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The steadily increasing number of sequenced fungal and oomycete genomes has

enabled detailed studies of how these eukaryotic microbes infect plants and cause

devastating losses in food crops. During infection, fungal and oomycete pathogens

secrete effector molecules which manipulate host plant cell processes to the

pathogen’s advantage. Proteinaceous effectors are synthesized intracellularly and must

be externalized to interact with host cells. Computational prediction of secreted proteins

from genomic sequences is an important technique to narrow down the candidate

effector repertoire for subsequent experimental validation. In this study, we benchmark

secretion prediction tools on experimentally validated fungal and oomycete effectors.

We observe that for a set of fungal SwissProt protein sequences, SignalP 4 and the

neural network predictors of SignalP 3 (D-score) and SignalP 2 perform best. For effector

prediction in particular, the use of a sensitive method can be desirable to obtain the most

complete candidate effector set. We show that the neural network predictors of SignalP

2 and 3, as well as TargetP were the most sensitive tools for fungal effector secretion

prediction, whereas the hidden Markov model predictors of SignalP 2 and 3 were the

most sensitive tools for oomycete effectors. Thus, previous versions of SignalP retain

value for oomycete effector prediction, as the current version, SignalP 4, was unable

to reliably predict the signal peptide of the oomycete Crinkler effectors in the test set.

Our assessment of subcellular localization predictors shows that cytoplasmic effectors

are often predicted as not extracellular. This limits the reliability of secretion predictions

that depend on these tools. We present our assessment with a view to informing future

pathogenomics studies and suggest revised pipelines for secretion prediction to obtain

optimal effector predictions in fungi and oomycetes.
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INTRODUCTION

The growing number of sequenced fungal and oomycete
plant pathogen genomes has enabled detailed reverse genetics
studies into molecular pathogen-host interactions (Dean et al.,
2012; Kamoun et al., 2014). Though fungi and oomycetes
belong to phylogenetically distinct microbial taxa, they both
use a diverse class of molecules, termed effectors, to promote
pathogenicity through subversion of host defenses or impairment
of normal host-cell function (Dodds and Rathjen, 2010; Lo
Presti et al., 2015). Effector molecules may be the products
of either secondary metabolite or protein synthesis, however
the majority of effectors identified in fungi and oomycetes
are the latter. Proteinaceous effectors are initially synthesized
intracellularly and require relocation to the extracellular space
(apoplastic effectors) or subsequent import into the host cell
cytoplasm or specific organelles (cytoplasmic effectors). The
classical endoplasmic reticulum (ER)/Golgi-dependent secretion
pathway in eukaryotes is well-defined and involves recognition
of an N-terminal signal peptide that is cleaved off as the
protein is translocated across the membrane (Von Heijne, 1990).
Classical signal peptides can be predicted computationally with
high accuracy (Menne et al., 2000; Klee and Ellis, 2005; Choo
et al., 2009; Min, 2010; Melhem et al., 2013), and the majority
of experimentally verified fungal and oomycete effectors are
predicted to be secreted in this manner. However, reports are
emerging for yet unknown, non-classical secretion pathways to
also play a role in fungal and oomycete effector externalization
(Ridout et al., 2006; Liu et al., 2014). Numerous eukaryotic
plant pathogen effectors have been found to be active inside the
host cell cytoplasm; however the knowledge of how effectors
are delivered into the plant cells after secretion is fragmentary.
In oomycete effectors, conserved amino acid motifs such as
RXLR, CHXC, or LFLAK are positioned in N-terminal domains
and define oomycete effector superfamilies (Petre and Kamoun,
2014). Although mechanisms have been proposed as to how
the RXLR motif may facilitate cell entry through the host cell
membrane phospholipid bilayer, the results are still controversial
(Tyler et al., 2013; Wawra et al., 2013). Conserved sequence
motifs associated with translocation have thus far not been found
for fungal effector proteins, which makes their computational
prediction from secretomes challenging (Sperschneider et al.,
2015). A conserved Y/F/WxC-motif has been identified in the
N-terminus of effector candidates in the barley powdery mildew
fungus (Godfrey et al., 2010), however the role of this motif in cell
entry or pathogenicity remains undetermined.

Several studies have exploited proteomics to experimentally
identify secreted proteins involved in pathogenicity. For example,
an early proteomics study of extracellular proteins of the
wheat-infecting fungus Fusarium graminearum identified 120
candidates secreted in planta, of which only 56% possessed
a predicted signal peptide motif (Paper et al., 2007). A later
study in the same species identified only 69 secreted proteins,
following growth in barley or wheat flour-based liquid cultures
to mimic host-pathogen interactions (Yang et al., 2012). Of
these, 70% possessed a predicted signal peptide. A recent
study in the oomycete potato pathogen Phytophthora infestans

predicted 80% of its extracellular proteome to contain a signal
peptide (Meijer et al., 2014). Thus, there appears to be wide
variability (both between species and experiments) in the
number of extracellular proteins identified through experimental
proteomics that are also predicted to be secreted in silico. A
high percentage of proteins lacking a classical signal peptide
may be due to contamination of extracellular samples with
intracellular proteins, due to rupture of the fungal cells during the
protein extraction procedure. Furthermore, protein extraction
may be complicated in species where there is a low or variable
pathogen biomass relative to the host, or that selectively secrete
different proteins when grown in different in vitro or infection-
mimicking cultures. Computational limitations also have the
potential to complicate proteomics experiments. This may come
from variability between species in their use of non-classical
secretion mechanisms, which cannot yet be accurately predicted.
Gene annotation is also an important determining factor for the
reliability of both experimental proteomics and computational
prediction of secretion. Proteomic identification of genes is
dependent on the completeness and accuracy of translated gene
annotations that are used to generate a searchable database
of predicted trypsin-digested proteins, to which peptide mass-
spectra are matched (Bringans et al., 2009). Thus, missing or
incorrect gene annotations may exclude or confuse identification
of extracellular proteins. Prediction of secretion also relies
strongly on the presence and accurate annotation of the 5′

exons of genes, which encode N-terminal signal peptides. Due
to these technical difficulties, deriving accurate computational
predictions of secreted proteins from whole genome sequences
remains an important pursuit in plant pathology, with a view
toward efficient identification of secreted proteins for subsequent
effector prediction.

The apparent ease of secretion prediction has led to its
common use in pathogenomic studies as a first pass filter in
narrowing down a whole proteome dataset into a short-list
of potential effector candidates (Kämper et al., 2006; Raffaele
et al., 2010; Rouxel et al., 2011; Hane et al., 2014; Nemri et al.,
2014). A variety of software tools exists for eukaryotes that
can predict whether proteins are secreted into the extracellular
environment (Emanuelsson et al., 2007). Typically, this involves
recognition of the N-terminal secretory signal peptide motif
that directs proteins through the classical ER/Golgi-dependent
pathway using tools such as SignalP (Petersen et al., 2011).Whilst
this is a robust approach for defining a set of potential effector
candidates, typically far more candidates are predicted for
experimental validation than is feasible. Furthermore, proteins
that are predicted to be secreted via a classical pathway might be
retained in the ER/Golgi or fulfill roles as part of the cell wall.
Therefore, subcellular localization prediction is an important
tool that can point toward the functional role or interaction
partners of a protein based on its amino acid sequence and
can be used to assess if a protein is indeed secreted into
the extracellular space (Emanuelsson, 2002). Transmembrane
proteins are also commonly predicted and removed from the
secretome as these are likely to fulfill functions in the pathogen
cell wall. Whilst in silico methods for secretome prediction are
under active development and show robust performance, their
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reported predictive accuracy strongly depends on the selection of
the test set and independent benchmarking studies are important
for an unbiased tool evaluation. For example, a comprehensive
benchmark of secretion prediction tools found that predictive
accuracy was in many cases lower than those initially reported by
the developers (Klee and Ellis, 2005). Although an evaluation on
a large test set covering a wide taxonomic spectrum gives a good
indication of a tool’s performance, it provides limited insight into
its expected performance on a specialized set of proteins, such as
effector proteins of fungal and oomycete pathogens.

This study set out to reveal the strengths and weaknesses of
existing protein secretion and subcellular localization prediction
methods, as applied to the identification of effector proteins
produced by fungi or oomycete plant pathogens. Prediction
pipelines that have been used in previous studies for defining
secretomes and subsequently effector candidates of eukaryotic
plant pathogens are diverse and highly parameterized, as
exemplified in Table 1. For example, SignalP (Nielsen et al., 1997;
Nielsen and Krogh, 1998; Bendtsen et al., 2004b; Petersen et al.,
2011) or Phobius (Käll et al., 2004) are utilized by the majority
of pipelines to extract proteins that are likely to be secreted via
a classical pathway. Despite the availability of the latest version
of SignalP 4, which was designed to discriminate between signal
peptides and N-terminal transmembrane (TM) regions, previous
versions (2 and 3) are still frequently used due to their increased
sensitivity. Phobius was designed to predict secretion and N-
terminal TM domains separately, predicting both the presence of
a signal peptide and the number and location of TM helices.

Furthermore, there are also discrepancies in how tools are
used and how thresholds for secretion are set (Table 1). For
example, some studies have used the neural network scores from
SignalP 2 and 3 with custom thresholds, whereas others rely on
the hiddenMarkov model probability for predicting the presence
of a signal peptide. SignalP 2 and 3 employ predictions from
both a neural network (SignalP-NN) and a hiddenMarkovmodel
(SignalP-HMM), whilst the latest version SignalP 4 is purely
based on neural networks. SignalP 2 returns three neural network
scores for each position in the sequence: a raw cleavage site score
(C-score), the signal peptide score (S-score), and the combined
cleavage site score (Y-score). For each sequence, it reports the
maximal C-, S-, and Y-scores as well as the mean S-score between
the N-terminus and the predicted cleavage site that it used to
assess whether a sequence contains a signal peptide. Furthermore,
it returns two hidden Markov model scores, the C-score as well
as the probability that the sequence contains a signal peptide
(S-probability). SignalP 3 replaces the previously used mean S-
score for classification with the D-score, which is calculated as
the average of the mean S-score, and the maximal Y-score. It
still uses both neural network scores and calculates the signal
peptide probability with a hidden Markov model. SignalP 4 is a
neural network based method designed to discriminate between
signal peptides and transmembrane regions. Prediction of signal
peptides is based entirely on the D-score. For all scores, Boolean
flags are provided which are either “Y” for a signal peptide or “N”
for no signal peptide.

Subcellular localization tools such as TargetP (Emanuelsson
et al., 2000), WoLF PSORT (Horton et al., 2007), or ProtComp

are frequently used to complement the predictions made by
SignalP or Phobius, either through a union or intersection of
predictions made by these methods (Table 1). This can serve
to filter proteins that may be predicted to contain a signal
peptide, yet that might not be fully secreted into the extracellular
space due to being retained within the ER/Golgi. TargetP
predicts if a protein is secreted or localized to the mitochondria,
chloroplast, or another unknown location. It reports reliability
class scores from 1 to 5, where 1 corresponds to the strongest
prediction. Another tool WoLF PSORT, an updated version of
PSORT II, has been trained separately on fungi, animal, and
plant data. It reports predicted subcellular locations (nuclear,
mitochondria, cytosol, cytoskeleton, endoplasmic reticulum,
plasma membrane, extracellular, chloroplast, peroxisome, Golgi
apparatus, lysosome, and vacuolar membrane) in terms of
respective scores based on a weighted k-nearest neighbor
classifier. The output format is similar to a sequence similarity
search, with scores assigned for each predicted localization site
based on the number of nearest neighbors to the query protein.
In most studies that employ WoLF PSORT, proteins have been
predicted as secreted where extracellular predictions score higher
than other locations (Table 1). Less commonly, the prediction
of non-classically secreted proteins has been reported using
SecretomeP, which has been trained on a very small set of verified
non-classically secreted proteins derived from mammalian and
bacterial sequences (Bendtsen et al., 2004a). Consequently, the
relevance of SecretomeP to fungal and oomycete proteins is
questionable. Finally, ProtComp is a web-server based tool
combining several methods for protein localization, ranging
from neural networks to sequence homology searches. Its lack
of a publicly distributed version for local installation precludes
it from routine use for whole-genome analysis. Predicted
transmembrane proteins are typically removed from the set
of predicted extracellular proteins using programs such as
TMHMM (Krogh et al., 2001) or Phobius. However, most
pipelines allow for the presence of one transmembrane domain
in the N-terminus, as this can correspond to the signal peptide
as both are predicted based on the presence of hydrophobic
residues. Additionally, TargetP is often employed to eliminate
proteins predicted to be targeted tomitochondria or chloroplasts.
In some fungal studies, predicted GPI-anchored proteins are also
removed from the set of secreted effector candidates.

The diversity of prediction pipelines shown in Table 1

illustrates an overall lack of consensus used to predict
extracellular pathogen proteins, in particular for effector
candidates, and presents difficulties when comparing secretome
sizes across different species. Herein we benchmark the
performance of individual secretion prediction tools on
experimentally verified fungal and oomycete effectors and use
the best-performing tools to predict extracellular proteins across
fungal and oomycete pathogens. In particular, we show that
for cytoplasmic effector proteins that are first secreted into the
extracellular space and subsequently translocated to the host
cell, protein subcellular localization predictors suffer from poor
accuracy. We highlight differences in performance for secretion
prediction between fungal effectors and oomycete effectors
and conclude by providing practical recommendations for the
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TABLE 1 | Examples for approaches used in eukaryotic plant pathogen genomic studies that predict secreted proteins.

References Species/taxon Secretome size

(total number of

predicted genes)

Positive evidence Negative evidence Remarks

(A) FUNGAL PATHOGENS

Kämper et al., 2006 Ustilago maydis 426 (6902) SignalP 3.0, TargetP,

ProtComp 6.0

Ma et al., 2010 Fusarium oxysporum f. sp.

lycopersici

1803 (17,735) SignalP 3.0 TMHMM, Phobius,

TargetP

SignalP D-score, TM allowed in the first 50

amino acids, TargetP no mitochondrial

targeting with RC = 1 or 2
F. verticillioides 1549 (14,179)

Spanu et al., 2010 Blumeria graminis f. sp.

hordei

NA (5854) SignalP, SecretomeP – S-prob > 0.9, SecretomeP > 0.5

Rouxel et al., 2011 Leptosphaeria maculans NA (12,469) SignalP 3.0, TargetP TMHMM Both SignalP-NN and SignalP-HMM

predict SP, TargetP predicts “secreted,” 1

TM in SP allowed

Duplessis et al.,

2011

Melampsora larici-populina NA (16,399) SignalP TargetP, TMHMM,

big-PI

S-prob > 0.9, TargetP no mitochondrial

targeting with RC = 1 or 2, one TM ≥ 18

in first 60 aas allowedPuccinia graminis f. sp. tritici NA (17,773)

Klosterman et al.,

2011

Verticillium dahliae 780 (10,535) SignalP 3.0, WoLF

PSORT

TMHMM, Phobius D-score > 0.5, WoLF PSORT predicted to

be extracellular, no TM predicted by either

TMHMM or PhobiusV. albo-atrum 759 (10,221)

Cantu et al., 2011 P. striiformis f. sp. tritici 1088 (20,423) SignalP 3.0 TMHMM, TargetP S-prob ≥ 0.9, average cleavage site

position: 24 ± 9, TM length ≥ 18 aas and

not in the first 60 aas, TargetP no

mitochondrial proteins (RC = 1 or 2)

O’Connell et al.,

2012

Colletotrichum higginsianum 2142 (16,172) WoLF PSORT – WoLF PSORT predicted to be extracellular

C. graminicola 1650 (12,006)

Ohm et al., 2012 Dothideomycetes NA SignalP 3.0 TMHMM 2.0 One TM allowed in first 40 aas

Brown et al., 2012 Fusarium graminearum 574 (13,937) SignalP 3.0, TargetP

1.1, ProtComp 8.0,

WoLF PSORT 0.2

TMHMM 2.0, big-PI SignalP D-score = Y, TargetP predicts

“secreted,” ProtComp extracellular or

unknown, no TM in mature protein, WoLF

PSORT extracellular score > 17, no

GPI-anchor

de Wit et al., 2012 Cladosporium fulvum 1200 (14,127) SignalP 3.0, WoLF

PSORT

Phobius, TMHMM 2.0,

TargetP 1.1, PredGPI

D-score > 0.5, TargetP no mitochondrial

targeting, no GPI anchor, no TM predicted

by either TMHMM or PhobiusDothistroma septosporum 905 (12,580)

Wiemann et al.,

2013

Fusarium fujikuroi 1336 (14,813) SignalP 4.0,

SecretomeP, WoLF

PSORT

TargetP, TMHMM SecretomeP score > 0.6, TargetP no

mitochondrial targeting, TargetP RC-score

< 4, Signalp S-score > 0.5

Manning et al.,

2013

Pyrenophora tritici-repentis 1146 (12,141) SignalP 3.0, WoLF

PSORT

TMHMM WoLF PSORT predicted to be

extracellular, one TM allowed unless it

starts in the first 10 aas

Hane et al., 2014 Rhizoctonia solani AG8 1959 (13,964) SignalP 4.1, Phobius

1.01, WoLF PSORT

0.2

Phobius 1.01 SignalP secreted or Phobius secreted or

WoLF PSORT predicted to be

extracellular, only one TM domain allowed

Nemri et al., 2014 Melampsora lini 1085 (26,443) SignalP 2.1-HMM,

SignalP 4.1

TMHMM 2.0, TargetP

1.1

No TM, TargetP no mitochondrial

targeting, D-score > 0.36, S-prob > 0.88,

cleavage site predicted between

amino-acid 10 and 40 using SignalP 2

(Continued)
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TABLE 1 | Continued

References Species/taxon Secretome size

(total number of

predicted genes)

Positive evidence Negative evidence Remarks

Guyon et al., 2014 Sclerotinia sclerotiorum 745 (14,503) SignalP 2, SignalP 4 TMHMM, GPIsom TM after SP removed, no GPI anchor

(B) OOMYCETE PATHOGENS

Haas et al., 2009 Phytophthora infestans NA (17,797) SignalP 3.0 – –

Raffaele et al., 2010 P. infestans 1415 (18,155) SignalP 2.0, SignalP

3.0, TargetP, PSort

TMHMM SignalP-HMM 2.0 score ≥ 0.9,

SignalP-NN 3.0 Y-max score ≥ 0.5,

SignalP- NN 3.0 D-score ≥ 0.5, SignalP-

HMM 3.0 S-prob ≥ 0.9, TargetP predicted

localization “Secreted” (S), most probable

PSort location “extracellular” (extr.) and no

TMHMM predicted TM domain after signal

peptide cleavage site

Lévesque et al.,

2010

Pythium ultimum 747 (15,297) SignalP 2.0 TMHMM, TargetP SignalP-HMM predicts signal peptide,

SignalP-NN predicts a cleavage site

between amino acids 10 and 40

Links et al., 2011 Albugo candida 939 (15,824) SignalP 3.0 – Either SignalP-NN or SignalP-HMM

predict SP, SignalP predicts a cleavage

site between amino acids 10 and 30

Kemen et al., 2011 A. laibachii 1636 (13,032) SignalP 3.0 MEMSAT3 Both neural network and hidden Markov

model predict signal peptide. Proteins

were considered to be without a TM

domain with pnon−TM> 0.0004 or, for high

stringency, pnon−TM> 0.01.

(C) SECRETOME STUDIES

Lowe and Howlett,

2012

Fungi – SignalP – –

Sperschneider

et al., 2015

Fungi – SignalP 4.1 – –

Lo Presti et al.,

2015

Fungi – SignalP 4.0 TMHMM No TMs as predicted by TMHMM 2.0c

(TMHMM score < 2)

If provided in the original paper, version numbers of prediction tools are given.

computational secretion prediction for effector candidate mining
from eukaryotic pathogen genomes.

MATERIALS AND METHODS

Various datasets were chosen for the purpose of comparing
the performance of secretion prediction software tools,
in the context of plant pathogenomics. Experimentally
validated fungal and oomycete effector protein sequences
were collected from PHIbase version 3.6 (Urban et al., 2015)
and from manual literature searches (Supplementary Data
Sheet 1, 2, Supplementary Table 1). For further benchmarking,
representative datasets for both extracellular and intracellular
proteins of the fungi were obtained by searching SwissProt
database records created between 2011 and 2015 for: (1)
fungal proteins that have been manually annotated as secreted
(taxonomy:“Fungi [4751]” locations:(location:“Secreted [SL-
0243]” evidence:manual) created:[20110101 TO 20150101])
(Supplementary Data Sheet 3); and (2) fungal proteins that

have been manually annotated as localized to the nucleus
(taxonomy:“Fungi [4751]” locations:(location:“Nucleus [SL-
0191]” evidence:manual) created:[20110101 TO 20150101])
(Supplementary Data Sheet 4). Sequences that did not start
with “M” or were shorter than 30 aas were removed. Both sets
only cover proteins for which entries were created after 2011,
to avoid an overlap with the training sets used for secretion
prediction tools. We could not extract an equivalent set for
oomycete proteins from SwissProt due to the very low number
of entries for manually curated secreted proteins (four entries).
Secretion prediction tools were run on a local machine, or
using web servers where indicated, as in Table 2 (Results given
in Supplementary Data Sheet 5). Sensitivity was calculated as
TP/(TP + FN) and specificity as TN/(TN + FP), where TP is
the number of true positives, TN the number of true negatives,
FP the number of false positives and FN the number of false
negatives. The Matthews correlation coefficient (MCC) was
calculated as TP×TN−FP× FN√

(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
.
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TABLE 2 | Software tested in this study and the parameters under which proteins were predicted to be secreted.

Software References Secretion or transmembrane prediction criteria

SignalP 2.0 Nielsen et al., 1997

Nielsen and Krogh, 1998

SignalP-HMM: labeled “Y” based on S-probability (default threshold 0.5).

SignalP-NN: labeled “Y” based on S-score (default threshold 0.47).

SignalP 3.0 Bendtsen et al., 2004b SignalP-HMM: labeled “Y” based on S-probability (default threshold 0.5).

SignalP-NN: labeled “Y” based on D-score (default threshold 0.43).

SignalP 4.1 Petersen et al., 2011 Labeled “Y” based on D-score (default thresholds 0.45 for SignalP-noTM networks and 0.5 for

SignalP-TM networks).

Phobius Käll et al., 2004 Predicted as secreted if presence of a signal peptide (SP) labeled as “Y.”

Transmembrane protein if the number of predicted transmembrane segments (TM) is ≥ 1.

TargetP 1.1 Emanuelsson et al., 2000 Labeled “S” for signal peptide (“secreted”), regardless of the reliability class score.

WoLF PSORT 0.2 Horton et al., 2007 Secreted if the best score in the ranked localization list is “extracellular.”

ProtComp 9.0* http://www.softberry.com/berry.phtml Secreted if the integral prediction of protein location contains “extracellular (secreted).”

TMHMM 2.0 Krogh et al., 2001 Transmembrane protein if one or more transmembrane helices beginning outside the first 60 aas.

All tools were run with default parameters and settings.

*Run using web-server.

RESULTS AND DISCUSSION

Signalp 2, 3 and 4 Show the Best
Performance for Secretion Prediction on a
Set of Fungal Protein Sequences
Several independent benchmark analyses have been published
that compare the accuracy of secretion prediction tools. For
example, Klee and Ellis (2005) evaluated a range of secretion
prediction methods (SignalP 3.0, SignalP 2.0, TargetP 1.01,
PrediSi, Phobius, and ProtComp 6.0) on 372 proteins from
five vertebrate organisms and found that TargetP, the SignalP 3
maximum S-score and SignalP 3 D-score were the most accurate
single scores. Choo et al. (2009) found that most of the tested
tools were capable of reliably distinguishing secreted from non-
secreted proteins, as indicated by the high specificities that
were achieved. SignalP 4 has been reported by the authors to
outperform previous versions of SignalP for a test set spanning
eukaryotic and bacterial sequences (Petersen et al., 2011).

Min (2010) evaluated eukaryotic secretion prediction using
Phobius, SignalP 3.0, TargetP, and WoLF PSORT individually
and in combination with TMHMM and PS-Scan and found that
for fungi the most reliable individual predictor of secretion was
WoLF PSORT, but a combination of tools produced the most
accurate predictions. A follow-up study including SignalP 4.0
reported WoLF PSORT as the best individual tool for fungal data
and also made the general recommendation of using SignalP 4.0
over SignalP 3.0 (Melhem et al., 2013). However, the authors
assign a protein as predicted to be secreted by WoLF PSORT if
it features “extracellular” in the ranked localization list whereas
other studies (Table 1), including ours, have used this tool quite
differently requiring more stringently that the “extracellular”
score is higher than that of all other sub-cellular locations.
Notably, WoLF PSORT stands out amongst the tools compared
in that it has been trained on a relatively extensive set of fungal
proteins. However, while it performs well for fungal secreted
proteins overall, when restricted to known secreted effectors its
performance is markedly poorer.

For the evaluation of secretion prediction performance we
utilized two data sets from the SwissProt database: one that
contained fungal proteins that were manually annotated as
secreted (409 proteins) and the other that contained non-secreted
fungal proteins that were manually annotated as nuclear (1113
proteins). We could not extract an equivalent set for oomycete
proteins from SwissProt due to the very low number of entries
for manually curated secreted or nuclear proteins. All tools tested
achieved high specificity in the range of 97.2–99.8%, whereas
sensitivity varied more dramatically (Table 3). All versions of
SignalP, Phobius, and TargetP achieved high sensitivity of more
than 94.9%. In contrast, the proportion of proteins that are
predicted to be extracellular by WoLF PSORT and ProtComp
showed lower sensitivity at 88 and 63.3%, respectively. In terms of
the Matthews correlation coefficient (MCC), SignalP 4, SignalP-
NN 3 (D-score), and SignalP-NN 2 perform best (MCC = 0.96),
with SignalP 2 and 3 showing slightly more sensitivity than
SignalP 4, which in turn achieves marginally higher specificity.
These results confirm the strong predictive performance of
SignalP for secreted fungal proteins.

Differences in Sensitivity of Secretion
Prediction Tools for Effectors from Fungi
and Oomycetes
In line with previous studies (Menne et al., 2000; Klee and Ellis,
2005; Choo et al., 2009; Min, 2010), we found that all tools tested
achieved high specificity in secretion prediction. For effector
prediction in particular, the use of a sensitive method can be
desirable to obtain the most complete candidate effector set.
To test the sensitivity of secretion prediction tools for effector
proteins from eukaryotic plant pathogens, we collected two sets
of experimentally verified fungal and oomycete effectors from the
literature. In total, the test set of fungal and oomycete effectors
contain 69 and 53 proteins, respectively, (Supplementary Table
1). Interestingly, the sensitivity of secretion prediction tools
varied between the fungal and oomycete effector sets (Figure 1).
The neural network predictors of SignalP 3 and SignalP 2
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TABLE 3 | Performance of secretion prediction tools applied to secreted fungal proteins sourced from SwissProt.

Measure SignalP SignalP-NN 3.0 SignalP-HMM SignalP-NN Signal-HMM Phobius TargetP WoLF ProtComp

4.1 (D-Score) 3.0 2.0 2.0 1.1 PSORT 9.0

Sensitivity 94.9% 95.6% 95.8% 95.6% 95.8% 95.4% 95.1% 88% 63.3%

Specificity 99.7% 99.6% 98.4% 99.4% 98.2% 98.7% 98.3% 99.8% 97.2%

MCC 0.96 0.96 0.94 0.96 0.94 0.94 0.93 0.91 0.68

Sensitivity, specificity and the Matthews correlation coefficient (MCC) are shown for evaluating the performance of secretion prediction tools. All tools were run with the settings and

parameters given in Table 2. The best performance in terms of MCC is marked in bold.

(SignalP-NN 2, SignalP-NN 3) as well as TargetP (“S” for secreted
with RC scores ranging from 1 to 5) were found to be the
most sensitive for fungal effectors (95.7%). In contrast, the
hidden Markov model predictors of SignalP 2 and SignalP 3
(SignalP-HMM 2, SignalP-HMM 3) achieved highest sensitivity
for oomycete effectors (98.1%). In general, neural networks
and hidden Markov models have different strengths in pattern
recognition tasks. Whereas neural networks are powerful for
correlating features over a longer range, hidden Markov models
are advantageous for modeling sequential regions or patterns
found in signal peptides (Nielsen et al., 1999). How this could
relate to the prediction of signal peptides in fungal and oomycete
effectors remains to be determined.

From the fungal effector set, all secretion predictors, including
the best-performing tools SignalP-NN 2, SignalP-NN 3, and
TargetP, were consistently unable to predict a signal peptide
for only three effectors: Avra10, Avrk1, and Vdlsc1 (Table 4).
Similarly for the oomycete effector set, all secretion predictors
including the best-performing tools SignalP 2-HMM and
SignalP-HMM 3 were unable to predict a signal peptide for only
a single oomycete effector (Pslsc1). These four effector proteins
have been demonstrated to be secreted via non-classical pathways
(Ridout et al., 2006; Liu et al., 2014). This suggests that the most
sensitive methods are only likely to fail to predict the secretion
of non-classically secreted effectors and that using a union
of multiple methods would not necessarily improve sensitivity
for this test set. At this stage the computational identification
of non-classically secreted effectors remains challenging and
these types of effectors require experimental validation of their
secretion. In the future, an increased understanding of non-
classical secretion mechanisms of fungal and oomycete effectors
might lead to improved computational prediction of these
effectors. Protein tribe clustering with subsequent examination
of high-priority effector candidate families (Saunders et al.,
2012) or the presence of conserved protein domains has been
effectively applied to identify related effector candidates lacking
a predicted signal peptide. However, as the vast majority of
fungal effectors share little sequence homology, the utility of this
method is limited. Furthermore, orthologs of a secreted protein
are not necessarily also secreted (Poppe et al., 2015). Therefore,
secretomes predicted through the additional use of reciprocal
BLASTs and/or tribe analysis are likely to include a high number
of false positives.

TargetP predicted signal peptides with the highest reliability
class (RC = 1) for only 63.8% of fungal effectors and for

56.6% of oomycete effectors (Figure 2). Without a restriction
on the reliability class (RC from 1 to 5), TargetP predicted
“secreted” as the localization for 95.6% of the fungal effectors
(three effectors were predicted as “unknown”), whereas it
returned “secreted” for 92.4% of the oomycete effectors (two
effectors were predicted as “unknown” and two were predicted
as “mitochondrial”). Therefore, a restriction on the predicted
reliability class should not be used for predicting the secretion of
effectors and the exclusion of proteins predicted to be localized
to mitochondria has to be used with caution for oomycete
effectors.

The relatively poor performance of SignalP 4 for oomycete
effectors (Figure 1, sensitivity 83%) is surprising and suggests
that previous versions of SignalP (SignalP 2, SignalP 3) should
be used for effector mining in oomycete genomes instead. In
particular, SignalP 4 does not predict a signal peptide for six out
of seven Crinkler effectors in the test set (Table 4; CRN1, CRN2,
CRN8, CRN15, CRN16, CRN63, CRN115). Crinkler effectors are
a large family of modular proteins that are translocated into host
cells, featuring a signal peptide followed by a LXLFLAK sequence
motif and C-terminal domains (Haas et al., 2009; Schornack
et al., 2010). On the set of seven Crinkler effectors, SignalP
4 achieves the lowest sensitivity, whereas the hidden Markov
model predictors of SignalP 2 and SignalP 3 (SignalP-HMM 2,
SignalP-HMM 3) correctly predict the signal peptide in all seven
Crinklers (Table 4). This exemplifies the substantial benefits of
using previous versions of SignalP (SignalP 2, SignalP 3) for
oomycete effector mining.

Signal peptide prediction tools such as SignalP return the
set of proteins that are likely to carry a signal peptide for
the classical pathway, but do not necessarily imply that a
protein will be extracellular. Many proteins with a signal
peptide are retained in various cellular compartments and thus,
signal peptide prediction is often combined with additional
evidence for extracellular protein secretion, such as the absence
of transmembrane domains, GPI anchors or retention signals
(Table 1). We found that no transmembrane regions outside
the signal peptide region (first 60 aas) were predicted for any
of the 69 fungal effectors using TMHMM or Phobius. For the
53 oomycete effectors, TMHMM and Phobius both return one
transmembrane helix outside the signal peptide region for the
RXLR effector PITG_03192. This might be an indication that
TMHMM and Phobius can be used as a preliminary filter to
exclude proteins with multiple, non-N-terminal transmembrane
domains for effectormining in fungi. However, these tools should
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FIGURE 1 | Sensitivity of secretion prediction tools for secreted fungal proteins, fungal effectors, and oomycete effectors. Differences in secretion

prediction sensitivity are shown for the set of secreted fungal proteins taken from SwissProt as well as the sets of experimentally verified fungal and oomycete effectors.

TABLE 4 | Fungal and oomycete effectors that were not predicted to be secreted by the prediction tools tested.

SignalP 4.1 SignalP-NN 3.0

(D-Score)

SignalP-HMM 3.0 SignalP-NN 2.0 Signal-HMM 2.0 Phobius TargetP 1.1

Fungal effectors Avra10

Avrk1

Vdlsc1

AvrP4

SIX5

Avra10

Avrk1

Vdlsc1

Avra10

Avrk1

Vdlsc1

Avr-Pita2

Avra10

Avrk1

Vdlsc1

Avra10

Avrk1

Vdlsc1

Avr-Pita2

Avra10

Avrk1

Vdlsc1

Avr-Pita2

AvrP123

Avra10

Avrk1

Vdlsc1

Oomycete effectors Pslsc1

CRN1

CRN2

CRN15

CRN16

CRN63

CRN115

Avr1k

ATR5

Pslsc1

CRN1

CRN15

CRN16

ATR5

Pslsc1 Pslsc1

CRN16

Pslsc1 Pslsc1

CRN16

Pslsc1

CRN16

Avr1k

ATR5

be used with less stringent requirements for effector prediction in
oomycetes.

Subcellular Localization Prediction Tools
Should not be used for Predicting Effector
Secretion
Prediction of subcellular localization is important for inferring
hints about a protein’s function. In eukaryotes, a number of
compartments exist to which proteins may be localized, e.g.,
the extracellular space, mitochondria, chloroplast, nucleus,
peroxisome, cytosol or plasma membrane. Several plant
pathogenomics studies have used the subcellular localization of
“extracellular” as a criterion for predicting secretion, commonly
using WoLF PSORT which has been trained separately on fungi,
animal and plant data. However, we found that applying WoLF
PSORT (fungi) to the sets of experimentally verified fungal and
oomycete effectors returned 25 cytoplasmic effectors that are

not predicted to be extracellular (34.2% of cytoplasmic effectors,
Figure 3). This could be explained as follows. First, the estimated
sensitivity and specificity of WoLF PSORT is fairly low at around
70% (Horton et al., 2007), which might lead to a high number
of false predictions. However, we found that false predictions
occurred in particular for non-apoplastic effectors (Figure 3). It
is possible that WoLF PSORT may have predicted a signal for
host cell localization in effectors rather than for the extracellular
secretion of the effector from the pathogen cell. Thus, WoLF
PSORT should be used with caution when predicting secretomes
and its “extracellular” predictions should not be solely relied
upon for effector prediction. An alternative approach is to
impose a high level of stringency to WoLF PSORT predictions,
as was the case for the F. graminearum secretome in which
proteins were reported as secreted if the extracellular score
was >17 (Brown et al., 2012). Whilst this practice is likely to
drastically reduce the number of false positives in the secretome,
it is prone to miss bona fide effectors that are not predicted to be
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FIGURE 2 | Distribution of TargetP reliability classes for fungal and oomycete effectors that are predicted to be secreted by TargetP. The TargetP

reliability class distribution for fungal and oomycete effectors is shown, where 1 represents the strongest prediction. The majority of effectors are predicted as secreted

with the highest reliability class of 1, however, many effectors are predicted with low reliability classes of 2–5.

extracellularly localized. In this study, of the oomycete Crinkler
effectors CRN1, CRN2, CRN8, CRN15 and CRN16 which are
known to localize to the host cell nucleus (Schornack et al., 2010),
WoLF PSORT only predicted a nuclear localization for CRN16.
Therefore, the predictions of subcellular localization tools may
need to be used with caution in effector prediction studies.

Practical Recommendations for Prediction
of Extracellular Proteins in Fungi and
Oomycetes
In this study, we have assessed the performance of various
secretion and subcellular localization prediction tools, when
applied to datasets derived from known fungal and oomycete
effectors, as well as extracellular and intracellular fungal proteins.
Based on our benchmarking, we deduce recommendations for
extracellular protein prediction in fungal and oomycete pathogen
genomes.

We observe that previous versions of SignalP (2, 3)
demonstrate increased sensitivity over the latest version (4.1)
for predicting signal peptides of oomycete effectors, with the
HMM-based methods outperforming the NN-based methods.
Indeed, this has formed the basis for the pipeline PexFinder
(Phytophthora Extracellular Proteins Finder), which automates
identification of oomycete extracellular proteins from EST data
(Torto et al., 2003). PexFinder uses SignalP 2.0 but applies an
additional logical filter that predicts a protein to be secreted only
if both the hidden Markov model predicts a signal peptide and
the neural network predicts a cleavage site between amino acids
10 and 40. Whilst this pipeline was proposed over a decade ago, it
still retains its value formining effectors from oomycete genomes.

In contrast with oomycete effectors, the NN predictors of
SignalP 2 and 3, as well as TargetP, were observed to be the
most sensitive for predicting signal peptides of fungal effector
proteins. Unlike oomycete effectors, no TM domains were
predicted outside the N-terminal signal peptide region using

TMHMM or Phobius. Therefore, we propose that for fungal
effector mining the requirement of a predicted signal peptide
using either SignalP-NN 2 or 3, a TargetP localization prediction
of “secreted” or “unknown” (with no restriction on the RC score)
and a lack of transmembrane domains outside the signal peptide
region (TMHMM/Phobius) would be a robust method. Applying
this proposed pipeline to publicly available fungal genomes (some
with secretome predictions given in Table 1) highlights the wide
variability in the number of predicted secreted proteins produced
by the different techniques used in previously published studies
(Figure 4). In line with previous reports, we observe a higher
percentage of proteins that are predicted to be secreted in
pathogens with a biotrophic phase, compared to necrotrophs and
saprophytes (Lowe and Howlett, 2012; Lo Presti et al., 2015).
By our method, similar numbers of predicted secreted proteins
were predicted across multiple species of the same trophic class,
whereas reported numbers were highly variable in genome survey
publications for these species (Figure 4).

CONCLUSION

Prediction of effector proteins is of vital importance to the field of
plant pathology, and relies heavily on the strengths or weaknesses
of secretion prediction software. In this study, we assess the
performance of popular software tools against known effectors
of both the fungi and oomycetes and offer recommendations
on which may be better suited to specialized applications.
However, such performance evaluations inevitably vary based
on the test data sets used, and therefore, we advise readers
to carefully consider the suitability of these recommendations
to their own data. Based on the results discussed herein, we
recommend the use of the neural network predictors of SignalP
2 or 3, a TargetP localization prediction of “secreted” as well
as transmembrane protein removal using either TMHMM or
Phobius as a robust choice for predicting the secretion of fungal
effectors. In comparison, the hidden Markov model predictors of
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FIGURE 3 | Distribution of the predicted localization of apoplastic and cytoplasmic effectors using WoLF PSORT. The distribution of localization predicted

by WoLF PSORT is shown for apoplastic and cytoplasmic effectors. Most apoplastic effectors were predicted as extracellular by WoLF PSORT, whereas 34.2% of the

cytoplasmic effectors were not predicted to be extracellular.

SignalP 2 and 3 perform best for predicting the signal peptide of
oomycete effectors and automated pipelines such as PexFinder
retain their value (Torto et al., 2003). However, the secretome
includes many proteins unrelated to pathogenicity, and a number
of additional conditions must be subsequently assessed in order
to arrive at a subset that represents a potential set of effectors.
In oomycetes, this can be achieved using motif enrichment
analysis based on RXLR or Crinkler effector families (Petre and
Kamoun, 2014), whereas in fungi this process is not feasible and
alternative criteria such as small size, an enrichment in cysteines,
genomic location, or signatures of diversifying selection can be
used (Sperschneider et al., 2015).

While the reliability of secretion prediction is highly relevant
to effector prediction, one must not overlook the potential for
errors to arise from prior steps involved in the generation
of sequence resources. The annotation of gene structure in
effector genes can be particularly error-prone for various reasons,
stemming from idiosyncrasies related to their genomic context
for example their tendency to be associated with repetitive
regions of the genome (Raffaele and Kamoun, 2012). There is
potential for errors to occur in the assembled genome sequence,
especially for those assembled from short-read data only, and the
subsequent use of automated annotation pipelines can contribute
to inaccurate or fragmented gene predictions. If this occurs in
the 5′ region it can lead to misprediction of N-terminal signal
peptides. We also note that due to high gene density in fungi that
transcript UTRs of adjacent gene loci frequently overlap (Guida
et al., 2011; Wang et al., 2014), potentially resulting in gene
annotations that are merged products of two or more adjacent
loci. Therefore, the use of RNA-seq-based annotation methods
specifically designed for fungi (Reid et al., 2014; Testa et al., 2015)

can be beneficial to arrive at an optimal set of gene annotations
for subsequent secretion prediction.

Our results showed that one of the areas that is currently
suffering from poor accuracy is the prediction of subcellular
localization for effector proteins that are first secreted from the
fungus and then targeted to a host organelle. In particular, we
recommend that the requirement of extracellular localization
as predicted by WoLF PSORT should not be used for effector
mining in secretomes. Re-training subcellular localization tools
with updated data sets including experimentally validated
effectors might help to improve accuracy. There are few well-
studied fungal effectors with confirmed host-localization, one
being the SP7 effector of the arbuscular mycorrhiza Glomus
intraradices (Kloppholz et al., 2011). SP7 is initially secreted to
the apoplast, then imported into the host cell, and then into
its nucleus. This localization is determined by multiple motifs,
including a signal peptide, nuclear localization domain and an
array of imperfect tandem hydrophilic repeats possibly involved
in membrane integration. Both TargetP and WoLF PSORT
predicted that the complete version of SP7 was secreted, however
after removal of the signal peptide based on SignalP analysis,
the TargetP prediction changed to “other” and WoLF PSORT
(plant mode) predicted nuclear localization. Intriguingly, this
suggests that subcellular localization prediction has the potential
to become a powerful tool for providing insight into potential
modes of action for candidate effectors based on their organelle
targets. Additionally, there are currently no tools designed to
predict proteins secreted in a non-classical manner that have been
specifically trained on either fungi or oomycetes sequences due to
a lack of training data. Although tools like SecretomeP are able to
predict some cases (Liu et al., 2014), in the future refined tools for
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FIGURE 4 | Predicted secretome sizes in fungi. The percentages of proteins that are predicted to be secreted are shown for various fungal genomes. Where

provided in the literature, previously estimated secretome sizes are indicated with a vertical bar, as given in Table 1. We used the following pipeline for secretome

prediction in fungi: SignalP 3.0 D-score, a TargetP “secreted” or unknown localization (no restriction on RC score) and no predicted transmembrane domains starting

outside the first 60 aas using TMHMM. Genome and secretome size references are given in Table 1, additional genomes used are as follows: Blumeria graminis f. sp.

tritici (Wicker et al., 2013); Leptosphaeria maculans (Rouxel et al., 2011); Magnaporthe oryzae (Dean et al., 2005); Botrytis cinerea (Amselem et al., 2011);

Parastagonospora nodorum (Hane et al., 2007); Auricularia subglabra, Dichomitus squalens, Fomitiporia mediterranea, Punctularia strigosozonata, Stereum hirsutum,

Trametes versicolor, Coniophora puteana, Dacryopinax sp., Fomitopsis pinicola, Gloeophyllum trabeum, Tremella mesenterica,Wolfiporia cocos (Floudas et al., 2012);

Laccaria bicolor (Martin et al., 2008); Agaricus bisporus (Morin et al., 2012); Aspergillus niger (Andersen et al., 2011); Aspergillus oryzae (Machida et al., 2005);

Coprinus cinereus (Stajich et al., 2010); Alternaria brassicicola, Cochliobolus heterostrophus, Hysterium pulicare (Ohm et al., 2012); Neurospora crassa (Galagan

et al., 2003); Trichoderma reesei (Martinez et al., 2008); Agaricus bisporus var. burnettii (Morin et al., 2012); Saccharomyces cerevisiae S288C (Goffeau et al., 1996);

Aspergillus nidulans (Galagan et al., 2005); Phanerochaete chrysosporium (Ohm et al., 2014).

non-classical secretion prediction could be a source of significant
improvements in effector prediction.

In summary, whilst existing methods for signal peptide
prediction achieve high accuracy, the main areas for improving
eukaryotic effector secretion prediction will come from advances
in subcellular localization prediction tools as well as from
investigations of non-classical secretion pathways and improved
gene prediction tools for pathogen genomes.
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