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Abstract

The paper studies recoverability of missing values for sequences in a pathwise setting

without probabilistic assumptions. This setting is oriented on a situation where the un-

derlying sequence is considered as a sole sequence rather than a member of an ensemble

with known statistical properties. Sufficient conditions of recoverability are obtained; it

is shown that sequences are recoverable if there is a certain degree of degeneracy of the

Z-transforms. We found that, in some cases, this degree can be measured as the number of

the derivatives of Z-transform vanishing at a point. For processes with non-degenerate Z-

transform, an optimal recovering based on the projection on a set of recoverable sequences

is suggested. Some robustness of the solution with respect to noise contamination and

truncation is established.

Key words: data recovery, discrete time, sampling theorem, band-limited interpola-

tion.

1 Introduction

The paper studies optimal recovering of missing values for sequences, or discrete time deter-

ministic processes. This important problem was studied intensively. The classical results for

stationary stochastic processes with the spectral density ϕ is that a single missing value is

recoverable with zero error if and only if∫ π

−π
ϕ(ω)−1dω = ∞. (1)

(Kolmogorov [12], Theorem 24). Stochastic stationary Gaussian processes without this prop-

erty are called minimal [12]. In particular, a process is recoverable if it is “band-limited” mean-

ing that the spectral density is vanishing on an arc of the unit circle T = {z ∈ C : |z| = 1}.
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This illustrates the relationship of recoverability with the notion of bandlimitiness or its re-

laxed versions such as (1). In particular, criterion (1) was extended on stable processes [14]

and vector Gaussian processes [15].

In theory, a process can be converted into a band-limited and recoverable process with a

low-pass filter. However, a ideal low-pass filter cannot be applied if there are missing values.

This leads to approximation and optimal estimation of missing values. For the forecasting

and other applications, it is common to use band-limited approximations of non-bandlimited

underlying processes. There are many works devoted to smoothing and sampling an based on

frequency properties; see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17].

The present paper also consider band-limited approximations. We consider approximation

of an observed sequence in ℓr-norms rather than matching the values at selected points. The

solution is not error-free; the error can be significant if the underlying process is not band-

limited. This is different from a setting in [2, 3, 4, 11, 13], where error-free recovering was

considered. Our setting is closer to the setting from [18, 20]. In [18], optimization was con-

sidered as minimization of the total energy for an approximating bandlimited process within a

given distance from the original process smoothed by an ideal low-pass filter. In [20], extrap-

olation of a band-limited process matching a finite number of points process was considered

using special Slepian’s type basis in the frequency domain.

The present paper considers optimal recovering of missing values of sequences (discrete

time processes) based on intrinsic properties of sequences, in the pathwise setting, without

using probabilistic assumptions on the ensemble. This setting targets a scenario where a sole

underlying sequence is deemed to be unique and such that one cannot rely on statistics collected

from observations of other similar samples. To address this, we use a pathwise optimality

criterion that does not involve an expectation on a probability space. For this setting, we

obtained explicit optimal estimates for missing values of a general type processes (Theorems 1

and 2). We identified some classes of processes with degenerate Z-transforms allowing error-free

recoverability (Corollary 1 and 3). For a special case of a single missing values, this gives a

condition of error-free recoverability of sequences reminding classical criterion (1) for stochastic

processes but based on intrinsic properties of sequences, in the pathwise setting (Corollary 3).

In addition, we established numerical stability and robustness of the method with respect to

the input errors and data truncation (Section 5).

2 Some definitions and background

Let Z be the set of all integers. For a set G ⊂ Z and r ∈ [1,∞], we denote by ℓr(G) a Banach

space of complex valued sequences {x(t)}t∈G such that ∥x∥ℓr(G)
∆
=

(∑
t∈G |x(t)|r

)1/r
< +∞ for

r ∈ [1,+∞), and ∥x∥r(G)
∆
= supt∈G |x(t)| < +∞ for r = ∞.
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For x ∈ ℓ2(Z), we denote by X = Zx the Z-transform

X(z) =

∞∑
t=−∞

x(t)z−t,

defined for z ∈ C such that the series converge. For x ∈ ℓ2(Z), the function X
(
eiω

)
|ω∈(−π,π]

is defined as an element of L2(−π, π). For x ∈ ℓ1(Z), the function X
(
eiω

)
is defined for all

ω ∈ (−π, π] and is continuous in ω.

Let m ∈ Z be given, m ≥ 0. For s ∈ Z, let Ms = {s, s+ 1, s+ 2, ..., s+m}.
We consider data recovery problem for input processes x ∈ ℓr such that the trace

{x(t)}t∈Z\Ms
represents the available observations; the values {x(t)}t∈Ms are missing.

Definition 1. Let Y ⊂ ℓr be a class of sequences. We say that this class is recoverable if, for

any s ∈ Z, there exists a mapping F : ℓr(Z \Ms) → Rm+1 such that x|Ms = F
(
x|Z\Ms

)
for all

x ∈ Y.

For a sequence that does not belong to a recoverable class, it is natural to accept, as

an approximate solution, the corresponding values of the closest process from a preselected

recoverable class. More precisely, given observations x|Z\Ms
and a recoverable class Y ⊂ ℓr, we

suggest to find an optimal solution x̂ ∈ Y of the minimization problem

Minimize
∑

t∈Z\Ms

|x̂(t)− x(t)|2

over x̂ ∈ Y, (2)

and accept the trace x̂|Ms as the recovered missing values x|Ms .

3 Recovering based on band-limited smoothing

We assume that we are given Ω ∈ (0, π). Let ℓBL,Ω
2 be the set of all x ∈ ℓ2(Z) such that

X
(
eiω

)
= 0 for |ω| > Ω for X = Zx. We will call sequences x ∈ ℓBL,Ω

2 band-limited. Let

ℓBL,Ω
2 (Z \Ms) be the subset of ℓ2(Z \Ms) consisting of traces x|Z\Ms

for all sequences x ∈ ℓBL,Ω
2 .

Proposition 1. For any x ∈ ℓBL,Ω
2 (Z \Ms), there exists a unique x̂ ∈ ℓBL,Ω

2 such that x̂(t) =

x(t) for t ∈ Z \Ms.

In a general case, where the sequence of observations x|Z\Ms
does not necessarily represents

a trace of a band-limited process, we will be using approximation described in the following

lemma.

Lemma 1. There exists a unique optimal solution x̂ ∈ ℓBL,Ω
2 of the minimization problem (2)

with r = 2 and Y = ℓBL,Ω
2 .
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Under the assumptions of Lemma 1, there exists a unique band-limited process x̂ such

that the trace x̂|Z\Ms
provides an optimal approximation of its observable trace x|Z\Ms

. The

corresponding trace x̂|Ms is uniquely defined and can be interpreted as the solution of the

problem of optimal recovering of the missing values x|Ms (optimal in the sense of problem (2)

given Ω). In this setting, the process x̂ is deemed to be a smoothed version of x, and the

process η = x − x̂ is deemed to be an irregular noise. This justifies acceptance of x̂|Ms as an

estimate of missing values. It can be noted that the recovered values depend on the choice of

Ω; the selection of Ω has to be based on some presumptions about cut-off frequencies suitable

for particular applications.

Let H(z) be the transfer function for an ideal low-pass filter such that H
(
eiω

)
= I[−Ω,Ω](ω),

where I denotes the indicator function. Let h = Z−1H; it is known that h(t) = Ω sinc (Ωt)/π;

we use the notation sinc (x) = sin(x)/x, and we use notation ◦ for the convolution in ℓ2(Z).
The definitions imply that h ◦ x ∈ ℓBL,Ω

2 for any x ∈ ℓ2(Z).
Consider a matrix A = {h(k − p)}m,m

k=0,p=0 ∈ R(m+1)×(m+1). Let Im+1 be the unit matrix in

R(m+1)×(m+1).

Lemma 2. The matrix Im+1 −A is non-degenerate.

Theorem 1. Let x ∈ ℓ2(Z) and Ω ∈ (0, π). Given observations x|Z\Ms
, the problem (2) with

r = 2 and Y = ℓBL,Ω
2 has a unique optimal solution x̂ ∈ ℓBL,Ω

2 which yields an estimate of x|Ms

defined as

x̂(s+ p) = yp, p = 0, 1, ...,m, (3)

where y = {yp}mp=0 ∈ Cm+1 is defined as

y = (Im+1 −A)−1z, (4)

with z = {zp}mp=0 ∈ Cm+1 defined as

zp =
∑

t∈Z\Ms

h(p− t)x(t). (5)

Corollary 1. For any Ω ∈ (0, π), the class ℓBL,Ω
2 is recoverable in the sense of Definition 1.

Remark 1. Equations (3)-(5) applied to a band-limited process x ∈ ℓBL,Ω
2 represent a special

case of the result [9, 10]. The difference is that x is Theorem 1 and (3)-(5) is not necessarily

band-limited.

The case of a single missing value

It appears that the solution for the special case of a single missing value (i.e. where m = 0)

allows a convenient explicit formula.
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Corollary 2. Let Ω ∈ (0, π) and x ∈ ℓ2(Z) be given. Given observations x|Z\{s}, the problem

(2) with r = 2 and Y = ℓBL,Ω
2 has a unique solution x̂ ∈ ℓBL,Ω

2 which yields an estimate of x(s)

defined as

x̂(s) =
Ω

π − Ω

∑
t∈Z\Ms

x(t)sinc [Ω(s− t)]. (6)

This solution is optimal in the sense of problem (2) with m = 0, Ms = {s}, r = 2, and

Y = ℓBL,Ω
2 , given Ω ∈ (0, π).

Remark 2. Corollary 2 applied to a band-limited process xBL ∈ ℓBL,Ω
2 gives a formula

xBL(s) =
Ω

π − Ω

∑
t∈Z\Ms

xBL(t)sinc [Ω(s− t)].

This formula is known [9, 10]; however, equation (6) is Corollary 2 is different since x in (6)

is not necessarily band-limited.

4 Recovering without smoothing

Theorem 1 suggests to replace missing values by corresponding values of a smoothed band-

limited process. This process is actually different from the underlying input process; this could

cause a loss of some information contained in high-frequency components. Besides, it could be

difficult to justify a particular choice of Ω in (6) defining the degree of smoothing. To overcome

this, we consider below the limit case where Ω → π − 0.

Again, we consider input sequences {x(t)}t∈Z\Ms
representing the observations available;

the values for t ∈ Ms are missing.

Without a loss of generality, we assume that either s = 0 or m = 0.

Let ω0 ∈ (0, π] be given. For x ∈ ℓ2, l

For σ = (σ0, σ1..., σm) ∈ Rm+1 such that σk ≥ 0, k = 0, 1, ...,m, let

Xσ
∆
=

{
x ∈ ℓ1 :

∑
t∈Z

|t|m|x(t)| < +∞,

∣∣∣∣dkXdωk

(
eiω0

)∣∣∣∣ ≤ σk,

k = 0, 1, ...,m, X = Zx
}
.

Here and below we assume, as usual, that dkX/dωk = X for k = 0.

It can be shown that, for x ∈ Xσ and X = Zx, we have that the functions
dkX(eiω)

dωk are

continuous in ω for k = 0, 1, ...,m.

Definition 2. Let X0 be the corresponding set Xσ with σ = 0, i.e. with σp = 0 for p =

0, 1, ...,m. We will call x degenerate of order m.
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Let us introduce a matrix B(ω) = {bpk(ω)}m,m
k=0,p=0 ∈ C(m+1)×(m+1) such that

bpk(ω) = [−i(s+ k)]pe−iω(s+k), ω ∈ (−π, π].

In particular, if m = 0, then B(ω) = e−iωs. If m > 0, then, by the assumptions, s = 0 and

bpk(ω) = (−ik)pe−iωk.

Lemma 3. For any ω ∈ (−π, π], the matrix B(ω) is non-degenerate.

Theorem 2. Let x ∈ ℓ1(Z) be given such that
∑

t∈Z |t|m|x(t)| < +∞. Given observations

x|Z\Ms
, the problem (2) with r = 1 and Y = X0 has a unique solution x̂ ∈ ℓBL,Ω

2 which yields

an estimate of x|Ms defined as

x̂(s+ p) = yp(ω0), p = 0, 1, ...,m, (7)

where y(ω) = {yp(ω)}mp=0 ∈ Cm+1 is defined as

y(ω) = B(ω)−1z(ω), (8)

with z(ω) = {zp(ω)}mp=0 ∈ Cm+1 defined as

zp(ω) = −
∑

t∈Z\Ms

(−it)pe−iωtx(t). (9)

Under the assumptions of Theorem 2, there exists a unique recoverable process x̂ ∈ X0

such that x̂|t∈Z\Ms
= x|t∈Z\Ms

. The corresponding trace x̂|Ms is uniquely defined and can be

interpreted as the solution of the problem of optimal recovering of the missing values x|Ms

(optimal in the sense of problem (2) for Y = X0). In addition, Theorem 2 implies that X0 ̸= ∅
for any m ≥ 0; this follows from the implication from this theorem that a sequence from ℓ1 can

be transformed into a sequence in Xσ by changing its m terms.

Corollary 3. The class X0 is recoverable in the sense of Definition 1 with r = 1 and Y = X0.

Remark 3. By Corollary 3 applied with m = 0, a single missing value process x ∈ ℓ1 is

recoverable if X (eω0) = 0 for X = Zx; this reminds condition (1) for spectral density of

minimal Gaussian processes [12].

The case of a single missing value

Again, the solution for the special case of a single missing value (i.e. where m = 0 and

Ms = {s}) allows a simple explicit formula.

Corollary 4. Let s ∈ Z and x ∈ ℓ1(Z) be given. Given observations x|Z\{s}, the problem (2)

with r = 1 and Y = X0 has a unique solution x̂ ∈ ℓBL,Ω
2 which yields an estimate of x(s) defined

as

x̂(s) = −
∑
t ̸=s

eiω0(s−t)x(t), (10)
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where the optimality is understood in the sense of problem (2) with m = 0, Ms = {s}, r = 1,

and Y = X0.

Remark 4. Formula (10) with ω0 = π has the form

x̂(s) = −
∑

t∈Z\Ms

(−1)t−sx(t). (11)

This represents the limit case of formula (6), since

Ω

π − Ω
sinc [Ω(s− t)] → −(−1)t−s as Ω → π − 0

for all t ̸= s.

Optimality in the minimax sense

It will be convenient to use mappings δp : Cm+1 → C, where p ∈ {0, 1, ...,m}, such that

δp(y) = yp for a vector y = (y0, y1, ..., ym) ∈ Cm+1.

Proposition 2. In addition to the optimality in the sense of problem (2) with Y = X0, solutions

obtained in Theorems 2 and Corollalry 2 are also optimal in the following sense.

(i) If m = 0, then solution (6) is optimal in the minimax sense such that

sup
x∈Xσ

|x̂(s)− x(s)| ≤ σ0 ≤ sup
x∈Xσ

|x̃(s)− x(s)| (12)

for any estimator x̃(s) = F
(
x|Z\{s}

)
, where F : ℓ1(Z \ {s}) → C is a mapping.

(ii) If m ≥ 0 and s = 0, then solution (7)-(9) is optimal in the mininax sense such that

sup
x∈Xσ

|δp(B(ω0)η̂)| ≤ σp ≤ sup
x∈Xσ

|δp(B(ω0)η̃)|,

p = 0, 1, ...,m, (13)

for any estimator x̃|Ms = F
(
x|Z\Ms

)
, where F : ℓ1(Z \Ms) → Cm+1 is a mapping,

η̂ = {x̂(t)− x(t)}s+m
t=s ∈ Cm+1, η̃ = {x̃(t)− x(t)}s+m

t=s ∈ Cm+1.

5 Robustness with respect to noise contamination and data

truncation

Let us consider a situation where an input process x|Z\Ms
is observed with an error. In other

words, assume that we observe a process xη|Z\Ms
= x|Z\Ms

+ η|Z\Ms
, where η is a noise.

For a matrix S ∈ Cm+1 and r1, r2 ∈ [1,+∞], we denote by ∥S∥r1,r2 the operator norm

of this matrix considered as an operator S : Cm+1
r1 → Cm+1

r2 , where Cm+1
r denote the linear

normed space formed as Cm+1 provided with ℓr-norm.
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Proposition 3. In the notations of Theorem 1,

∥x̂|Ms∥ℓθ(Ms) ≤
∥∥(Im+1 −A)−1

∥∥
2,θ

∥x|Z\Ms
∥ℓ2(Z\Ms).

for any θ ∈ [1,+∞]. In particular, under the assumption of Corollary 2,

|x̂(s)| ≤ Ω

π − Ω
∥x∥ℓ2(Z\Ms).

Proposition 4. In the notations of Theorem 2,

∥x̂|Ms∥ℓθ(Ms) ≤
∥∥B(ω0)

−1
∥∥
∞,θ

∑
t∈Z\Ms

|t|m|x(t)|

for any θ ∈ [1,+∞]. In particular, under the assumption of Corollary 4,

|x̂(s)| ≤ ∥x∥ℓ1(Z\Ms).

Propositions 3 and 4 ensure robustness of the data recovering with respect to noise con-

tamination and truncation. This can be shown as the following.

Let x̂η|Ms be the sequence of corresponding values defined by (3)-(5) or (7)-(9) with xη|Z\Ms

as an input, and let x̂|Ms be the corresponding values defined by (3)-(5) or with x|Z\Ms
as an

input. By Proposition 3,

∥(x̂− x̂η)|Ms∥ℓr(Ms) ≤ ∥(Im+1 −A)−1∥ρ,2∥η∥ℓ2(Z\Ms) (14)

for all η|Z\Ms
∈ ℓ2(Z \Ms). In particular, under the assumption of Corollary 2, i.e. for m = 0

and Ms = {s}, it follows that, in the notations of Theorem 1,

|x̂(s)− x̂(s)| ≤ Ω

π − Ω
∥η∥ℓ2(Z\Ms). (15)

Similarly, Propositions 4 implies that

|x̂(s)− x̂η(s)| ≤ ∥zη(ω0)∥ℓ1(Z\Ms) (16)

for all η|Z\Ms
∈ ℓ1(Z \Ms), under the assumptions of this theorem, with zη(p, ω) =

{zη(p, ω)}mp=0 ∈ Cm+1 defined as

zη(p, ω) = −
∑

t∈Z\Ms

(−it)pe−iωtη(t).

This demonstrates some robustness of the method with respect to the noise in the ob-

servations. In particular, this ensures robustness of the estimate with respect to truncation

of the input processes, such that infinite sequences x ∈ ℓr(Z \Ms), r ∈ {1, 2}, are replaced

by truncated sequences xη(t) = x(t)I{|t|≤q} for q > 0; in this case η(t) = I|t|>qx(t). Clearly,

∥η∥ℓr(Z\Ms) → 0 as q → +∞. This overcomes principal impossibility to access infinite sequences

of observations.

The experiments with sequences generated by Monte-Carlo simulation demonstrated a good

numerical stability of the method; the results were quite robust with respect to deviations of

input processes and truncation.
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On a choice between recovering formulae (6) and (10)

It can be seen from (14) and (16) that recovering formula (10) is less robust with respect to data

truncation and the noise contamination than recovering formula (6). In addition, recovering

formula (10) is not applicable to x ∈ ℓ2(Z) \ ℓ1(Z). On the other hand, application of (10) does

not require to select Ω. In practice, numerical implementation requires to replace a sequence

{x(t)} by a truncated sequence x(t)I{t: |t|≤q}; technically, this means that both formulas could

be applied. The choice between (6) and (10) and of a particular Ω for (6) should be done based

on the purpose of the model. In general, a more numerically robust result can be achieved with

choice of a smaller Ω.

This can be illustrated with the following example for a case of a single missing value.

Consider a band-limited input x ∈ ℓBL,Ω
2 with a missing value x(0) (i.e, m = 0 and s = 0, in the

notations above). In theory, application of (6) with Ω replaced by Ω1 ∈ (Ω, π] produces error-

free recovering, i.e. x̂(0) = x(0). However, application of (6) with Ω replaced by Ω2 ∈ (0,Ω1)

may lead to a large error x̂(0)− x(0).

On the other hand, application of (10), where Ω is not used, performs better than (6)

with too small miscalculated Ω1. This is illustrated by Figure 1 that shows an example of a

process x(t) ∈ ℓBL,Ω
2 with Ω = 0.1π and recovered values x̂(0) corresponding to band-limited

extensions obtained from (6) with Ω = 0.1π and Ω = 0.05π. In addition, this figure shows x̂(0)

calculated by (10). On the hand, the presence of a noise in processes that are nor recoverable

without error may lead to a larger error for estimate (10). This is illustrated by Figure 2 that

shows an example of a noisy process x and recovered values x̂(0) corresponding to band-limited

extensions obtained from (6) with Ω = 0.1π and Ω = 0.05π. In addition, this figure shows x̂(0)

calculated by (10). In these experiments, we used Ms = {0} and truncated sums (6) and (10)

with 100 members.

6 Proofs

Proof of Proposition 1. It is known [9, 10, 11] that a continuous time bandlimited function can

be recovered without error from an oversampling sequence where a finite number of sample

values is unknown. This implies that if x ∈ ℓBL,Ω
2 is such that x(t) = 0 for t ∈ Z \Ms, then

x ≡ 0. Then the proof of Proposition 1 follows. �
Proof of Lemma 1. It suffices to prove that ℓBL,Ω

2 (Z \Ms) is a closed linear subspace of

ℓ2(Z \Ms). In this case, there exists a unique projection x̂|Z\Ms
of x|Z\Ms

on ℓBL,Ω
2 (Z \Ms),

and the proof will be completed.

Let B be the set of all mappings X : T → C such that X
(
eiω

)
∈ L2(−π, π) and such that

X
(
eiω

)
= 0 for |ω| > Ω for X = Zx.
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Consider the mapping ζ : B → ℓBL,Ω
2 (Z \Ms) such that

x(t) = (ζ(X))(t) =
1

2π

∫ π

−π
X

(
eiω

)
eiωtdω, t ∈ Z \Ms.

It is a linear continuous operator. By Proposition 1, it is a bijection.

Since the mapping ζ : B → ℓBL,Ω
2 (Z \Ms) is continuous, it follows that the inverse mapping

ζ−1 : ℓBL,Ω
2 (Z \Ms) → B is also continuous; see e.g. Corollary in Ch.II.5 [19], p. 77. Since the

set B is a closed linear subspace of L2(−π, π), it follows that ℓBL,Ω
2 (Z \Ms) is a closed linear

subspace of ℓ2(Z \Ms). Then a solution x̂ of problem (2) is such that x̂|D is a projection of

x|D on ℓBL,Ω
2 (Z \Ms) which is unique. Then the proof of Lemma 1 follows. �

Proof of Lemma 2. Let ȳ = {ȳk}mk=0 ∈ Cm+1 be arbitrarily selected such that ∥ȳ∥ℓ2 ̸= 0.

Let y ∈ ℓ2(Z) be such that y|Z\Ms
= 0 and that ȳ = y|M . In this case, y /∈ ℓBL,Ω

2 ; it follows, for

instance, from Proposition 1. Let Y = Zy. We have that Z(h ◦ y) = H
(
eiω

)
Y
(
eiω

)
. Hence

∥H
(
eiω

)
Y
(
eiω

)
∥L2(−π,π) < ∥Y

(
eiω

)
∥L2(−π,π). This implies that ∥h ◦ y∥ℓ2 < ∥y∥ℓ2 . Hence

∥Aȳ∥ℓ2 = ∥IM (h ◦ y)∥ℓ2 ≤ ∥h ◦ y∥ℓ2 < ∥y∥ℓ2 = ∥ȳ∥ℓ2 .

Since the space ℓ2(M) is finite dimensional, it follows that ∥A∥2,2 < 1. Then the statement of

Lemma 2 follows. �
Proof of Theorem 1. Assume that the input sequences {x(t)}t∈Z\Ms

are extended on Ms

such that x|Ms = x̂|Ms , where x̂ is the optimal process that exists according to Lemma 1. Then

x̂ is a unique solution of the minimization problem

Minimize
∑
t∈Z

|xBL(t)− x(t)|2

over xBL ∈ ℓBL,Ω
2 . (17)

By the property of the low-pass filters, x̂ = h◦x. Hence the optimal process x̂ ∈ ℓBL,Ω
2 from

Lemma 1 is such that

x̂ = h ◦
(
xIZ\Ms

+ x̂IMs

)
.

Hence

x̂(t) =
∑

s∈Z\Ms

h(t− s)x(s) +
∑
s∈Ms

h(t− s)x̂(s). (18)

This gives that

x(t)−
∑
s∈Ms

At,sx(s) = zt.

This gives (3)-(5). �
Proof of Corollary 1. If x ∈ ℓBL,Ω

2 , then x̂ = x, since it is a solution of (2). By Theorem 1,

x̂ is obtained as is required in Definition 1 with r = 2 and Y = ℓBL,Ω
2 . �
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Proof of Lemma 3. The case where m = 0 is trivial, since B(ω) = e−ωs in this case. Let

us consider the case where m > 0; by the assumptions, s = 0 in this case. Suppose that there

exists ω ∈ (−π, π] such that the matrix B(ω) is degenerate. In this case, there exists q =

{q(k)}mk=0 ∈ Cm+1 such that q ̸= 0 and B(ω)y = 0. Let Q(z)
∆
=

∑s+m
k=s q(k)zk =

∑m
k=0 q(k)z

k,

z ∈ C. By the definition of B(ω), it follows that dpQ
dωp

(
eiω

)
= 0 for p = 0, 1, ...,m. Hence

dpQ
dzp (z0) = 0 at z0 = eiω for p = 0, 1, ...,m. Hence Q ≡ 0. Therefore, the vector q cannot be

non-zero. This completes the proof. �
Proof of Theorem 2. Let y ∈ ℓ1 be selected such that y(t) = x(t) for t /∈ Ms and y|Ms = 0.

Let Y = Zy, and let x̂ ∈ ℓ1 be selected such that x̂(t) = x(t) for t /∈ Ms, with some choice of

x̂|Ms . Let X̂ = Zx̂. It follows from the definitions that

dpX̂

dωp

(
eiω

)
=

dpY

dωp

(
eiω

)
+

s+m∑
t=s

(−iωt)pe−iωtx̂(t)

= −zp(ω) + δp(B(ω)y(ω)), p = 0, 1, ...,m.

For ω = ω0, this gives B(ω0)y(ω0) = z(ω0). Hence there is a unique choice that ensures

that x̂ ∈ X0 and x̂|Z\Ms
= x|Z\Ms

; this choice is defined by equations (7)-(9). Clearly, this

is a unique optimal solution of the minimization problem (13) with r = 1 and Y = X0. This

completes the proof of Theorem 2. �
Proof of Proposition 2. It suffices to prove statement (ii) only, since statment (i) is its

special case. Let x ∈ Xσ for some σ ̸= 0, and let Y
(
eiω

)
=

∑
k∈Z\Ms

e−iωkx(k), ω ∈ (−π, π];

this function is observable. By the definitions, it follows that

X
(
eiω

)
= Y

(
eiω

)
+

∑
t∈Ms

e−iωkx(t)

and

dpX

dωp

(
eiω

)
=

dpY

dωp

(
eiω

)
+ δp(B(ω)y(ω)), p = 0, 1, ...,m.

For ω = ω0, it gives

ξ = −z(ω0) + B(ω0)y(ω0),

where ξ = {ξp}mp=0 ∈ Cm+1 has components ξp = dpX
dωp

(
eiω0

)
such that |ξp| ≤ σp. Using

the estimator from Theorem 2, we accept the value ŷ(ω0) = B(ω0)
−1z(ω0) as the estimate of

y(ω0) = {x(s + p)}mp=0. We have that B(ω0)y(ω0) − B(ω0)ŷ(ω0) = ξ. It follows that the first

inequality in (13) holds. If σ = 0 then the estimator is error-free.

Let us show that the second inequality in (13) holds. Suppose that we use another estimator

x̃(s) = F̃
(
x|Z\Ms

)
, where F̃ : ℓ2(Z \Ms) → C is some mapping. Let p ∈ {0, 1, ...,m}, and

let X±
(
eiω

)
be such that δk(B(ω)y(ω)) = ±σkI{k=p}, k ∈ {0, 1, ...,m}, and x±(t) = 0 for

t ∈ Z \Ms for x± = Z−1X±. By the definition of B(ω), it follows dkX±
dωk

(
eiω

)
= ±σkI{k=p}.

11



Clearly, x± ∈ Xσ. Moreover, we have that x̃−|Ms = x̃+|Ms for x̃± = F̃
(
x±|Z\Ms

)
, for any

choice of F̃ , and

max(|δp(B(ω0)η−)|, |δp(B(ω0)η+)|) ≥ σp,

p = 0, 1, ...,m,

where η− = {x̃−(t)− x−(t)}s+m
t=s ∈ Cm+1, η+ = {x̃+(t)− x+(t)}s+m

t=s ∈ Cm+1. Then the second

inequality in (13) and the proof of Proposition 2 follow. �
Proof of Corollary 3. If x ∈ X0, then x̂ = x since it is a solution of (2). By Theorem 2, x̂

is obtained as is required in Definition 1 with r = 1 and Y = X0. �
Proof of Proposition 3. By Theorem 1,

∥x̂|Ms∥ℓθ(Ms) ≤ ∥(Im+1 −A)−1∥2,θ∥z∥ℓ2(Ms).

In addition,

∥z∥ℓ2(Ms) ≤ ∥IMs(h ◦ xIZ\Ms
)∥ℓ2(Z) ≤ ∥x|Z\Ms

∥ℓ2(Z\Ms).

Then the proof of Proposition 3 follows. �
Proof of Proposition 4. By Theorem 2,

∥x̂|Ms∥ℓθ(Ms) ≤ ∥B(ω0)
−1∥ρ,θ∥z(ω0)∥ℓρ(Z\Ms).

Further,

|zp(ω0)| ≤
∑

t∈Z\Ms

|t|m|x(t)|.

Then the proof of Proposition 3 follows. �

7 Discussion and possible modifications

The present paper is focused on theoretical aspects of possibility to recover missing values.

The paper suggests frequency criteria of error-free recoverability of a single missing value in

pathwise deterministic setting. In particular, m missing values can be recovered for processes

that are degenerate of order m (Definition 2). Corollary 3 gives a recoverability criterion

reminding the classical Kolmogorov’s criterion (1) for the spectral densities [12]. However, the

degree of similarity is quite limited. For instance, if a stationary Gaussian process has the

spectral density ϕ(ω) ≥ const · (π2 − ω2)ν for ν ∈ (0, 1), then, according to criterion (1), this

process is not minimal [12], i.e. this process is non-recoverable. On the other hand, Corollary

3 imply that single values of processes x ∈ ℓ1 are recoverable if X(−1) = 0 for X = Zx. In

particular, this class includes sequences x such that |X
(
eiω

)
| ≤ const ·(π2−ω2)ν for ν ∈ (0, 1).

12



Nevertheless, this similarity still could be used for analysis of the properties of pathwise Z-

transforms for stochastic Gaussian processes. In particular, assume that y = {y(t)}t∈Z is a

stochastic stationary Gaussian process with spectral density ϕ such that (1) does not hold. It

follows that adjusted paths {(1 + δt2)−1y(t)}t∈Z, where δ > 0, cannot belong to ℓBL,Ω
2 or X0.

We leave this analysis for the future research.

There are some other open questions. The most challenging problem is to obtain pathwise

necessary conditions of recoverability that are close enough to sufficient conditions. In addition,

there are more technical questions. In particular, it is unclear if it possible to relax conditions

of recoverability described as weighted ℓ1-summarability presented in the definition for Xσ.

It is also unclear if it is possible to replace the restrictions on the derivatives of Z-transform

imposed at one common point for the processes from X0 by conditions at different points. We

leave this for the future research.
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Figure 1: Example of a path x ∈ ℓBL,Ω
2 with Ω = 0.1π and the recovered values x̂(0) calculated

using 100 observations: (i) calculated by (6) for Ω = 0.1π (top); (ii) calculated by (6) with Ω = 0.05π

(middle); (iii) calculated by (10) (bottom).
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Figure 2: Example of a path x ∈ ℓ2(Z \Ms) and the recovered values x̂(0) calculated using 100

observations: (i) calculated by (6) for Ω = 0.1π (top); (ii) calculated by (6) with Ω = 0.05π (middle);

(iii) calculated by (10) (bottom).
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