desired
closed-loop eigenstructure. On the other hand, we showed that this parameterization
is exhaustive, leading to a contradiction. Now, partitioning MK as

[ ΦΣ

ΨΣ

]
and by

following exactly the same argument of Theorem 3.1, we obtain that the matrix XK

is generically of full rank and is therefore generically invertible.

D
ow

nl
oa

de
d 

06
/2

4/
14

 to
 1

34
.7

.2
48

.1
30

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST EIGENSTRUCTURE ASSIGNMENT 979

6. The computation of friends for a robust eigenstructure with mini-
mum gain. In this section we consider the problem of obtaining friends of R�, V�,
and V�

g that also yield a robust closed-loop eigenstructure. For any square matrix M ,
it was shown in [26] that the sensitivity of the eigenvalue λi to perturbations in M
can be measured by the condition number

ci =
‖yi‖‖vi‖
|y�i vi|

,(6.1)

where vi and yi are the right and left eigenvectors of λi, respectively. We use

c∞
def
= maxi ci to denote the worst-case eigenvalue sensitivity. Furthermore, [11] linked

the sensitivity of the eigenvalues to measures of the conditioning of the matrix V
whose columns are comprised of the eigenvectors of M , in terms of the Euclidean and
Frobenius norms,

c∞ ≤ κ2(V ) ≤ κfro(V ),(6.2)

where κ2(V )
def
= ‖V ‖2 · ‖V −1‖2 and κfro(V )

def
= ‖V ‖fro · ‖V −1‖fro are the condition

numbers of V with respect to the 2-norm and Frobenius norm, respectively.
For pairs (A,B), the problem of finding a gain matrix F that assigns a certain

set of desired eigenvalues L to the matrix A+BF and also minimizes these condition
numbers is known as the robust pole placement problem and has an extensive litera-
ture. Notable contributions include [11], [6], [24], [16], and the recent paper [21]. An
important related problem is the minimum gain pole placement problem, which seeks
a gain matrix F that assigns a certain set of desired eigenvalues while also minimizing
the norm of the gain matrix F ; notable methods include [9], [23], and the recent [3].

In this paper we extend these classical pole placement problems to quadruples
(A,B,C,D) and introduce the robust friend computation problem, which involves
obtaining a friend of R�, V�, and V�

g that assigns a certain desired set of inner and
outer closed-loop eigenvalues and also a robust closed-loop eigenstructure. We also
introduce the minimum gain friend computation problem, which seeks a friend of R�,
V�, and V�

g that assigns a certain desired set of inner and outer closed-loop eigenvalues,
while minimizing the matrix gain of the friend. To date there have been no results
for either of these problems.

For the robust friend problem, the upper bound on the eigenvalue sensitivity in
(6.2) motivates us to consider the problem of minimizing the objective function

f1(V ) = κfro(V ),(6.3)

which poses an unconstrained nonconvex optimization problem. Note that it is pos-
sible to reduce κfro(V ) by suitably scaling the lengths of the column vectors of V .
However, such scaling does not improve the eigenvalue conditioning in (6.1). Hence,
we assume that the column vectors of V have been normalized. As pointed out in [6],
for efficient computation we can study an alternative objective function

f2(X) = ‖X‖2
fro

+ ‖X−1‖2
fro

,(6.4)

where X is a real matrix whose columns are obtained from those of V as follows:
for the columns of V corresponding to real eigenvalues in L, the columns of X are
the same as those of V ; for the columns of V corresponding to pairs of complex
conjugate eigenvalues in L, the corresponding real-valued columns of X are obtained
using U = 1

2

[ 1 i
1 −i

]
, as indicated in the proof of Theorem 3.1.
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For the minimum gain friend problem, we consider the problem of minimizing the
objective function

g(F ) = ‖F‖2
fro

,(6.5)

which again presents an unconstrained nonconvex optimization problem. To simulta-
neously minimize both the eigenvalue conditioning and the matrix gain, we introduce
the weighted objective function

f3(X,F ) = αf2(X) + (1− α)g(F ),(6.6)

where α is a weighting factor with 0 ≤ α ≤ 1. The parameterization of the friends
given in Theorem 5.1 can be employed for the minimization of f3. We may express
the matrix X and the friend F in terms of a common input parameter matrix K, as in
(5.1) and (5.2). Using these in (6.6), for any desired value of α, we may minimize f3
via a gradient search employing the first and second order derivatives of f2(XK) and
g(FK); expressions for these were given in [18]. The result obtained will be a local
minimum and hence contingent upon the initial condition (input parameter matrix
K) used.

7. Numerical studies. In this section we examine the performance of the op-
timal pole placement methods introduced in section 6 and compare them against
two alternative methods for the computation of the friends from the linear systems
literature.

Example 7.1. Consider the following quadruple:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 6 −4 0 0 0 0 0

−2 0 0 0 0 7 0 0

0 −9 −9 −10 8 0 0 6

2 0 0 0 0 −2 −4 0

0 0 0 0 0 0 −3 6

9 0 1 0 −1 0 0 0

0 0 −8 0 0 0 −3 0

−3 0 0 −10 −3 0 8 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

9 2 5

0 0 0

0 −5 0

0 0 0

0 0 −6

0 0 0

0 0 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C =
[
7 0 4 0 0 0 0 0

]
, D =

[
0 0 0

]
.

In this example, we have V� = R�, dimR� = 6, and the pair (A,B) is reachable, so
that R0 = X . This system has no invariant zeros. We want to find a friend F of
R� such that Lin = {−1,−2,−3,−4,−5,−6} and Lout = {−7,−8}. Minimizing f2 in
(6.4) via a gradient search, we obtain the feedback matrix

F0 =

⎡
⎢⎣
−0.1495 −0.8175 −0.3581 2.0241 −0.4644 −0.7285 −0.5987 −1.8265

−1.0727 −3.0008 1.0185 −0.3810 0.8063 −0.3769 −0.7796 0.3626

−0.1783 −0.3409 0.8712 −4.0825 0.9965 0.0659 1.3905 3.4818

⎤
⎥⎦.

Using the routine effesta.m in the MATLAB toolbox GA [4], we find that a friend
that accomplishes this task is given by

F1 =

⎡
⎢⎣
−0.0648 −3.3046 −0.1467 0.0853 0.4753 −0.7881 −0.0953 −1.0966

−1.1223 −1.5083 0.9430 0.8138 0.2027 −0.3425 −1.0706 −0.1055

−0.3199 3.9952 0.7620 −0.5444 −0.8419 0.1628 0.5686 2.0574

⎤
⎥⎦.D
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In the Linear Systems Toolkit [7], the routine atea.m directly adopts the place.m pole
placement algorithm in MATLAB for the subspace corresponding to R� and yields

F2 =

⎡
⎢⎣

3.3163 −1.3615 −1.1872 −0.4456 0.8412 −0.7835 −0.0651 −0.9233

−2.9733 −2.7000 1.6130 1.0320 −0.1698 −0.3660 −0.9051 −0.3408

−5.3155 0.4780 2.8057 −0.1256 −2.2519 0.0498 1.4428 1.0926

⎤
⎥⎦.

To compare these friends of V�, we consider several performance measures. Com-
puting the conditioning measure c∞ in (6.1) arising from each friend, we observe that
c∞(F0) = 61.7, c∞(F1) = 624, while c∞(F2) = 7144, indicating that the method
introduced in this paper gives reduced eigenvalue sensitivity by one and two orders of
magnitude, respectively.

We also compare the norms of these gain matrices. We observe the values ‖F0‖2 =
6.42, ‖F1‖2 = 5.20, and ‖F2‖2 = 8.18, indicating that the method described in this
paper uses a somewhat higher gain than that of effesta.m but less than atea.m for this
example. By considering the weighted robustness and gain minimization problem in
(6.6) with, for example, α = 0.001, we are able to obtain a matrix

F3 =

⎡
⎢⎣
−0.0914 −1.8620 −0.8391 0.8569 0.0904 −0.7584 −0.2856 −1.4403

−1.1672 −2.3583 1.3484 0.3826 0.4125 −0.3600 −0.9600 0.0853

−0.5807 1.5595 1.9179 −1.7291 −0.2776 0.1125 0.8822 2.5786

⎤
⎥⎦,

yielding eigenvalue sensitivity c∞(F3) = 67.63 and gain ‖F3‖2 = 4.94 and thus offering
improvement over F1 and F2 on both criteria.

Another performance consideration is the accuracy of the pole placement achieved
by each method. We use the measure

Δ(F )
def
= max{|eigi(A+BF )− λi| : λi ∈ L},(7.1)

which represents the largest absolute value difference between each eigenvalue of A+
BF and the corresponding λi in L. In the present case we obtain Δ(F0) = 3.20×10−14,
Δ(F1) = 1.16× 10−12, Δ(F2) = 2.34× 10−11, and Δ(F3) = 3.74× 10−14. This result
indicates that the method introduced in this paper can achieve more accurate pole
placement, again by some orders of magnitude.

In order to probe more deeply into the performance delivered by the methods pre-
sented here with respect to the other available techniques, we constructed four Monte
Carlo–like experiments. In our first two experiments, we generated 10,000 random
triples (A,B,C). In Experiment 1, we chose n = 5 with m = 4 control inputs and
p = 3 outputs, and in Experiment 2 we chose n = 8, m = 3, and p = 1. Every entry
in each matrix of the triple was generated using the MATLAB command randn.m. In
these two experiments, the feedthrough matrix was taken equal to zero.9 Since gener-
ically when D = 0 the dimension of R� is equal to n − p, in Experiment 1 we chose
{−1,−2} to be the two eigenvalues of the closed-loop system restricted to R�, and in
Experiment 2 we chose {−1,−2,−3,−4,−5,−6,−7}. Moreover, since the system thus
generated will be generically reachable, R0/R� will have dimension 3 in Experiment
1, which implies that we can assign three eigenvalues of σ(A+B F |R0/R�); we chose

9If the feedthrough D is generated in the same random fashion as the other three matrices
A,B, C, the resulting R� generically coincides with the state-space, and the use of effesta.m and
atea.m reduces to the mere use of the MATLAB routine place.m.
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the values {−3,−4,−5}. In Experiment 2, R0/R� has dimension 1, which implies
that we can assign one eigenvalue of σ(A +B F |R0/R�); we chose the value {−8}.

We denote the feedback matrix obtained using the methods described in this paper
by F0, and we use the symbol V0 to denote the matrix of closed-loop eigenvectors. The
gain matrix and eigenvector matrix obtained using effesta.m and atea.m are denoted,
respectively, with F1, V1 and F2, V2. The results of these two experiments are shown
in the first two columns of Table 1.

A consequence of generating our system matrices with the command randn.m is
that, generically, all the entries in the matrices will be nonzero. This means that
in such systems, the state, input, and output variables are directly dependent upon
one another. This is unlikely to be the case in most real-world systems. Hence, we
found it significant to also test our method in the case where the system matrices
are sparse. Thus in Experiment 3 we generated 10,000 sample triples (A,B,C) with
n = 8, m = 3, and p = 1. The entries of each matrix are integers between −20 and 20,
but such that 75% of the entries were set to zero. The eigenvalues of σ(A+B F | R�)
and σ(A+B F |R0/R�) were taken to be random values generated with the MATLAB
command randn.m. The results of this experiment are shown in the third column of
Table 1.

To consider both the robustness and the norm of the gain matrix, we consid-
ered the weighted robustness and gain minimization problem (6.6) using the value
α = 0.0001. Our Experiment 4 used the same 10,000 example systems chosen in
Experiment 2, and the results are given in Table 2.

Finally, to gain a measure of the magnitude of the improvement offered by our
method over the two alternatives, we introduced Experiments 5 and 6, in which we
used the same 10,000 example systems chosen in Experiments 2 and 3, respectively. In
this case we computed the percentage of systems in which our method provided better
performance with respect to effesta.m and atea.m by at least one order of magnitude.
The results are given in Table 3.

Table 1

Experiment 1 Experiment 2 Experiment 3

κfro(V0) < κfro(V1) 100% 100% 100%
κfro(V0) < κfro(V2) 91.95% 99.92% 99.91%

c∞(F0) < c∞(F1) 99.90% 99.83% 99.91%
c∞(F0) < c∞(F2) 90.19% 99.66% 99.69%

Δ(F0) < Δ(F1) 76.87% 87.39% 87.17%
Δ(F0) < Δ(F2) 76.87% 87.39% 87.17%

Table 2

Experiment 4

κfro(V0) < κfro(V1) 88.4%
κfro(V0) < κfro(V2) 95.6%

c∞(F0) < c∞(F1) 90.2%
c∞(F0) < c∞(F2) 90.4%

Δ(F0) < Δ(F1) 70.2%
Δ(F0) < Δ(F2) 70.2%

‖F0‖fro < ‖F1‖fro 74.9%
‖F0‖fro < ‖F2‖fro 78.0%
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Table 3

Experiment 5 Experiment 6

10κfro(V0) < κfro(V1) 3.57% 70.38%
10κfro(V0) < κfro(V2) 21.86% 97.51%

10 c∞(F0) < c∞(F1) 7.09% 72.68%
10 c∞(F0) < c∞(F2) 24.47% 97.58%

10Δ(F0) < Δ(F1) 16.93% 58.74%
10Δ(F0) < Δ(F2) 16.93% 58.74%

In all the six experiments, our method was able to offer, in the vast majority
of cases, superior robust conditioning with reduced gain and greater accuracy than
the other two methods surveyed. This superior performance can be explained as
follows. There are many friends FK in (5.2) that deliver eigenvectors lying within the
appropriate subspaces. Implementing a gradient search to minimize f3 in (6.6) with
a suitable choice of α yields a friend with desirable robustness qualities, or minimum
gain, or any desired combination of these two. By contrast, the methods of [4] and
[7] do not attempt to make a robust selection or to minimize the gain of the friend.

Comparison of Experiments 1 and 2 indicates that this improvement was greater
for the class of systems with dimensions n = 8, m = 3, and p = 1, rather than n = 5,
m = 4, and p = 1. We note that both effesta.m and atea.m utilize the MATLAB
place.m routine, which does attempt a robust choice of eigenvectors, using the heuris-
tic methods of [11]. However, extensive testing in [21] showed that pole placement
methods employing null-space techniques similar in spirit to the one given here can
offer substantially improved robust conditioning, relative to the place.m routine and
several other methods surveyed. The improvement was greater for systems in which
m was small in relation to n, and this difference in the extent of the performance
improvement has again been observed here in Experiments 1 and 2.

The results of Experiments 2 and 3 are almost identical, indicating that the use
of sparse matrices did not lead to any significant change in the proportion of systems
for which our methods were able to provide superior robustness performance. The
results of Experiment 4 indicated that the weighted optimization problem of (6.6) with
a suitably chosen value of α can simultaneously deliver improvements in robustness
and gain over the effesta.m and atea.m methods. Again, this does not come as a
surprise since the place.m routine employed by both effesta.m and atea.m has not
been designed to minimize the matrix gain.

The results of Experiments 5 and 6 offer two interesting insights. These experi-
ments attempt to gauge the magnitude of the improvement of our method over the
alternatives, and we noted that large improvements were more frequently observed in
relation to atea.m than effesta.m, suggesting that effesta.m is able to offer superior
robustness performance than atea.m. The second notable difference observed was be-
tween systems with randomly generated (and hence nonsparse) entries in Experiment
5 and those with sparse entries in Experiment 6. The frequency of large improvements
by our method over both effesta.m and atea.m was dramatically more prevalent in
the case of systems with sparse matrices.

The improved accuracy of our method observed in all the experiments provides
further numerical evidence for the observation noted in [21] that eigenstructure
assignment methods employing null-space techniques in general provide superior ac-
curacy in their pole placement than methods employing coordinate transformations
or the solutions to Sylvester equations. Interestingly, Experiments 5 and 6 showed
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that the magnitude of improvement in accuracy was much greater for sparse matri-
ces than for nonsparse, suggesting that the effesta.m and atea.m routines experience
computational difficulties with sparse matrices.

Concluding remarks. In this paper, we introduced a new parameterization of
the friend matrices for the fundamental output-nulling subspaces R�, V�, and V�

g used
in several decoupling, noninteracting, and tracking control problems. We exploited
this result to obtain a procedure that delivers friends which robustly assign the free
internal and external eigenstructure of the closed loop with respect to such subspaces.
All the results presented in this paper can be dualized to input-containing subspaces,
unobservability input-containing subspaces, and detectability input-containing sub-
spaces.

We compared the method introduced in this paper against the two publicly avail-
able MATLAB toolboxes. In these examples our method for the computation of such
subspaces showed dramatic improvement in reducing the eigenvalue sensitivity, while
also using less matrix gain and achieving greater accuracy.

An important direction for future research is the application of these results to
the design of linear state feedback control laws that yield a monotonic step response
for an LTI MIMO system, as studied in [19] and [20], based on the computation of
the Rosenbrock matrix.

Appendix A: Construction of friends. In this section we analyze how the
friends of an output-nulling subspace can be computed so as to assign the free closed-
loop eigenvalues. We begin by noticing that (2.3) is equivalent to the existence of two
matrices Ξ and Ω such that [

A

C

]
V =

[
V

0

]
Ξ +

[
B
D

]
Ω,(7.2)

where V is a basis matrix of V . The set of solutions of (7.2) is parameterized in K1 as[
Ξ

Ω

]
=

[
V B

0 D

]† [
A

C

]
V +

[
H1

H2

]
K1,(7.3)

where the columns of
[H1

H2

]
are a basis for the kernel of

[
V B
0 D

]
. On the other hand,

(2.4) is equivalent to the existence of two matrices F and Λ such that[
A+B F

C +DF

]
V =

[
V

0

]
Λ,(7.4)

and the eigenvalues of Λ are the eigenvalues of A+B F restricted to V .
It is easy to see that the set of all friends F of V are the solutions of the linear

equation Ω = −F V , where Ω is such that for a certain Ξ, (7.2) holds. Indeed, let
(Ξ,Ω) be such that (7.2) holds. Then, by selecting F so that Ω = −F V holds, we get
from (7.2) that

[
A
C

]
V +

[
B
D

]
F V =

[
V
0

]
Ξ, which says that (7.4) holds with Λ = Ξ.

Now, consider F and Λ such that (7.4) holds. Then, clearly (7.2) holds with Ξ = Λ
and Ω = −F V .

The set of solutions of the linear equation Ω = −F V can be written as

F = −Ω (V �V )−1 V � +K2H2,(7.5)

D
ow

nl
oa

de
d 

06
/2

4/
14

 to
 1

34
.7

.2
48

.1
30

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST EIGENSTRUCTURE ASSIGNMENT 985

where kerH2 = V and K2 is arbitrary. Thus we have identified two degrees of freedom
in the construction of F , i.e., K1 and K2. In particular, K1 affects only the inner
eigenvalues of V , whereas K2 affects only the outer eigenvalues of V . In other words,
if we consider the change of coordinates T = [V Vc ], where Vc is such that T is
nonsingular, and let

T−1(A+B F )T =

[
L1(K1,K2) L2(K1,K2)

0 L3(K1,K2)

]
,

then L1(K1,K2) does not depend on K2, and L3(K1,K2) does not depend on K1 (see
also [15, p. 348]).
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