
©2009 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195649463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modeling the Dynamics of Web-based Service and
Resource-Oriented Digital Ecosystems

Tharam S. Dillon, Chen Wu

DEBI Institute, Curtin University of Technology, Perth, Australia
E-mail: tharam.dillon@cbs.curtin.edu.au

Abstract - The notion of digital species is broadened to include
services and resources, special issues arise in modeling the
dynamics and workflows with representations associated with
these services and resources. To address these issues, this paper
explores two different yet related approaches: the traditional
BPEL-based workflow modeling approach and the Mashup-
based Web approach. In this paper, we first demonstrate two
examples of service-oriented and resource-oriented digital
ecosystems on the Web. We then identify key issues pertinent to
both types of DES. We discuss formal definition, specifications
and issues of BPEL-based approach and Mashup-based
modeling techniques with computational formalisms. Finally, we
propose a hybrid approach to deal with modeling the dynamics
in processes associated with such Digital Ecosystems

I. INTRODUCTION - AGENT, SERVICES, RESOURCE-
ORIENTED DIGITAL ECOSYSTEMS

In the early wave of Digital Ecosystems (DES), it was
assumed that agents were the primary digital species and they
collaborated in a way to allow them to individually achieve
their goals as a global aim. This presented a high degree of
autonomy and self-organizations. The notion of DES has
evolved since then towards encompassing enterprises of
different sizes (big and small) to collaborate and participate in
order to, for instance, to form an extended enterprise. A
consequence of this is that the notion of digital species is
broadened to also include services and resources. Thus a full-
fledged DES becomes a Service-Oriented DES (SO-DES), a
Resource-Oriented DES (RO-DES), as well as a Agent-
Oriented DES (AO-DES), or a hybrid of these three types.
The rise of SO- and RO-DES raises special issues in
modeling the dynamics and representation associated with
this. To address these issues, this paper explores two different
yet related approaches: the traditional BPEL-based workflow
modeling approach and the emergent Mashup-based Web
approach.

An SOA realization - Web services technology particularly
- should allow for quality of service models to control and
manage the interactions. Web Services can be dynamically
composed into applications in real time. The dynamic nature
of web services allows the implementations to be platform
independent and programming language-neutral.

The remainder of the paper is structured as follows: Section
II illustrates examples of current SO-DES and RO-DES on
the Web. Section III discusses the abstract structure of a DES.
Section IV identifies essential issues need to be addressed in

both types of DES. In Section V, we discuss formal
definition, specifications and issues of BPEL-based approach.
Mashup-based modeling techniques with computational
formalisms are presented in Section VI. In Section VII, we
propose a hybrid approach to deal with modeling the
dynamics and workflows. The paper concludes in Section
VIII.

II. WEB-BASED SERVICE/RESOURCE-ORIENTED DES

In this section, we illustrate two examples of current SO-
DES and RO-DES on the Web, the e-commerce and service
provider Amazon and the social network infrastructure
Facebook.

A. Amazon.com as an Digital Ecosystem
Amazon.com features a very sophisticated e-commerce

platform on which anyone can become a retailer partner
through the AWS (Amazon Web Services) e-commerce
services. In essence, there are three categories of services
made available through AWS: the Amazon platform built-in
Web services, retailer partner Web services, and public
Amazon Web Services. AWS developers can now build very
complex, personalized applications using primitive Web
services that are simple by their own nature. This is a major
competitive advantage of AWS. In effect, developers have
built a large variety of applications using these services,
ranging from business applications to smart utility tools. This
results in a mixture and mash-up world, which is part of the
Internet Ecosystem.

In a resource-oriented view, The Amazon WS Platform
does provide an information model that represents the
detailed data structure of e-commerce products, user profiles,
and user reviews. It also defines certain workflows (e.g. place
an order) that facilitates common e-business processes.

In a service-oriented view, the Amazon WS process can be
very flexible, which is completely dependent on the DES
participants' intention. There are no tied restrictions for
participants’ internal architecture. AWS also provides
different protocols of Web services API (e.g. SOAP-based
and REST-based). DES species can choose the preferred
protocols to interact with the core platform. Once the protocol
is given, the participants can use various technology and
software architecture to engage in the information exchange
and protocol fulfillment.

2009 Third IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2009)
© 2009 IEEE.

747

B. Facebook as an Digital Ecosystem
Facebook is an extremely popular social networking

website, by which the users can connect with friends, join
groups of common interest, send messages to others, and
organize events amongst communities. In early 2007,
Facebook started to provide an API to its community
developers, thereby inviting Facebook developers to create
and deploy new applications that can seamless integrate built-
in features provided by Facebook and leverage the massive
number of users on the Facebook platform. More uniquely,
the API also allows the application hosted on a developer’s
site to directly output to the original Facebook website.
Therefore, it supports two-way integration for both pushing
and pulling valuable information to and from the Facebook
platform. Such a flexible and powerful API has generated
unprecedented opportunities for Facebook ‘Extension’
developers. Many small and medium enterprises come into
the picture, tapping into the massive user database maintained
by Facebook. For example: the Faceconnector [9] mashup
integrates Facebook profile information with Salesforce data
in real time, providing managers with instant insights of
customers in order to build a "better customer relationship".

III. ABSTRACT STRUCTURE OF A DES

We believe a DES consists of three essential components:
Core, Extension, Value. Core represents Keystone players
that provide the infrastructure. DES infrastructure provides
flexible Extension mechanisms that allow other players to
extend the scope, function of the infrastructure through
various innovative and value-added channels (e.g. APIs, Web
services, communications, workflows, etc.). Finally, the
Value is generated from both the infrastructure and the
applications built upon the extension mechanisms by many
different small and medium players. Based on this scheme,
Facebook DES has the structure as shown in Fig. 1 below:

Fig. 1. Facebook Digital Ecosystems

IV. ISSUES IN WEB-BASED SO-DES AND RO-DES

We identify four general issues for modeling the dynamics
of a SO-DES or RO-DES: service discovery, interaction,
composition, and Mashups. Here we use the term 'service'
generally to refer to both a service or resource. Note that the
distinction between services and resources indeed depends on
the contexts, however, there are important differences
between these two types of computing models.

A. Service Discovery
Service discovery has been a key aspect in the SOA

research community. Web services are often deliberately built
for reuse. Developers can provide specialized and
sophisticated functions by using a readily implemented Web
service in order to maintain lower development cost and
higher efficiency. To achieve the goal of reuse, Web services
firstly need to be discovered. As an essential SOA activity,
service discovery paves the way for conducting further
important SOA activities such as service interaction and
composition in a dynamically changing business
environment. Web services discovery thus has received
extensive studies in recent years. In our previous study [10],
we have discussed various methods of WSDL-centered
service discovery based on three levels of abstraction:
keyword, semantics, and structure. In [11], we used an Index-
based approach augmented with modern Web technology to
facilitate service discovery. In [12] we have illustrated that
the relationships between service discovery, resources, and
semantics. In particular, service discovery sits at the
'Semantic' Layer of the distributed computing stack. Semantic
is the shared understanding of terms of the behavior of a
service when it is being consumed by other applications or
services. For service consumers, implicit semantics often help
to understand the meaning and purpose of interacting with a
service. Moreover, explicit and formal semantic
representation (e.g. ontology) can be processed by machines
to facilitate automated service discovery.

B. Service Interaction
Service interaction occurs when the service message

(requests and response) flows between service provider and
requester in order to fulfill the actual service delivery. Two
interaction paradigms are common in SOA: SOAP-based and
REST-based.

SOAP defines a formal set of conventions. As the
underlying messaging solution for contemporary Web
services, SOAP basically addresses four major issues for
connecting any Web services. First, it defines a standardized
XML-based message format. Second, it specifies a process
semantics in which a SOAP node can process SOAP
messages in a predetermined way. Third, it defines the
binding mechanism which enables SOAP message to be
delivered via different transport protocols. Last, it defines
how binary data can be sent using SOAP messages. It is
expected that, with SOAP, one can access any Web service in
a flexible and scalable manner.

However, it is interesting to observe that this appears not
the case, at least when it comes to accessing the public Web
services “on the Web”. 85% of the developers prefer the
HTTP-based communication model to SOAP-based
messaging. This is partly explained by the fact that querying
Amazon using REST API was about six times faster than
with the SOAP API [1]. Representational State Transfer
(REST) is a specific Web architectural style introduced in [2].

2009 Third IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2009)
© 2009 IEEE.

748

The RESTful Web services do not use SOAP as the
underlying messaging framework. This directly points to the
potential problem of SOAP binding specification, in which
the HTTP binding has been formalized. This is the result of
thinking of HTTP as merely a transport protocol, rather than a
semantic-capable (i.e. ‘smarter’) application protocol, which
in the case of SOAP, is the SOAP protocol per se. This also
boils down to the core problem of the debate between the
traditional Web services community and RESTful Web
services proponents: whether SOAP is needed at all to
connect and consume a Web resource (service). Based on the
RESTful style, we have proposed to use RESTful style in
order to syndicate Web services metadata in order to form the
Web services space [12].

C. Service Composition
Service composition is a significant way of reusing Web

services and is also one of the ‘holly grails’ that Web services
are designed to accomplish. Indeed, Alonso et al.[13]
maintain that Web services are born to solve the composition
problem. From the business perspective, service composition
has been conceived as the “critical missing link” between
service providers and service consumers that strive to have
the competitive advantage [14]. From the technical
viewpoint, Web services are considered as “an optimal
candidate platform” for both data and application integration
[15]. Following this proposition, application integration is
taking over the majority of the world software market [16].
Service composition is expected to play a key role in a very
broad range of applications such as e-business, e-government,
enterprise application integration, portal website, e-healthcare
systems, mobile computing, etc. Therefore, research into
service composition is believed to have a considerable impact
on both software development and domain-specific
applications.

In general, service composition includes two important
steps: one is the selection of the required component web
services and their composition into a composite web service.
The second is the co-ordination of the execution of the
different web services in the composite web service so that
they are executed in the right sequence and the preconditions
for a particular component service are met before execution.
If such co-ordination is a centralized one can use an
orchestration approach to coordination [13]. If, however, the
co-ordination is distributed then one needs to use a
choreography approach to co-ordination [17]. Essentially,
when assembling these compositions. these paradigms
involve design time composition and run time binding. The
issues of validation and verification of the coordination of a
particular composition of web services becomes a major issue
whether one uses the orchestration or choreography model for
co-ordination. In addition to the performance of the particular
composition, the effect of traffic on this performance and the
reliability of the composition and its improvement through

fault tolerance techniques become major problems of
concern..

D. Mashups
In recent years, Mashups have emerged as a Web-based

composition approach that allows end users (vs. professional
developers) to create their own applications in an efficient
manner without dealing with sophisticated techniques and
specifications. We believe the development of the Mashup is
the direct consequence of Service Web or Hidden Web.

Unlike its predecessors such as Web 1.0 websites in which
content exchange is the main purpose of the Web, the current
Web has been extended into a live, computational exchange
platform. In addition to server side scripts (e.g. CGI, PHP,
ASP, etc.) supported by "hidden" databases, a large number
of active services have emerged in the form of API such as
WSDL or JSON. Service-oriented Architecture (SOA) thus
represents an important architectural approach that turns
millions of Web resources (content or computation) into
reusable services that constitute a "Programmable Web".
Today, innovative Web developers are using the
Programmable Web to create values in unprecedented ways
that many software engineers have never imagined before.
We believe that Mashup is one of the key enabling
technologies that can realize the true value of SOA on the
Web.

V. BPEL-BASED SERVICE COMPOSITION

A. Formal Definition
BPEL (Business Process Execution Language) has

emerged as the defacto standard for composing Web services
using a workflow-based language. Specifically designed for
Web services, a BPEL process per se is exposed as a Web
service defined using the WSDL interface. Therefore, BPEL
composition process is recursive such that a BPEL process
can be integrated into another ‘higher level’ BPEL process as
a regular Web service. By defining a formal set of workflow
constructs (e.g. sequence, while, scope, etc.), BPEL is aimed
at providing a powerful service composition model in order to
tackle the complex requirements for business process
engineering within and across organizations. It also supports
both executable and abstract processes, the former one is used
within the organization, the latter one defines the message
exchange ‘protocol’ shared and respected amongst business
partners.

B. Validation Mechanism
BPEL specification does not include any forms of

verification and validation mechanism, which is crucial for
complex service composition in enterprise computing. The
issues of validation and verification of the coordination of a
particular composition of web services becomes a major issue
whether one uses the orchestration or choreography model for
co-ordination. In addition to the performance of the particular

2009 Third IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2009)
© 2009 IEEE.

749

composition, the effect of traffic on this performance and the
reliability of the composition and its improvement through
fault tolerance techniques become major problems of
concern. In our previous work [18], we have used Colored
Petri Net (CPN) to address this issue. CPN is the high level
Petri net which allows for the representation of the multi-
level behavioral abstractions through place/transition
refinements. It allows the use of colored Tokens, complex
Predicates associated with transitions and the use of guards to
control the enabling of transitions before firing. The
advantage includes avoiding cluttering the diagrammatic
representation with excessive formalism, representing
complex predicates and reduced dimensionality. The
proposed model deals with the design at the semantic level in
three layers, the individual components level, the dynamic
formed/combined secure semantic web services level, and the
behaviors of the formed/combined secure web services at the
entire system level.

C. Issues
A recent critical review [3] suggested that BPEL has

several critical issues. First of all, BPEL is too difficult to use.
It is more like a classical programming language but written
in a verbose XML representation that makes it very hard for
normal developers to read and to write BPEL. Existing BPEL
tools provided by vendors provide GUIs that support drag and
drop BPEL constructs, thus only providing the one-to-one
mapping from a BPEL construct to a drawing box. Therefore,
they fail to approach BPEL from the high level modeling
perspective, which is the only knowledge that most business
analysts and domain users have. Moreover, BPEL
specification does not include any forms of verification and
validation mechanism, which is crucial for complex service
composition in the enterprise computing to have, even though
some researchers have proposed to use techniques such as
Petri Net for this purpose. Lastly, so far BPEL has not fully
helped to define the abstract process, BPEL’s popularity as an
executable process raises the question of whether BPEL is
needed at all. This is because defining internal workflow
within each organization can be carried out in a far more cost-
effective and flexible manner without resorting to BPEL.
Many user-friendly workflow diagrams, scripting languages,
and tools can accomplish this task without too much
difficulty. Indeed, we believe, Mashup (see Section 3.3.4), a
simple way of conducting service composition on the Web, is
perhaps more suitable for such a requirement if augmented
with appropriate verification and security models.

Another key practical issue when deploying BPEL on the
Web lies in the fact that many RESTful Web service APIs do
not use WSDL to specify their interface. Rather, popular Web
APIs on the ProgrammableWeb.com use various
representation formats such as Microformats (hCalendar,
hCard, etc.), Atom, JSON, RDF, and so on. Since BPEL4WS
heavily relies on WSDL, it is not possible to directly apply
BPEL into the solution of the Web-based workflow systems.

VI. MASHUPS

In this section, we aim to explain the basics of the Mashup
and how it come into being and its underlying techniques.

A. Formal Definition
Mashup refers to a (or part of a) webpage or a Web

application that seamlessly combines content from more than
one source into an integrated user experience. It represents a
new Web development approach that allows users to 'remix'
various Web services, each featuring its own capability, to
build an application that serves a new purpose.

To our understanding, Mashups represent a radical ‘simple’
way of developing a distributed software application. The
implication of such a user-centered software development
approach is very significant. It means that the service
consumers can create and try out ‘self-service’ whenever
needed and possible through integrating existing information
services across the Web. With HTTP, Atom/RSS, and other
scripting techniques (JavaScript, AJAX, JSON, etc.), a
seemingly very complex application with a rich user interface
can be built with relative ease using ‘drag and drop’ GUI
operations. Moreover, due to its light weight and ease of use,
the increasing number of Mashups developed will certainly
inspire service providers to supply more and more useful and
user-friendly information services that are available on the
Web. This, in turn, will motivate end users to innovate more
quality Mashups to solve various application problems. Such
a good cycle results in a service mashup ecosystem, in which
service consumers and service providers will benefit through
such ‘ubiquitous’ mashup connections. At the time of writing,
the ProgrammableWeb, the defacto Web 2.0 services registry,
has registered 644 APIs and 2749 Mashups. Javascript is the
key technology underpinning Mashups.

B. Formal Specification: Computational Exchange
Mashup with its underlying technology represents a Web

computing formalism shift away from the traditional content
exchange to current computational exchange [4]. Essentially,
computational exchange includes two important forms: code
mobility and continuation.

Code mobility refers to the software capability to
dynamically change the bindings between code fragments and
the location where they are executed. It involves both change
in binding dynamically and relocation of code [5]. An early
example of code mobility on the Web is the Java Applet, in
which the Java binary code (i.e. Java classes) can be
dynamically downloaded from the Web server to a Web
browser, which then executes the bytecode using its
embedded Java virtual machine. In the context of Mashup,
Ajax now enables Web application to dynamically download
the code to the browser from its origin server, thereby
performing computations locally at the client side. By
reducing the computational latency of presentation events,
AJAX makes possible a new class of interactive applications

2009 Third IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2009)
© 2009 IEEE.

750

with a degree of openness and flexibility that may be
impossible in purely server-side computing.

Continuation can be viewed as a transient and abstract
representation of the control state of a computation to be
resumed right after the point where it was suspended.
Essentially, continuation represents “the rest of the
computation”. Continuation is specifically useful to deal with
web-based page-centric software development as shown in
the case of Ajax and Mashup. Rather than considering a web
application consisting different pages, the browser-server
interaction becomes a single application program (e.g. Ajax
scripts) in which continuations deal with pieces of execution.
Mashup pushes continuation to the next level by including
different servers interactions into this single application
program, which forms the Web-based workflow system. It
should be noted that a continuation can be
suspended/resumed on either server-side or client side,
forming server-side and client-side Mashups respectively.

Formally, Maximilien et al. [7] has defined a Mashup with
three primary components:

1. Data mediation, which is responsible for retrieving and
integrating data with heterogeneous structures from multiple
sources. This component involves essential tasks related to
various data manipulation techniques such as conversion,
filtering, matching, combination, transformation, etc.)

2. Process, which defines and executes the orchestration or
choreography at the application level. The constructed
process is developed by integrating data and functions
exposed by the services through APIs.

3. User Interface, which allows final users to interact with
the Mashup through Web browsers. This is one of the key
distinction between Mashup and Web services workflow
applications, where little human involvement included in
modeling the choreography specification.

C. Five types of Mashup
In earlier discussion on continuation, we distinguish

between a client-side Mashup and a server-side data Mashup.
The author in [8] further defined five types of Mashup styles
currently available in the Web 2.0 setting:

1. Presentation Mashup: This represents the simplest
form of mashup because the underlying data and functionality
do not really become integrated. Information and layout is
retrieved and either remix or just placed next to each other.
Some Web 'widgets' or 'gadgets' fall into this category and so
do portals and other presentation mashup techniques.

2. Client-Side Data Mashup: This type of data Mashup
retrieves information from APIs, services, feeds, and Web
pages and remix it with data from another source. Sometimes
client-side approach cannot provide Mashup for certain
components because of the cross-domain security problem.
The cross-domain problem occurs when client-side, e.g. Ajax
application, tries to access data in a different domain name.

3. Client-Side Software Mashup: In this Mashup style,
the scripts that manipulate both contextual data and processes

are downloaded to the browser, thereby creating new
functionality on the fly. Given contextual data of browsers
has been included into certain scripting environment such as
Ajax, Mashup of this type has the potential to integrate
browser-based software (e.g. Firefox plugins) into novel
system features. In this sense, this Mashup style resembles
the characteristics of current workflow systems.

4. Server-Side Software Mashup: Server-side Mashup
tends to have less operational problems due to less security
restrictions and cross domain issues. As a result, server-side
Mashups such as Yahoo Pipes or many other Mashups listed
on the ProgrammableWeb.com are common. However, a key
issue lies in the scalability and bottleneck problems caused by
the single-point failure at the server side.

5. Server-Side Data Mashup: For many years,
enterprise solutions for backend data integration (e.g. EAI)
have utilized high-level rational database tools to match and
combine data at the server-side. While integration of
heterogeneous databases is still an open research issue, many
DB vendors such as Oracle and Microsoft have made
substantial efforts in this area. In other words, data
integration at the database level can be seen as a type of
Mashup at a very preliminary and low level.

D. Issues with Mashups
The big advantage with Mashups is the agility they

provide. However, Mashups do suffer from a number of
negative aspects. First, due to the lack of semantics and
shared vocabulary to describe the business process, Mashups
often require intensive custom ("hard") coding effort to
access and combine data and functions results from different
sets of APIs. For example, a Mashup often needs to interact
with many types of data structures and protocols such as
Microformats, REST, SOAP, RSS, Atom, JSON. Each of
these formats may have multiple versions. Second, unlike
formal business process specifications which have a number
of mature frameworks (e.g. BPMM) to support modeling
tasks, Mashups lacks a generic framework that can facilitate
the creation, deployment, monitoring, and governance of
Mashups of different and abundant Web API and services.
Third, as a network-based distributed Web applications,
Mashup is not geared towards addressing some fundamental
problems inherent in a distributed systems [20] such as
concurrency, scalability, fault tolerance, and so on. Such a
deficiency has made it very difficult to apply Mashups into
the solution of enterprise computing.

VII. A HYBRID APPROACH

Mashups emerge from the Web 2.0 applications and mainly
deals with process and data integration issues that are needed
on the Web. The context of the Mashup has revealed a few
characteristics that are intrinsic to Web-based workflow
systems. First, in order to rapidly and constantly deliver
unique value to Web communities, Web developers find it is

2009 Third IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2009)
© 2009 IEEE.

751

crucial to have something that is simple to wire different
functions and data into a single application that is friendly to
the end user through the Web browser. For example, in Ajax,
No typing of the resource being accessed is required (i.e.:
message types). In contrast, most of today’s workflow
specifications (e.g. BPEL and WSDL) are strongly typed with
respect to both data and behavior (interfaces). It is essential to
institutionalize strongly typed specification to detect errors,
to maintain overall consistency, and to keep transaction
conformance, etc.. From the practice of Web application
development, however, we have learned that the overhead
imposed by typing and other forms of required artifacts
external to the workflow logic itself creates a barrier to entry
that excludes most Web developers.

In this paper, we propose a hybrid approach that forms a
mixture of both. The motivations for proposing such a hybrid
approach is two-fold:

1. Given the massive business opportunities on today's
ProgrammableWeb, Workflow based or service composition
needs to support composing RESTful Web services in
addition to WSDL-based ones. However, given the contrast
between these two paradigms of engineering services [11,12],
direct merge is not feasible. It is exciting to see that a few
efforts [6] have been made that aims to integrate the RESTful
services into BPEL, thus forming the RESTful BPEL.
However, they still centre around the infrastructure of BPEL.

2. Given the strength and weakness of both BPEL and
Mashup, which one should we use? Our answer is: it really
depends. For static, stable workflow, we tend to use BPEL.
For community driven, transient workflow, we need to use
Mashups. Therefore, we need a set of principles or guidelines
that help software architects to make wise decisions. This
gives rise to the hybrid approach.

We contend that for applications that need to access
heterogeneous data and interfaces and that need to be updated
on a regular basis, we strongly encourage developers to use
Mashups. In particular, if user interaction plays important
roles. For stable processes, we intend to adopt the traditional
workflow system approach, in which the choreography or
orchestration is defined using formal specification with
security and fault-tolerance constructs. However, unlike the
traditional approach, we encourage a two-step methodology
here. In the first Step, developers can use situational Mashup
to develop prototypes that carry out trail-and-error
experiments. In the next step, once the Mashups are stable,
one then migrates them gradually to workflow system with
formal description and semantics. However, these two steps
need to be conducted in a iterative manner, thus the Mashups
are gradually evolving into a stable, formal workflow
specification.

It is our belief that that such a hybrid approach can be
applied to all distributed system in general, in particular, for
Workflow-based system. A pressing issue to realize such a
hybrid approach is the semantic representation of resource,
services, and processes.

VIII. CONCLUSIONS

We envision a full-fledged digital ecosystem that is of a
mixture of Service-Oriented, Resource-Oriented as well as a
Agent-Oriented paradigm. This has raised several issues for
researchers and practitioners to model the dynamics of the
DES. In this paper, we propose a hybrid approach that
integrates both BPEL-based and Mashup-based methods to
tackle the issues for Web-based digital ecosystems.

REFERENCES

[1] A. Trachtenberg, "A. PHP web services without SOAP,"

http://www.onlamp.com/pub/a/php/2003/10/30/amazon_rest.html 2003.

[2] R. T. Fielding, "Architectural Styles and the Design of Network-based

Software Architectures," PhD Dissertations, University of California,

Irvine CA, USA, 2000.

[3] W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N. Russell,

H. M. W. Verbeek, and P. Wohed, "Life After BPEL?," 2006.

[4] J. R. Erenkrantz, M. Gorlick, G. Suryanarayana, and R. N. Taylor,

"From Representation to Computations: The Evolution of Web

Architectures," presented at 6th Joint Meeting of the European

Software Engineering Conference and the ACM SIFSOFT Int'l

Synposium on the FOundations of Software Engineering, Dubrovnik,

Croatia, 2007.

[5] A. Fuggetta and G. P. Picco, "Understanding Code Mobility," IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, vol. 24, pp. 342 -

361, 1998.

[6] C. Pautasso, "BPEL for REST," presented at The 6th International

Conference on Business Process Management, Milan, Italy, 2008.

[7] E. M. Maximilien, H.Wilkinson, N. Desai, and S.Tai, A Domain-

Specific Language for Web APIs and Services Mashups, ICSOC, 2007,

LNCS 4749, pp. 13–26,

[8] D. Hinchcliffe, Is IBM making enterprise mashups respectable?,

http://blogs.zdnet.com/Hinchcliffe/?p=49, accessed on 13 May 2009.

[9] Faceconnector, http://salesbookapp.com/faceconnector/

[10] C. Wu and E., Chang, Searching services “on the Web”: A public

Web services discovery approach, in the proceedings of 3rd IEEE

International Conference on SIGNAL-IMAGE TECHNOLOGY and

INTERNET- BASED SYSTEMS, 16 – 19 Dec 2007, Shanghai

[11] C. Wu and E. Chang Aligning with the Web: An Atom- based

Architecture for Web Services Discovery, Service-Oriented Computing

and Applications, Vol 1, Issue 2, Springer, London, ISSN: 1863-2386

[12] T. Dillon, C. Wu and E. Chang, An abstract layered model for Web-

inclusive distributed computing leading to enhancing GRIDSpace with

Web 2.0, on the Special Issue at the Concurrency and Computation:

Practice and Experience, Wiley InterScience 2008

[13] Alonso, G., Gasati, F., Kuno, H. & Machiraju, V. (2004) Web Services:

Concepts, Architectures, and Applications, Springer Verlag.

[14] Currie, W. L. & Parikh, M. A. (2006) Value creation in web services:

An integrative model. Journal of Strategic Information Systems,

15, 153 - 174.

[15] Cong, S., Hunt, E. & Dittrich, K. R. (2006) IEIP: an Inter-Enterprise

 Integration Platform for e-Commerce Based on Web Service

 Mediation. IEEE European Conference on Web Services.

[16] Benatallah, B. (2005) Developing Adapters for Web Services

Integration. LNCS 3520. Springer-Verlag.

2009 Third IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2009)
© 2009 IEEE.

752

[17] Leyman F. (2006) Keynote at OTM, conference November 2006,

Montpellier.

[18] Hammer D.K., Hanish A.A. and Dillon T., (1998), Modeling

behavior and dependability of object-oriented real-time systems, Int.

Journal of Computer Systems Science and Eng.. 13(3) 1998, 139-150

[19] Goff, M.K.: Network Distributed Computing: Fitscapes and Fallacies.

Prentice Hall, Upper Saddle River, NJ (2003)

[20] Coulouris, G., Dollimore, J. & Kindberg, T. (2001) Distributed

Systems: Concepts and Design (3rd Edition), Addison Wesley

2009 Third IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2009)
© 2009 IEEE.

753

