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Abstract—We present a suite of key management scheme for
heterogeneous sensor networks. In view of different types of
communications, a single key can not satisfy various communi-
cation requirements. It is necessary to study the establishment
and renewal of different types of keys in heterogeneous sensor
networks. In this paper, we propose a new key management
scheme which can support five types of communications. Our
basic scheme is based on a keyed-hash chain approach. A new
cluster mechanism is used to improve the probability of key
sharing between sensors and their cluster heads. Different from
existing schemes where a node capture attack might lead to
the disclosure of several key chains, our method can avoid this
drawback through not storing network-wide generating keys in
low-cost sensors. Only pairwise keys involving the compromised
node should be deleted in our scheme. It is motivated by the
observation that all the information stored on a sensor may
be disclosed once the sensor gets compromised. Through the
analysis of both security and performance, we show the scheme
meets the security requirements.

Keywords-key management, key predistribution, keyed-hash
function; heterogeneous sensor network.

I. INTRODUCTION

Currently Wireless Sensor Networks (WSNs) are being
deployed for wide applications ranging from civilian to
military use. A typical WSN is composed of a great number
of sensor nodes. These sensor nodes have limited battery
power, weak data processing capability and short radio
range. Most important, sensor nodes are often randomly
spread out over specific regions and work in unattended envi-
ronment. They are prone to all kinds of attacks thus security
becomes the first concern. In order to keep communication
secure, sensitive data should be encrypted and authenticated.
Therefore, key management, which is a prerequisite of
encryption and authentication, should be addressed carefully.

Many previous researches on sensor networks considered
a homogeneous topology. In a homogeneous network, all
the nodes are identical and organized in a flat model. Such
a network is simple and efficient for small network scales.
However, it lacks of scalability. In such a network, the sensor
node which performs data aggregation and the forwarding
function will run out of power in advance because it receives
higher traffic volumes. It in turn leads to the collapse of the

whole network. An alternative way to extend the network
life is to randomly and periodically rotate the responsibility
of the data aggregation function over all nodes as the
scheme proposed in [1]. However, this rotation raises in
the requirement for stronger hardware capabilities. Both
[2] and [3] demonstrated the performance bottleneck of
homogeneous networks.

Lu et al. in [4] consider a multi-hierarchy Heterogeneous
Sensor Network (HSN). The network consist of I(I ≥ 3)
types of nodes. In fact, the common HSNs include 3 types
of entities. They are low-end nodes, high-end nodes and
the Base Station (BS). Low-end nodes have tiny memory
and very limited data processing capability. While high-
end nodes have more storage and stronger data processing
capability. BS is most powerful. These three types of entities
are organized in a hierarchical structure. High-end nodes act
as cluster heads and sensor nodes as cluster members. High-
end nodes aggregate data and forward the aggregated data
to BS and help BS in managing the network. Node addition
and revocation operations can be performed within a cluster.
In this way, the influence of a compromised node can be
localized within a cluster rather than the whole network.
Therefore, HSNs provide scalability and security benefits.

Heterogeneous Sensor Networks are liable to be attacked
by outside adversaries or inside compromised sensor nodes
[5]. Security is a challenging problem in HSNs due to the
constraints on memory and energy at low-end nodes. Asym-
metric cryptographic algorithms, such as RSA public key
techniques, while applicable for wired networks even general
ad hoc networks, may not suitable for sensor networks.
It is well known that Elliptic Curve Cryptography (ECC)
can obtain the same security level as RSA with a shorter
key length. A 160-bit ECC key has the same security level
as a 1024-bit RSA key [6]. However, the research in [7]
demonstrated that the Diffie-Hellman key agreement process
using Elliptic Curve asymmetric key algorithm in an ad hoc
network is between one to two orders of magnitude larger
than the key exchange process based on the AES symmetric
key algorithm in a regular non ad hoc network. Therefore,
we approach the problem using symmetric key cryptography.
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In this paper, we focus on the design of a secure and
efficient key management scheme for HSNs. Our scheme
supports the establishment and renewal of five types of keys
in the network because single key cannot satisfy different
communication requirements. All keys involved in this paper
are symmetric keys. The scheme uses keyed-hash chain to
reduce storage overhead. Different from the existing keyed-
hash chain based schemes [13] [14], sensor nodes only store
commitments for the corresponding key chains. This scheme
is resilient to node capture attack in this way. Even if one
or more nodes are compromised, no secret information is
disclosed. In addition, we define a new cluster mechanism
which improves the key sharing probability between the
sensors and their cluster heads.

The rest of the paper is organized as follows: In Section
II, we introduce the related research work. In Section III,
we describe the HSN model that is assumed throughout the
paper. In Section IV, we give the full details of the scheme.
After that, we study the establishment of other types of keys
in Section V. We analyze the security and performance of
the proposed scheme in Section VI and VII respectively.
Finally, we summarize the work in Section VIII.

II. RELATED WORK

As applications gain more ground, security issues in
sensor networks have created more concern. There have
been several attempts in securing WSNs, while all of them
have their pros and cons and they do not give a satisfactory
performance. For reasons of space, it is not possible to list
all of the existing work. Instead, we only review several
representative key predistribution techniques. After that, we
will present the outlines of our new scheme which would
be more effective.

Briefly, the previous schemes can be classified into
three categories: random key predistribution schemes [8],
polynomial-key predistribution schemes [10], and location-
based key predistribution schemes [11].

Eschenauer et al. proposed the pioneering work [8]. It is
a random key predistribution scheme. In this solution, key
distribution is divided into three stages: key predistribution,
shared-key discovery, and path-key establishment. Initially a
large key pool of P symmetric keys and the keys’ identities
are generated. k keys are randomly drawn and loaded into
each sensor node. In the second stage, two neighboring
nodes can set up a pairwise key if they have at least a key
match. It may be the case that some of the neighboring
nodes may not be able to find a key in common. The key-
path establishment is designed for this case. The nodes still
can establish a secure channel under the help of one or more
intermediate nodes. This scheme is flexible and fairly easy to
employ. However, a large fraction of communications may
be compromised when just a few nodes are compromised.

The basic scheme in [8] has further been improved by the
schemes in [9] [10] [11] from different aspects. Chan et al. in

[9] presented two variations of the scheme in [8]: q(q ≥ 2)-
composite scheme and multi-path key reinforcement scheme.
The major difference of [8] and q-composite scheme is that q
common keys instead of a single key are needed to establish
a pairwise key. By increasing the amount of key overlap
required for pairwise key establishment, the scheme makes
it difficult for an adversary to compromise a node. However,
it is pity that q-composite scheme does not satisfy scalability
requirements. Multi-path key reinforcement scheme deals
with the problem of key updating. A node will generate
j random key update shares and send them through j
disjoint secure paths. The receiving nodes can then generate
a reinforced link key. This approach increases resilience but
requires increased CPU use and power consumption.

Liu et al. [10] adopted the same idea as that in [8] but
extended the key pool to a t-degree polynomial pool. In this
scheme, no key in the network is used twice. By using the
polynomial, this scheme can be resilient up to t colluding
compromised nodes. Even if some sensors get compromised,
there will still be a high probability of establishing pairwise
keys for uncompromised sensors. Du et al. [11] described a
random key predistribution scheme which combines deploy-
ment knowledge to the key predistribution scheme in [10].
The authors argue that only neighboring nodes need secure
channels to communicate with each other. The scheme takes
advantage of the location information to avoid unnecessary
key establishment. Also, by choosing keys shared with nodes
likely to be in close proximity, the scheme increases the
probability of key sharing. It seems that the scheme has
more attractive properties than the schemes in [8] and [10],
however, it is not easy to acquire the knowledge of nodes’
expected location.

The research on key management for HSNs also emerged.
The scheme in [12] is a asymmetric predistribution (AP)
scheme for heterogeneous sensor networks. High-end nodes
which pick a large number of keys in this paper work as
cluster heads. Low-end nodes only pick a small number of
keys. The scheme reduced the storage overhead at low-end
nodes by shifting the storage overhead to high-end nodes.

Recently, two keyed-hash chain based key predistribution
schemes [13] [14] were proposed. Instead of generating a
large key pool of random keys, a key pool is represented by
a small number of generation keys. A seed S and a keyed
hash function H are publicly known by the cluster heads and
sensors. Each sensor node is preloaded with several genera-
tion keys. Each key chain is generated independently via a
unique generation key and the seed S by applying the hash
function H repeatedly. These two scheme reduce storage
overhead greatly. The main problem is that all the key chains
corresponding to generation keys stored on the node will be
exposed to adversaries as long as the node is compromised.
Although the scheme in [13] is a cluster-based scheme, the
generated keys are preloaded to sensors randomly from the
whole key pool and a compromised sensor will affect the
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whole network. The scheme in [14] uses the multi-path key
reinforcement method to update the number of iterations
to strengthen the security. Even though stronger security is
achieved too much communication overhead is needed at the
same time.

The existing key predistribution schemes only address
the establishment of pairwise keys between low-end nodes.
There are some other solutions (e.g.[15] and [16]) address
the establishment of network-wide session key in a sensor
network. Tian et al. in [15] adopt vector space secret sharing
technique to realize general monotone decreasing structures
for the family of subsets of users that can be revoked.
Furthermore, random numbers were used in the renewal of
session keys. The scheme not only keeps the forward and
backward secrecy but also resists collusion between the new
joined users and the revoked users. The scheme in [16]
enables a large and dynamic group of users to establish
and renew session keys for secure communications over
an unreliable wireless network. The scheme also enables
a user to recover, from a single broadcast message, T
keys associated with the sessions in which it belongs to
the communication group. The proposed scheme has been
comprehensively analyzed in an appropriate security model
to prove that it is secure.

However, neither pairwise keys nor session keys them-
selves can satisfy different kinds of communication require-
ments in heterogeneous sensor networks. Therefore, in this
paper, we discuses the establishment of five types of keys.
The basic scheme is a improved key predistribution scheme.
Other kinds of keys are established based on the pairwise
keys which are established in key predistribution stage.

III. NETWORK MODEL AND DESIGN GOAL

A. Network Model

WSNs are application-specific networks. No scheme can
be a one-fits-all security scheme. Therefore, it is important to
define a network model according to a concrete application.
In this paper, we focus on a military heterogeneous sensor
network scenario. The entities involve a BS, a small number
of cluster head (CH) nodes and a large number of ordinary
sensor nodes. All of these entities form a heterogeneous
network structure. The root level is the BS, the second level
are powerful cluster heads, and the bottom lever includes a
large number of low-cost sensor nodes. An example of such
a network model is shown in Figure 1.

1) BS is an infrastructure and assumed to be secure.
Because it is usually located far from the wireless
network, in our model, it takes charge of the network
by manipulating cluster heads. Interaction between BS
and low-end sensor nodes is not involved.

2) CHs are equipped with high power batteries, large
memory storage, strong data processing capabilities
and wide radio communication range. More important,

Figure 1. The network model

they are equipped with tamper-resistant hardware.
Cluster heads can communicate with sensors within
the cluster, the BS, and peer cluster heads.

3) Sensor nodes have limited battery power, small mem-
ory space, weak data processing capability, and short
radio range. Sensor nodes are mobile but with limited
mobility. To reduce the energy consumption, a node
only communicates with its CH or peer neighboring
nodes within the cluster it belongs to.

We assume that the base station will not be compromised.
A cluster head might be compromised but the adversaries
cannot get the secret data stored on it. However, we assume
that if a node is compromised, all the information it holds
will be known to the attacker. Further, for simplicity, we
assume cluster heads and sensor nodes are uniformly and
randomly distributed. For scalability, both cluster head and
sensor nodes can be added as needed. For security, the
compromised cluster heads and nodes can be revoked.

B. Design goal

1) In view of the fact that no single keying mechanism
is appropriate for all secure communications that are
needed in sensor networks, we devote to establish five
types of keys. These include (1) a master key shared
between CHs and BS for sending aggregated data, (2)
authentication keys shared by a CH and its cluster
nodes for verifying messages shared by them, (3)
pairwise keys shared by neighboring nodes within a
cluster for intra-cluster node-to-node communication,
(4) a cluster key for each cluster for broadcasting
within a cluster, and (5) pairwise keys shared by
cluster heads for inter-cluster communications.

2) Authentication is required for all types of packets,
whereas confidentiality may only be required for some
sensitive data. Also, authentication on new nodes is
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also necessary as a new node might be an adversary
one.

3) The scheme should be resilient against node capture
attacks. Once a node is compromised, it only discloses
the pairwise keys that is related to it. It will not affect
the whole network operation.

IV. THE PROPOSED SCHEME

In this Section, we present a key management scheme
specifically for HSNs. The essence of the suite of key
management is a key predistribution scheme. Just like the
existing key management schemes in [13] and [14], the
scheme includes three stages: key pool generation, key ring
assignment and common key discovery. We will first intro-
duce two definitions which will facilitate the understanding
of the scheme.

Definition 1. Keyed hash function is the foundation of
keyed hash chain. A keyed hash function H takes a key K
and a binary string M of arbitrary length as input, and
outputs a binary string of fixed length, which is called hash
value h: h = H(K,M). A keyed hash function H satisfies
the following two properties:

1) Given a key K and a string M , it is easy to compute
h such that h = H(K,M);

2) Given a hash value h and a string M , it is com-
putationally infeasible to find a key K ′ such that
H(K ′,M) = h;

Definition 2. Keyed hash chain in this paper can be
derived as follows:

1) generating a random key seed X and a generation key
K;

2) repeatedly applying the same keyed hash function to
produce the hash chain. Suppose the expected length
of the key chain C is L, the j-th key of the key chain
C is generated as follows:

kCj
=

{
H(K,X), if j = 0,
H(K, kCj−1), if j = 1, . . . , L − 1.

(1)

A. Key Pool Generation

The size of a key pool should be determined before its
generation. The optimum size of the key pool is constrained
by the expected probability of key sharing, the expected
resilience capability, and the number of keys on each node.
The number of keys on each node fully depends on the
node’s memory. We need to point out the size of a key pool
should maintain an acceptable key sharing probability and a
reasonable resilience capability for the network.

Different from the large key pool that is generated in the
scheme [8], a small key pool which only stores generation
keys is adopted in our scheme. Suppose the expected number
of keys is P and the length of each key chain is L. X is a
publicly known seed. gki(1 ≤ i ≤ M) are generation keys.
H is a keyed hash function. Each generation key gki has

an unique ID IDGi. Input the seed X and a generation key
gki to the hash function H , the j-th key of the key chain
Ci is generated as follows:

kCi,j
=

{
H(gki,X), if j = 0,
H(gki, kCi,j−1), if j = 1, . . . , L.

(2)

The last factor kCi,L
is called the commitment of the key

chain Ci. We call it Commiti for simplicity. It is used for
authentication and it does not belong to the key pool. Each
commitment Commiti has an unique ID IDCi. There is a
corresponding relation between IDGi and IDCi. That is,
we refer to the same key chain Ci when we talk about the
key chain that is corresponding to either IDGi or IDCi.

By iterating the above hash algorithm, we generate M =
P/L key chains as well as the commitment for each key
chain. It is assumed that no common keys exist between
any two key chains. That is Ci ∩ Cj = φ for 1 ≤ i, j ≤ M
and i �= j. In addition, BS also generates a master key KM .

B. Key Ring Assignment

1) Before deployment, each sensor Si is preloaded with r
randomly selected commitments (< i1, Commiti1 >
, . . . , < ir, Commitir

>) where i1, . . . , ir are IDs
of commitments. We denote the set of IDs of <
i1, . . . , ir > as [IDs]Si

. In addition, each node Si

is preloaded with an authentication key KM,Si
=

H(KM , IDSi
).

2) Each CHa is preloaded with T (T >> r) randomly
selected generation keys together with the correspond-
ing commitments (< a1, gka1 , Commita1 >, . . . , <
aT , gkaT

, CommitaT
>) where a1, . . . , aT are IDs

of commitments. We denote the set of IDs a1, . . . , aT

as [IDs]CHa
. Note that we refer to the same key

chain Ci when we talk about the key chain that is
corresponding to either IDGi or IDCi, CHa only
stores IDs of commitments rather than IDs of both
commitments and generation keys. In addition, each
CHa is preloaded with the master key KM .

After the king ring assignment stage, both cluster heads
and sensor nodes are uniformly and randomly deployed in
the assigned area.

C. Common Key Discovery

1) Cluster Formation. Each cluster head CHa broadcasts
a Hello message to its neighboring nodes with a
random delay in order to avoid the collision of the
Hello message from neighboring CHs. The Hello
message is < IDCHa

, [IDs]CHa
>. A node within the

network can receive several Hello messages because
of large communication range of CHs. Suppose a
node Si receives three Hello messages from CHa,
CHb, and CHc respectively. Si makes a compari-
son between the intersections [IDs]CHa

∩ [IDs]Si
,

[IDs]CHb
∩ [IDs]Si

, and [IDs]CHc
∩ [IDs]Si

. If
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|[IDs]CHb
∩ [IDs]Si

| ≥ |[IDs]CHc
∩ [IDs]Si

| >
|[IDs]CHa

∩ [IDs]Si
|, Si will choose the CHb as

its cluster head. Si also record CHc as the backup
cluster head. Other nodes also perform as the node Si.
In our scheme, to reduce the energy consumption and
the redundant traffics in a network, sensor nodes only
communicate with their cluster head and neighboring
nodes. We assume two nodes have no interaction if
they are located in two clusters.

2) Neighborhood Discovery. Each sensor node Si broad-
casts a Hello message. Suppose CHa is the clus-
ter head of the node Si, the Hello message is <
IDSi

, IDCHa
, [IDs]Si

> where [IDs]Si
is the set of

IDs of commitments. Suppose one of its neighboring
node Sj receives the message, Sj first check whether
Si belongs to the same cluster with it or not. If they
do not belong to the same cluster, Sj will discard
the message. Otherwise, Sj further compares [IDs]Si

and [IDs]Sj
. If [IDs]Si

∩ [IDs]Sj
= φ, Sj just

acknowledges with IDSj
. Otherwise, Sj will reply

with < IDSj
, [IDs]Si

∩ [IDs]Sj
. Finally, Sj > adds

Si together with [IDs]Si
∩ [IDs]Sj

to its neighboring
nodes list. After node Si receives a reply message
from neighboring node Sj , Si adds Sj together with
[IDs]Si

∩ [IDs]Sj
to its neighboring nodes list too.

Here we suppose the neighboring nodes list is a list
of two-tuples. Suppose Si’s neighboring nodes are
Sa, Sb, Sc and [IDs]Si

∩ [IDs]Sb
= φ. Si stores <

Sa, [IDs]Si
∩ [IDs]Sa

>‖< Sb, φ >‖< Sc, [IDs]Si
∩

[IDs]Sc
>. These procedures proceed until all the

sensor nodes have obtained the neighborhood infor-
mation.
The procedures are as follows:

a) Si ⇒ ∗ : IDSi
, IDCHa

, [IDs]Si
;

b) if CHa �= CHb, Sj discards the message;
if CHa = CHb & [IDs]Si

∩ [IDs]Sj
= φ,

Sj → Si: IDSj
;

if CHa = CHb & [IDs]Si
∩ [IDs]Sj

�= φ,
Sj → Si: IDSj

, [IDs]Si
∩ [IDs]Sj

;
Sj adds IDSi

and [IDs]Si
∩ [IDs]Sj

to its
neighboring nodes list;

c) Si adds IDSj
and [IDs]Si

∩ [IDs]Sj
to its

neighboring nodes list;

Here, ⇒ denotes broadcast and → denotes unicast. No
authentication mechanism is involved in this stage. It
is a general assumption that adversaries do not launch
active and explicit pinpoint attack on the nodes during
deployment and initialization which usually does not
last too long.

3) Shared Pairwise Key Establishment. The node Si

sends messages to its cluster head CHa. The message
contain node’s ID IDSi

, nonce, neighboring nodes
list, and Message Authentication Code(MAC) on all

these values. Suppose Sj is a neighboring node of
Si, the cluster head CHa determines the pairwise
key for Si and Sj by generating a random number
k, where 0 ≤ k ≤ L − 1. k is used as an index
in the key chain for selecting the pairwise key. After
that CHa disseminates the shared key information to
Si and Sj . The shared-key information consists of
the following: (1) IDs of neighboring nodes (Si and
Sj), (2) the result of ⊕ on all the shared generation
keys and commitments. If [IDs]Si

∩ [IDs]Sj
= φ,

CHa will generate a generation key gki,j for them. If
[IDs]Si

∩[IDs]Sj
= l, CHa will send gkl⊕Commitl

to Si and Sj . If [IDs]Si
∩ [IDs]Sj

= {m,n}(1 ≤
m,n ≤ M and m �= n), CHa will send gkm ⊕
Commitm ⊕ gkn ⊕ Commitn to Si and Sj . For the
conditions that two neighboring nodes share more than
two commitments, CHa does the same operation. (3)
k, (4) nonce, and (5) MAC which is calculated on all
these values using corresponding authentication keys
KM,Si

and KM,Sj
.

The procedures are as follows:

a) Si ⇒ CHa: IDSi
, nonce, neighboring nodes

list, MACKM,Si
;

b) If [IDs]Si
∩ [IDs]Sj

= φ,
CHa → Si: IDSi

, IDSj
, EKM,Si

(gki,j), k,
nonce, MACKM,Si

;
CHa → Sj : IDSi

, IDSj
, EKM,Sj

(gki,j), k,
nonce, MACKM,Sj

;
If [IDs]Si

∩ [IDs]Sj
= l,

CHa → Si: IDSi
, IDSj

, gkl ⊕ Commitl, k,
nonce, MACKM,Si

;
CHa → Sj : IDSi

, IDSj
, gkl ⊕ Commitl, k,

nonce,MACKM,Sj
;

If [IDs]Si
∩ [IDs]Sj

= {m,n},
CHa → Si: IDSi

, IDSj
, gkm ⊕ Commitm ⊕

gkn ⊕ Commitn, k, nonce, MACKM,Si
;

CHa → Sj : IDSi
, IDSj

, gkm ⊕ Commitm ⊕
gkn ⊕ Commitn, k, nonce, MACKM,Sj

;

CHa iterates the above procedures to determine the
shared pairwise keys for Si with all the nodes in Si’s
neighboring nodes list.
After Si receives the message from CHa, Si will
proceed as follows:

a) Si authenticates the message by verifying the
message with its authentication key KM,Si

. If
the verification fails, Si will discard the message.
Otherwise, go to b).

b) If [IDs]Si
∩ [IDs]Sj

= φ, Si computes the key
Hk(gki,j ,X) shared by it and Sj .
If [IDs]Si

∩ [IDs]Sj
= l, Si first computes

the generation key gkl = Commitl ⊕ gkl ⊕
Commitl. Then Si computes Hk(gkl,X) shared
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by it and Sj .
If [IDs]Si

∩ [IDs]Sj
= {m,n}, Si first

computes the generation key gkm ⊕ gkn =
Commitm ⊕ Commitn ⊕ gkm ⊕ Commitm ⊕
gkn ⊕Commitn. Then Si computes Hk(gkm ⊕
gkn,X) shared by it and Sj . For the condition
that Si and Sj share more than two commit-
ments, the key recovery operations are the same.

4) Special Condition. There is a special condition that
two nodes share at least one commitment, while their
cluster head does not have any of the corresponding
generation key. For this condition, the cluster head
will turn for help to its neighboring cluster heads. The
neighboring cluster heads which has the corresponding
generation key will encrypt and send it to the cluster
head.

V. ESTABLISHMENT OF OTHER TYPES OF KEYS

No single keying mechanism is appropriate for all types
of secure communications in sensor networks. Therefore,
we explore the way to establish other types of keys. From
the aforementioned description we know, cluster heads share
the master key KM with BS. Each node Si shares a
pairwise key with its cluster head KM,Si

= H(KM , IDSi
).

Also we have discussed how to establish pairwise keys
between neighboring nodes within a cluster. However, in real
applications, a cluster key CK shared between a cluster head
and all nodes in the cluster is needed in order to broadcast a
message within this cluster, and a network key NK shared
by all the entities in the network is also needed in order
to share some network-wide information. Furthermore, the
communication between cluster heads is also necessary. We
now discuss the establishment of these keys in turn.

A. Establishment of Cluster Key Within a Cluster

A cluster key for each cluster which can facilitate secure
broadcast within the cluster is necessary. In our scheme, the
cluster key CKa is generated by CHa. After its generation,
CHa will encrypt with the shared key between itself and
each node. Finally, cluster head CHa sends the following
message to a cluster member Si:

CHa → Si : EKM,Si
(CKa),

where KM,Si
is the shared key between CHa and node Si.

The cluster key must be updated once a node in the cluster
is compromised. The updating of the cluster key is similar to
the establishment of a new cluster key. CHa generates a new
cluster key and encrypts it with shared key between itself
and legal nodes. Finally, CHa sends the encrypted cluster
key to legal nodes in the cluster.

In real applications, a node may broadcast messages to its
neighboring nodes. We do not explore how to share a cluster
key between neighboring nodes as this kind of broadcasting
happens infrequently. If a node wants to share a message

with its neighboring nodes, it encrypts the message with
the pairwise keys and then links up the encrypted messages
with IDs of the expected nodes. When a node receives
the message, it first checks whether its ID is included in
the message. If so, it will decrypt the corresponding part.
Otherwise, it will discard the message.

We do not explore the establishment of network key NK
here. If BS wants to share information with all the nodes, it
broadcasts the message to cluster heads. Cluster heads then
broadcast the message within their clusters.

B. Establishment of Pairwise keys Between Clusters

In order to keep communication secure between clusters,
each cluster head has to agree on pairwise keys with cluster
heads in its communication range. The pairwise key shared
by two cluster heads CHa and CHb is generated as follows:

KCHa,CHb
= H(KM , IDCHa

‖ IDCHb
),

where H is hash function, KM is the master key, and
‖ is the string concatenation function. The pairwise keys
established in this way guarantee that sensor nodes cannot
decrypt massages shared by cluster heads. However, the
communication between two cluster heads can be seen by
other cluster heads. We don’t think this characteristic destroy
the security because all the cluster heads have the same
security level.

Up to now, we have discussed the establishment of five
types of keys. Please see Table I for details.

Table I
FIVE TYPES OF KEYS

Key Entities Function
Master key BS and CHs Keeps secure communications
KM between BS and CHs
Authentication key CH and Si Authenticates messages
KM,Si

shared by CH and Si

Pairwise key Si and Sj Keeps secure communications
KSi,Sj

between Si and Sj

Cluster key CHa and Keeps secure broadcasts
CKa cluster nodes within the cluster
Pairwise key CHa and CHb Keeps secure communications
KCHa,CHb

between CHa and CHb

VI. SECURITY ANALYSIS

In this section, we discuss several security issues in HSNs,
including node revocation, node addition, and resisting node
capture attacks. We show our scheme satisfy these security
requirements.

A. Node Revocation

In existing keyed-hash chain based schemes [13] [14],
the compromise of a node will result in the disclosure of
all the key chains corresponding to generation keys which
it stores. While in our scheme, a node only stores com-
mitments. No network-wide secret information is disclosed
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even if a large number of nodes are compromised. Therefore,
only neighboring nodes delete the pairwise keys they share
with the compromised node once a sensor is compromised
by an adversary. The cluster head will send a revocation
message to neighboring nodes of the compromised node.
The message is authenticated by the authentication keys.
The cluster head will add the ID of the compromised node
to Revoked Node List.

B. Node Addition

Addition of new nodes is necessary for key management
schemes in order to achieve the scalability property or to
substitute compromised nodes. However, it poses a chal-
lenge on security schemes because a newly deployed sensor
could have been compromised. Therefore, an efficient way
to authenticate new nodes is of great importance. Recall
that cluster heads have the master key KM , each new
sensor Snew is preloaded with a authentication key which
is KM,Snew

= H(KM , IDSnew
). After the node Snew is

deployed in the network, Snew sends join request to a cluster
head CHa. The request is given as below:

Snew → CHa : IDSnew
, nonce,

MACKM,Snew
(IDSnew

, nonce).

CHa first checks whether IDSnew
is included in the

Revoked Node List. If IDSnew
is included in the Revoked

Node List, CHa will discard the message. Otherwise, CHa

generates KM,Snew
and then authenticates the node Snew

by verifying the MAC. After that, Snew determines its
neighboring nodes as described in the stage of Neighborhood
Discovery. We do not discuss the attacks launched by a
compromised node which has not been detected by the
cluster head.

C. Resisting Node Capture Attack

Because wireless communication is not secure, an adver-
sary can not only eavesdrop on all communications but also
inject packets or replay messages. Also, an adversary may
inject new nodes into the network. In our scheme, all the
sensitive data is authenticated by MAC or encrypted by
corresponding keys. When a new node is added into the
network, the first step is to check its validity.

It is infeasible to setup tamper-resistance hardware for
each sensor node. Once a node capture attack is launched,
all the information the compromised node holds will be
known to the attacker. In our scheme, a node only stores
commitments rather than generation keys. Once a node is
compromised, only commitments and pairwise keys it shares
with the cluster head and its neighboring nodes are disclosed.
According to the one-way property of the hash function, the
adversary cannot get any key on the key chain from the
commitment. As long as the cluster head updates the session
key within the cluster and deletes the pairwise keys which
belong to the compromised node, this scheme is secure.

VII. PERFORMANCE ANALYSIS

The storage overhead of our scheme is the same as that of
[13]. The only difference is that nodes store commitments
rather than generation keys. The result in [13] shows the
scheme can significantly reduce the storage load.

The memory of a sensor is fixed after the sensor is pro-
duced. The largest number r of commitments stored on each
sensor is constrained by the memory of the sensor. Once r is
set, the larger of key pool size P is, the smaller probability
that two nodes share a key; the smaller the key pool size
P is, the larger the impact on other sensor’s communication
when a fixed number of sensors are compromised. We want
to find the largest key pool size that the probability of a
node and its cluster head sharing a key chain is no less than
a threshold p.

Suppose the number of key chains is M . A sensor node
has C(M, r) different ways of selecting r commitments
from a key pool with the size P .

C(M, r) =
M !

r!(M − r)!
. (3)

A cluster head has C(M,T ) different ways of selecting T
generation keys from a key pool with the size P .

C(M,T ) =
M !

T !(M − T )!
. (4)

Therefore, the total number of ways for a sensor node to
pick up r commitments and a cluster head to pick up T
generation keys respectively is C(M, r)C(M,T ).

C(M, r)C(M,T ) =
M !

T !(M − T )!
. (5)

In [13], the probability that a sensor node and a cluster head
node share a common key can be given as p[13] = 1 −
Pr[a node and a cluster head node do not share any key].

p[13] = 1 − (M − r)!(M − T )!
M !(M − r − T )!

. (6)

While in our scheme, we use a new cluster mechanism
which can increase the probability of key sharing
between sensor nodes and their clusters. In order to
simplify the analysis, we suppose each node can receive
broadcast messages from three cluster heads. The node
chooses a cluster head with whom it shares the largest
number of commitments as its cluster head. Therefore,
the probability that a sensor node and its cluster head
share a common key can be given as pour = 1 −
Pr[a node does not share any key with three cluster heads].

pour = 1 − (
C(M, r)C(M − r, T )

C(M, r)C(M,T )
)3. (7)

In order to highlight the advantage of our scheme, we also
calculate the probability of sharing at least one key between
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Figure 2. Comparison of key sharing probability for different key pool
size in schemes [8], [12], [13] and our proposed scheme

two nodes in basic schemes [8] and [12].

p[8] = 1 − C(P − m,m)
C(P,m)

, (8)

where m is the number of keys stored by each sensor node.

p[12] = 1 − (P − l)!(P − L)!
P !(P − l − L)!

, (9)

where l is the number of picked by a low-end sensor node
and L is number of keys picked by a high-end sensor node.

We derive the probability of sharing at least one key for
schemes [8] [12] [13] and our scheme in Figure 2. In Figure
2, we suppose the key pool size in schemes [8] and [12]
ranges from 1000 to 10000, with an increment of 1000.
Suppose the length of each key chain is 10, the key pool
size in scheme [13] and our scheme ranges from 100 to
1000, with an increment of 100. The corresponding param-
eters [T, r, L, l,m] are [80, 5, 500, 20, 100]. The relationship
between these parameters are L×l = m2, L > T , and l > r.

From Figure 2, we can see that the proposed scheme
achieves the higher probability of key sharing while it keeps
low storage overhead.

It is easy to come to the conclusion that the probability
of key sharing between a node and its cluster head increases
with the number of commitments in sensor nodes. In Figure
3, we show our scheme always has higher key sharing
probability than scheme [13] for different key pool sizes
and different number of keys stored in sensors.

For keyed-hash chain based random key predistribution
scheme, one of the main problems is how to determine the
length of the key chain. Once the key pool size is fixed,
the longer the key chain, the smaller is the number of key
chains. A small number of key chains contribute to reducing
the storage overhead. However, in terms of security, long key
chains may weaken the security of the scheme. How to get
the best key chain length which keeps an acceptable security
level and storage overhead is an open problem.

Figure 3. The relation between the key sharing probability and sensors’
storage overhead

VIII. CONCLUSION

We have presented a key management scheme for Het-
erogeneous Sensor Networks in this paper. The scheme is
based on keyed-hash chain. It has the following properties:

1) The scheme supports the establishment and renewal
of five types keys in the network because a single key
can not satisfy different communication requirements.

2) Each sensor node only stores several commitments
instead of generation keys. On the one hand, it reduces
storage overhead and the network is still secure even if
a large number sensor nodes are compromised. While
in previous schemes, once a node is compromised, all
the key chains corresponding to the generation keys
stored on the node will be disclosed.

3) A new cluster mechanism is used to improve the prob-
ability of key sharing probability between the sensors
and their cluster head. This mechanism facilitates the
management of clusters.

Through security analysis and performance analysis, we
show the scheme meets the security requirements in
resource-constrained sensor networks
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