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Abstract

Inhibition of chymase is likely to divulge therapeutic ways for the treatment of cardiovascular diseases, and fibrotic
disorders. To find novel and potent chymase inhibitors and to provide a new idea for drug design, we used both ligand-
based and structure-based methods to perform the virtual screening(VS) of commercially available databases. Different
pharmacophore models generated from various crystal structures of enzyme may depict diverse inhibitor binding modes.
Therefore, multiple pharmacophore-based approach is applied in this study. X-ray crystallographic data of chymase in
complex with different inhibitors were used to generate four structure–based pharmacophore models. One ligand–based
pharmacophore model was also developed from experimentally known inhibitors. After successful validation, all
pharmacophore models were employed in database screening to retrieve hits with novel chemical scaffolds. Drug-like hit
compounds were subjected to molecular docking using GOLD and AutoDock. Finally four structurally diverse compounds
with high GOLD score and binding affinity for several crystal structures of chymase were selected as final hits. Identification
of final hits by three different pharmacophore models necessitates the use of multiple pharmacophore-based approach in
VS process. Quantum mechanical calculation is also conducted for analysis of electrostatic characteristics of compounds
which illustrates their significant role in driving the inhibitor to adopt a suitable bioactive conformation oriented in the
active site of enzyme. In general, this study is used as example to illustrate how multiple pharmacophore approach can be
useful in identifying structurally diverse hits which may bind to all possible bioactive conformations available in the active
site of enzyme. The strategy used in the current study could be appropriate to design drugs for other enzymes as well.
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Introduction

Cardiovascular diseases are the leading cause of death in the

developed world and are now on course to be emerging as the

major cause of death in the developing world [1]. One particular

manifestation of cardiovascular diseases, heart failure (HF), is

dramatically increasing in frequency. A link between heart failure

and chymase has been ascribed, and there is an interest to develop

a specific chymase inhibitor as a new therapeutic regimen for the

disease [2]. Chymase (EC 3.4.21.39) which is a chymotrypsin-like

enzyme expressed in the secretory granule of mast cells, catalyzes

the production of angiotensin I (Ang I) to angiotensin II (Ang II) in

vascular tissues [3]. The octapeptide hormone, Ang II targets

human heart and plays an important role in vascular proliferation,

hypertension and atherosclerosis [4]. Conversion of Ang I to Ang

II is also catalyzed by well-known angiotensin-converting enzyme

(ACE), which is a metallo-proteinase with dipeptidyl-carboxypep-

tidase activity. However, chymase catalyzes the production of Ang

II in vascular tissues even when ACE is blocked (Figure 1).

Chymase converts Ang I to Ang II with greater efficiency and

selectivity than ACE [5]. The rate of this conversion by chymase is

approximately four fold higher than ACE. In order to generate

Ang II, human chymase cleaves the Ang I at Phe8-His9 peptide

bond. Chymase shows enzymatic activity immediately after its

release into the interstitial tissues at pH 7.4 following various

stimuli in tissues. Chymase also converts precursors of transform-

ing growth factor-b (TGF-b) and matrix metalloproteinase

(MMP)-9 to their active forms thus contributing to vascular

response to injury (Figure 1). Both TGF-b and MMP-9 are

involved in tissue inflammation and fibrosis, resulting in organ

damage [6]. Previous studies have demonstrated the involvement

of chymase in the escalation of dermatitis and chronic inflamma-

tion pursuing cardiac and pulmonary fibrosis [7]. Therefore,

inhibition of chymase is likely to divulge therapeutic ways for the

treatment of cardiovascular diseases, allergic inflammation, and

fibrotic disorders. Chymase inhibition may also be useful for

preventing the progression of type 2 diabetes, along with the

prevention of diabetic retinopathy [8]. Moreover, role of chymase
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in inflammation has prompted its restorative value in diseases such

as chronic obstructive pulmonary disease (COPD) and asthma [9].

Drug discovery and development is a time-consuming and

costly procedure. Therefore, application and development of

computational methods for lead generation and lead optimization

in the drug discovery process are of immense importance in

reducing the cycle time and cost as well as to amplify the

productivity of drug discovery research [10]. These computational

methods are generally categorized as ligand-based methods and

(receptor) structure-based methods. In case of ligand-based

methods, when biological activities of multiple hits are known, a

more sophisticated class of computational techniques known as

pharmacophore identification methods is often employed to

deduce the essential features required for the biological activity

[11]. A pharmacophore is an abstract description of molecular

features which are necessary for molecular recognition of a ligand

by a biological macromolecule. Due to the advantage in efficiency

in the virtual screening, the pharmacophore model method is now

a potent tool in the area of drug discovery [12]. However, the

often cited drawback of the ligand-based methods is that they do

not provide detailed structural information to help medicinal

chemists in designing new molecules. The availability of the

detailed structural information is critical especially during the lead

optimization stage of the discovery process. While, structure-based

pharmacophore methodology which involves generation of

pharmacophore models directly from complex crystal structures

is more reliable because it imposes the necessary constraints

required for interaction and selectivity. Diverse inhibitor binding

modes can be attained from ligand-based and structure-based

pharmacophore modeling methodologies especially if many

complex crystal structures are available for the target enzyme.

In this view, a strategy that integrates the advantages of multiple

pharmacophore modeling and molecular docking approaches has

been applied for the current study in order to identify compounds

that contain the important chemical features to inhibit chymase

enzyme. This strategy has been successfully applied for identifi-

cation of compounds from the chemical database that can strongly

bind at the active site of the target and thereby act as competitive

inhibitors to the chymase. Finally, four druglike compounds from

the database are reported as possible inhibitors for chymase

enzyme. In final phase of current study, we have carried out herein

Density Functional Theory-based quantum mechanical studies on

potent hits retrieved by newly developed pharmacophore models.

Various electronic properties such as LUMO, HOMO, and

locations of molecular electrostatic potentials, are calculated for

electronic features analysis. In general, the outcome of this

research exertion demonstrates how multiple pharmacophore

modeling accompanied with molecular docking, can be a

significant approach in identification of hits compounds with high

structurally diversity which may bind to all possible bioactive

conformations available in the active site of enzyme. Moreover,

this study is also expected to explore the molecular mechanism by

which these compounds act and can be further utilized to get

compounds with better activity by rational modification.

Materials and Methods

Receptor-ligand pharmacophore generation (structure-
based approach)

Structure-based pharmacophore model utilizes the interactions

between receptor-ligand complexes to generate a hypothesis [13].

As deposit of X-ray crystal structures in PDB is growing rapidly,

the structure-based methods have become increasingly important.

The information about the protein structure is a good source to

bring forth the structure-based pharmacophore and used as first-

screening before docking studies. To date, six crystal structures

have been determined for human chymase as listed in Table 1.

The four crystal structures which are co-crystallized with four

different inhibitors include 3N7O, 1T31, 3SON, and 2HVX and

their inhibitors are depicted in Figure 2. These crystal structures

were downloaded from the Protein Data Bank (PDB). PDB is a

repository for the 3-D structural data of large biological molecules,

such as proteins and nucleic acids. The data, typically obtained by

X-ray crystallography or NMR spectroscopy and submitted by

biologists and biochemists from around the world, are freely

accessible on the Internet via the website (http://www.rcsb.org).

The PDB is overseen by an organization called the Worldwide

Protein Data Bank, wwPDB. After downloading the desired crystal

structures of chymase complexes, these four receptor-ligand

complexes were used for development of structure-based pharma-

cophore models. The Receptor-Ligand Pharmacophore Generation

protocol of Accelrys Discovery Studio v3.0 (DS), Accelrys, San

Diego, USA, was applied to accomplish this task with default

parameters. This protocol generates selective pharmacophore

models based on receptor-ligand interactions. First, a set of

features from the binding ligand is identified. The following

predefined feature types are considered: hydrogen bond acceptor

(HBA), hydrogen bond donor(HBD), hydrophobic(HY), negative

ionizable(NI), positive ionizable(PI), ring aromatic(RA). Second,

the pharmacophore models are ranked based on a measure of

sensitivity and specificity and the top models are returned. The

pharmacophore models are enumerated and then the selectivity is

estimated based on a Genetic Function Approximation GFA)

model. The GFA model for the selectivity of a pharmacophore is

built from a training set of 3285 pharmacophore models. This set

is used for searching the CapDiverse database in DS. The

logarithmic values of the number of database search hits are used

as the targets (a value of 21.0 is used if no hit is retrieved from the

search). The number of total features in pharmacophore models

and the feature-feature distance bin values are used as the

descriptors for training the GFA model.

Common feature pharmacophore generation (ligand-
based approach)

Chemical compounds with their experimentally known chymase

inhibitory activity(IC50) data were obtained from the literature

such as life science journals, and a small database was compiled

[14,15,16,17,18]. Chemical structures of these compounds were

downloaded from BindingDB database(http://www.bindingdb.

org). BindingDB is a public, web-accessible database of measured

binding affinities, focusing chiefly on the interactions of protein

considered to be drug-targets with small, drug-like molecules.

BindingDB contains 947,406 binding data, for 6,667 protein

targets and 393,164 small molecules. Five diverse compounds with

the IC50 values less than or equal to 18 nM were selected as

Figure 1. Chymase-dependent conversion of angiotensin I to
angiotensin II and precursors of TGF-b and MMP-9 to their
active forms.
doi:10.1371/journal.pone.0063030.g001

Chymase Hits with Novel Chemical Scaffolds
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training set and employed in common feature pharmacophore

generation calculation (Figure 3). A principal value of 2 and

maximum omit feature value of 0 were assigned to the most active

compound in the training set whereas 1 was assigned for the other

compounds to label them as moderately active. For all compounds

in the training set, energy minimization process was performed

with CHARMM forcefield. Poling algorithm was applied to

generate a maximum of 255 diverse conformations with the

energy threshold of 20 kcal mol21 above the calculated energy

minimum for every compound in the dataset. These conformers

were generated using Diverse Conformer Generation protocol running

with Best/Flexible conformer generation option as available in DS.

All five training set compounds associated with their conforma-

tions were used in common feature pharmacophore generation.

HipHop module of the catalyst which was popularly known for

Common Feature Pharmacophore Generation is available in DS

as Common Feature Pharmacophore Generation protocol. Feature Mapping

protocol was used to identify the common chemical groups present

in the training set compounds. As predicted, hydrogen bond

acceptor (HBA), hydrophobic aliphatic (HY_AL) and hydrophobic

aromatic (HY_AR) features were selected during the pharmaco-

phore generation.

Validation of structure and ligand-based pharmacophore
models

The purpose of the pharmacophore validation is to evaluate the

quality of a pharmacophore model [11]. The capability to

accurately predict internal and particularly external data sets is

an important attribute of a reliable pharmacophore model [19].

The four structure-based models and best model from Hip-Hop

module were validated using three different methods: (i) test set, to

validate how well our selected pharmacophores pick the active

from inactive compounds. In order to employ test set validation

approach, a data set containing active and non-active compounds

was prepared. Structurally diverse 134 compounds with a wide

range of experimentally known chymase inhibitory activity values

(2.1 to 40 000 nM) were merged with 190 presumably inactive

compounds. This methodology of merging experimentally known

Figure 2. Crystal structure of chymase (PDBID: 3N7O). Available ligands that are co-crystallized with chymase were overlaid at the active site.
These ligands with their bound conformations were used for Receptor-ligand pharmacophore generation. Zoomed view clearly shows the
arrangement of residues at the active site.
doi:10.1371/journal.pone.0063030.g002

Figure 3. Training set compounds used in common feature
pharmacophore generation.
doi:10.1371/journal.pone.0063030.g003

Table 1. List of Solved Crystal Structures of Human Chymase
Co-Crystallized with Different Ligands.

PDB ID Resolution (Å) Ligand

3S0N 1.95 OBB

3N7O 1.80 N7O

2HVX 2.60 DRX

1T31 1.90 OHH

1PJP 2.20 _

1KLT 1.90 _

doi:10.1371/journal.pone.0063030.t001

Chymase Hits with Novel Chemical Scaffolds
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active compounds with presumably inactive compounds has been

successfully applied for validation of pharmacophore models in

various studies [20,21,22]. Chemical structures of test set

compounds were downloaded from BindingDB database (http://

www.bindingdb.org). Thus, a test set containing 324 compounds

was applied to determine the capability of the pharmacophore

models to discriminate active compounds from other molecules in

virtual screening process. (ii) The reliability of the generated

pharmacophore models was also validated on the basis of the

presence of chemical features essential to interact with the key

amino acids in the active site of the corresponding target protein.

(iii) Scale fit value method was also used to check the ability of

pharmacophore models to differentiate between experimentally

known chymase inhibitors based on their activity. For this

purpose, a set of chymase inhibitors with a wide range of

experimentally known chymase inhibitory activity was selected

from literature. Chemical structures of these compounds were also

downloaded from BindingDB database (http://www.bindingdb.

org).

Database preparation and multiple pharmacophore-
based virtual screening

Maybridge (http://www.maybridge.com), and Chembrige

(http://chembridge.com) which are commercial chemical data-

bases containing 59 652, and 50 000 compounds, respectively,

have been employed for virtual screening procedure. However,

these databases are found to have number of nondruglike

compounds. As, it is worthless to screen all the compounds of

these databases and then eliminate them in the later phase for their

nondruglike properties, therefore, the compounds not satisfying

druglike properties were excluded from the databases prior to

multiple pharmacophore-based virtual screening. In order to

accomplish this task, compounds in these databases were subjected

to various scrupulous druglike filters such as Lipinski’s rule of five

and ADMET (absorption, distribution, metabolism, excretion, and

toxicity) properties. Prepare Ligands and ADMET Descriptors

protocols as available in DS program were used in this step. After

preparation of druglike databases, all structure-based and ligand-

based pharmacophore models were subjected to screening of these

druglike databases. The retrieved hits were further sorted out by

applying filter such as maximum fit value of the best pharmaco-

phore models from ligand-based and structure-based models, and

were subsequently subjected to molecular docking process.

Molecular docking
Molecular docking studies were carried out using GOLD

(Genetic Optimization for Ligand Docking) 5.1 program from

Cambridge Crystallographic Data Center, UK. GOLD uses a

genetic algorithm for docking ligands into protein binding sites to

explore the full range of ligand conformational flexibility with

partial flexibility of protein [23]. Molecular docking was

performed to generate the bioactive binding poses of inhibitors

in the active site of enzyme. Protein coordinates from the crystal

structure of chymase co-crystallized with N7O (PDB ID: 3N7O),

determined at a resolution of 1.8Å were used to define the active

site. All the water molecules present in the protein structure were

removed and hydrogen atoms were added. The active site was

defined with a 10 Å radius around the ligand present in the crystal

structure. Ten docking runs were performed per structure unless

three of the 10 poses were within 1.5 Å RMSD of each other. All

the hit compounds as well as training set compounds were docked

into chymase binding site. The GOLD fitness score is calculated

from the contributions of hydrogen bond and van der Waals

interactions between the protein and ligand, intramolecular

hydrogen bonds and strains of the ligand. The interacting ability

of a compound depends on the fitness score, greater the GOLD

fitness score better the binding affinity. The protein – ligand

interactions were examined by DS. Hit molecules which showed

the expected interactions with the critical amino acids present in

the active site of the protein, and comparable high binding scores

than the bound ligand, were selected as potent inhibitors of

chymase.

Molecular docking validation using autodock 4.2
Autodock 4.2 was used to calculate the binding energies of the

hit compounds at the active site of chymase [24]. The starting

protein was prepared from the 1.8 Å resolution crystal structure of

chymase labeled as 3N7O. We have chosen the highest resolution

chymase crystal structure from the Protein Data Bank. Final hits

along with training set compounds were docked using the

Lamarckian genetic algorithm (LGA) in the ‘‘docking active site’’,

defined through a grid centered on the ligand of the complex

structure. Population size of 150, mutation rate of 0.02, and

crossover rate of 0.8 were set as the parameters. The default grid

spacing (0.375 Å) was used. Simulations were performed using up

to 2.5 million energy evaluations with a maximum of 27 000

generations. Each simulation was performed 10 times, yielding 10

docked conformations. The lowest energy conformations were

regarded as the binding conformations between ligands and the

protein.

Validation of synthetic accessibility for hit compounds
using SYLVIA

Synthetic accessibility scores for all four hit compounds were

used to validate the synthetic possibilities. SYLVIA v 1.0 program

from the Molecular Networks group was employed to calculate the

synthetic accessibility of these optimized compounds [25]. The

estimation of synthetic accessibility using SYLVIA provides a

number between 1 and 10 for compounds that are very easy to

synthesize and compounds that are very difficult to synthesize,

respectively. The method for calculating synthetic accessibility

takes account of a variety of criteria such as complexity of the

molecular structure, complexity of the ring system, number of

stereo centers, similarity to commercially available compounds,

and potential for using powerful synthetic reactions. These criteria

have been individually weighted to provide a single value for

synthetic accessibility.

Density Functional Theory (DFT) calculations
In the present study, we carried out a DFT-based quantitative

structure–activity relationship (QSAR) study for both experimen-

tally known chymase inhibitors and final hits. To obtain a

significant correlation, it is fundamental that apposite descriptors

be employed, whether they are theoretical, empirical, or

experimental features of the structures. DFT is today one of the

best methods to study medium size and larger molecular systems

[26,27]. The best DFT methods achieve substantially greater

precision than the Hartree–Fock theory at only a modest augment

in cost. They accomplish this task by incorporating few effects of

electron correlation much less affluently than traditional correlated

methods. A range of functional has been defined, generally

distinguished by the manner that they treat the exchange and

correlation components. The best known of the hybrid functionals

is Becke’s three-parameter formulation B3LYP [28]. Complete

geometry optimization for data set compounds was carried out

using DFT with B3LYP, using basis set 6-31G* level. A useful kind

of net atomic charges, called electrostatic potential (ESP)-fitting

Chymase Hits with Novel Chemical Scaffolds
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charges, were derived from the DFT calculated molecular

electrostatic potential distribution using CHelpG method, which

produces charges fit to the electrostatic potential at points selected.

Vibrational frequencies were computed at the same B3LYP/6-

31G* level to characterize the stationary points on the corre-

sponding potential energy surfaces. All calculations were per-

formed using the Gaussian 09 suite of programs.

The experimentally known and highly active chymase inhibitors

with substantial structural diversity which were used for the

common feature pharmacophore generation were selected for

DFT calculations. Moreover, four final hits KM09155,

HTS00581, HTS0589, and Compound1192 retrieved from

databases by the selected pharmacophore models, which showed

important results with respect to all properties like key molecular

interactions with the active site components, calculated drug-like

Figure 4. Representation of structure-based pharmacophore models with their geometric constraints. Cyan color shows hydrophobic
(HY); magenta indicates hydrogen bond donor (HBD); green color indicates hydrogen bond acceptor (HBA); brown color denotes to ring aromatic
(RA); and negative ionizable (NI) is shown in blue color.
doi:10.1371/journal.pone.0063030.g004

Chymase Hits with Novel Chemical Scaffolds
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properties, and high GOLD fitness score, were also designated for

DFT study. Various quantum-chemical descriptors such as

LUMO, HOMO, and locations of molecular electrostatic

potentials (MESP) were computed.

Calculation of molecular electrostatic potential (MESP)
For investigation of biologically active compounds, the mapping

of the electrostatic potential is a well-known approach because it

plays a key role in the initial steps of ligand-receptor interactions

[29,30,31]. The formatted checkpoint files of the compounds

generated by the geometric optimization computation were

employed as input for CUBEGEN program interfaced with

Gaussian 09 program to compute the MESP. The MESP

isopotential surface was produced and superimposed onto the

total electron density surface (0.0004 e/au3). The electrostatic

potential of the whole molecule was finally obtained by

superimposing the electrostatic potentials upon the total electron

density surface of the compound.

Results and Discussion

Generation of structure-based pharmacophore models
The Receptor-Ligand Pharmacophore Generation protocol of DS

presents the chemical features which instigate key interactions

between protein and ligand as well as some excluded volume

spheres corresponding to the 3D structure of protein. In this study,

four different 3D structures of chymase bound with its inhibitors

such as 3N7O, 1T31, 3SON, and 2HVX were selected as input

for structure-based pharmacophore generation [9,32,33,34]. The

generated four pharmacophore models along with their excluded

volume spheres and geometrical constrain are illustrated in

Figure 4. The excluded volume spheres presented in our models

provide an insight regarding the disallowed regions in the binding

site. In general, these excluded volumes attempt to penalize

molecules occupying steric regions that are not occupied by active

molecules. Refinement of the pharmacophore with these excluded

volume features provides a more selective model to reduce false

positives and a better enrichment rate in virtual screening. In an

attempt to account protein flexibility and reorganization effects at

the pharmacophore level, the size of the excluded volume was set

to 5Å to increase the effective size of the binding cavity. For 3N7O

complex, the generated structure-based pharmacophore model

(SB_ Model1) identified five functional features along with 20

excluded volume spheres, including one HBD pointed towards

Ser214, one NI pointed to Lys40, and three HY centers pointed

towards Tyr215, Gly216, and Leu99 amino acids, respectively.

Pharmacophore model (SB_Model2) with four distinct features

was generated from 1T31 complex. It composed of one HBA, one

NI, one HY, and one RA with 20 excluded volume spheres. The

HBA and NI features were directed to Gly193 and Lys192,

respectively. While, RA feature of the SB_Model2 was pointed

towards His57 amino acid of the active site of chymase. The

pharmacophore model (SB_Model3) developed from 3SON

complex also consists of four features with two HY features

pointing in the direction of Gly199 and Arg200, one NI, and one

RA pointing towards His45 along with 16 excluded volume

spheres. The final pharmacophore model (SB_Model4) derived

from 2HVX complex showed six features encompassing one

HBD, two HY, two NI, and one RA with 23 excluded volume

spheres. The two HY groups were pointed towards Phe191 and

Gly216, and HBD pointed towards Tyr215. While, the RA feature

was directed towards His57 and two NI features were pointed in

the direction of Lys192 and Gly193. The comparison of above

four pharmacophore models showed that hydrophobic feature was

the common feature among all developed pharmacophore models.

Figure 5. Ligand-based pharmacophore model (LB_Model) and
its overlay on most active compound of training set.
doi:10.1371/journal.pone.0063030.g005

Table 2. Summary of the Pharmacophore Models Generated
Using Hip-Hop for Chymase.

hypothesis features rank
direct
hit

partial
hit

max.
fit

Hypo1 ZZHAAA 79.084 11111 00000 6

Hypo2 RZHAAA 78.571 11111 00000 6

Hypo3 RZHAAA 78.285 11111 00000 6

Hypo4 RRHAAA 77.768 11111 00000 6

Hypo5 RZHAAA 76.653 11111 00000 6

Hypo6 ZZHAAA 74.628 11111 00000 6

Hypo7 RZHAAA 74.583 11111 00000 6

Hypo8 RZHAAA 74.053 11111 00000 6

Hypo9 RRHAA 72.502 11111 00000 5

Hypo10 RRHAA 72.502 11111 00000 5

doi:10.1371/journal.pone.0063030.t002

Chymase Hits with Novel Chemical Scaffolds
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A previous study also showed that presence of hydrophobic sites

for a chymase inhibitor were important for its effective binding

with the key residues of the active site [35]. Pharmacophoric

features of the models were directed towards key amino acids like

Tyr215, His57, Lys192, Gly193, and Ser195 which play a major

role in chymase inhibition activity [9,34]. Hence, these features

can be considered as important chemical features to discover the

novel chymase inhibitors.

Generation of ligand-based pharmacophore model
Common feature pharmacophore models were generated for

the target protein using set of experimentally known inhibitors.

With the aim of acquiring a best model, numerous common

feature pharmacophore generation runs were performed by

altering the parameters such as minimum interfeature distance

values, maximum omit feature, and the permutation of pharma-

cophoric features. The qualitative top ten pharmacophore models

were developed (Table 2) using Common Feature Pharmacophore

Generation/DS to identify the common features necessary to inhibit

chymase. Direct and partial hit mask value of ‘1’ and ‘0’ for

models connoted that the molecules present in dataset were well

mapped to all the chemical features in the models and there is no

partial mapping or missing features. The Cluster analysis was used to

evaluate and categorize the difference between the compositions of

models’ chemical features and locations. These models could be

roughly classified into two clusters according to the pharmaco-

phoric features presented. The first eight models in cluster I

identified six functional features, including three HBA, hydropho-

bic aromatic (HY_AR), hydrophobic aliphatic (HY_AL), and ring

aromatic (RA) centers. The models in cluster II recognized five

functional features, with two HBA, one HY_AL, and two RA. The

distances between some pharmacophoric features in all models

were rather constant, whereas some distances fluctuated in a

relatively broad range, which indicated divergent tolerance of

different features to spatial variation and provided rationale for

further structural modification and optimization. As three models

in cluster I showed higher ranking score and best fit values of the

training set compounds, therefore these models were further

evaluated to find the best model. There is not much difference in

the ranking score among these models; therefore, an analysis of the

best fit values of the training set compounds was carried out to

choose the best model. The calculated best fit values designated

Model 1 as the best and final ligand-based model (LB_Model)

(Figure 5A). This final LB_Model which consists of three HBA,

one HY_AL and two HY_AR features was further overlaid on the

most active compound of training set (Figure 5B). The prevalence

Figure 6. ROC curves generated for structure-based pharmacophore models by DS.
doi:10.1371/journal.pone.0063030.g006

Chymase Hits with Novel Chemical Scaffolds
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of HBA features in LB_Model derived from experimentally known

inhibitors indicated that these chemical features were essential for

the inhibition of chymase. A previous study also illustrated that

HBA features in chymase inhibitors improve its binding affinity to

the active site of chymase [36].

Validation of structure and ligand-based pharmacophore
models

A valid pharmacophore model should be not only statistically

robust, but also predictive to internal and external data sets. Its

capability to reliably predict external data sets and discriminate

active inhibitors from other molecules is critical criteria for high-

quality models. In this study, two validation methods are used to

validate the quality of generated pharmacophore models which

are as following.

Test set method
In order to perform test set validation technique which is

considered as a meaningful approach to validate the discriminative

power of a pharmacophore model in virtual screening, 134

compounds with a wide range of experimentally known chymase

inhibitory activity values (2.1 to 40 000 nM) were used with 190

presumably inactive compounds. Thus, a test set containing 324

compounds was prepared for validation of pharmacophore

models. All four structure-based pharmacophore models were

validated using validation option of the Receptor-Ligand Pharmaco-

phore Generation protocol of DS. By using this option of validation,

both sensitivity and specificity of the models were calculated.

Moreover, ROC curve was also generated for each structure-

based pharmacophore model (Figure 6). SB_model1 with accuracy

rate of 0.802, showed best predicted ability with high sensitivity

and specificity. While, SB_mode3 with accuracy rate of 0.621

exhibited lowest predicted ability. The statistically significant

parameters related to this validation technique are listed in Table 3

which clearly indicate that SB_Model1, SB_Model2, and

SB_Model4 were able to distinguish between active and non-

active compounds more precisely than SB_Model3. Therefore,

these three models were selected for further evaluation. The

ligand-based model (LB_Model) was also validated with the test set

method. Ligand Pharmacophore Mapping protocol running with

BEST/Flexible conformation generation option was used to map

the test set compounds. LB_Model was able to predict 118 from

total of 134 active compounds. Thus, it exhibited good sensitivity

and specificity and was designated for further processing.

Presence of chemical features essential to interact with
key active site residues

Another method employed to validate the quality of all four

phrmacophore models was the evaluation of models for the

presence of chemical features required to interact with key active

site residues. To find out the existence of chemical features that are

complementary to the active site, diagrams were generated for the

chymase-inhibitor complexes by using DS which illustrated the

amino acids complemented to every feature present in the

pharmacophore models (Figure 7). Overlay of the bound inhibitor

on SB_Model1 connoted that chemical features of pharmaco-

phore model were located in such a way to interact with important

amino acids like Tyr215, Lys40, and Gly193. Chemical features of

SB_Model2 were also oriented towards key amino acids like

His57, Gly193 and Lys192. SB_Model4 also exhibited chemical

features pointed to key residues of active site such as Lys192,

Gly193, and Tyr215. In case of ligand-based pharmacophore

model, the overlay of most active compound of the training set on

LB_Model and docking of this compound into the active site of

chymase clearly demonstrated that the three HBA, two HY_AR,

and one HY_AL features of LB_Model have engendered

numerous imperative interactions with key amino acids such as

Lys40, His57, Lys192, Gly193, and Ser195 (Figure 8A). Thus,

presence of chemical features essential to interact with key active

site residues and discriminative power of developed models to

active chymase inhibitors implicated that multiple pharmaco-

phore-based virtual screening may provide an efficient approach

to find novel chymase inhibitors from available databases.

Scale fit value method
Third method to validate the generated ligand and structure-

based pharmacophore models is the scale fit value method. The

main purpose of this validation method is to verify the ability of

pharmacophore models to distinguish between experimentally

known chymase inhibitors based on their activity values. A set of

20 chymase inhibitors with diverse range of activity values from

1 nM to 1800 nM was selected and mapped over generated

pharmacophore models. Results of this pharmacophore mapping

over chymase inhibitors returned various fit values. A meticulous

analysis of these fit values revealed that there was a good

correlation between experimentally known activity values and fit

values generated by pharmacophore mapping (Figure 8B). Thus,

the result of this validation technique clearly indicates that the

selected ligand and structure-based pharmacophore models have

the capability to single out most active inhibitors form less active

chymase inhibitors.

Table 3. Statistical Details of Test Set Validation Method Using DS.

Validation With Known Actives/Inactives

Pharmacophore
Total
Actives

Total
Inactives

True
Positives

True
Negatives

False
Positives

False
Negatives Sensitivity Specificity

SB_Model1 134 190 129 47 143 5 0.96269 0.24737

SB_Model2 134 190 127 67 123 7 0.94776 0.33158

SB_Model3 134 190 62 141 49 72 0.46269 0.74211

SB_Model4 134 190 111 103 87 23 0.82836 0.54737

LB_Model 134 190 118 79 111 16 0.88060 0.41579

doi:10.1371/journal.pone.0063030.t003
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Multiple pharmacophore-based virtual screening
To further validate representative pharmacophore models and

demonstrate their efficiency, SB_Model1, SB_Model2, SB_

Model4, and LB_Model were used as 3D queries to screen the

chemical databases like Maybridge and Chembridge which consist

of 59 652 and 50 000 compounds, respectively. Prior to multiple

pharmacophore-based virtual screening experiments, both data-

bases were transformed to druglike databases by Prepare Ligands and

ADMET Descriptors protocols of DS. After preparation of druglike

databases, all four pharmacophore models were subjected to

screening of these druglike databases. For SB_Model4 which holds

six features, Maximum omitted feature was set to 1 and for all

other three models it was set to 0. The retrieved database hits were

then ranked by their fit scores and the sorted list of hit compounds

was analyzed to generate the final hits for each pharmacophore

model. The hits acquired by the structure-based pharmacophore

models with fit values above 2.0 were considered as potential hits

and were reserved for further inspection. For LB_Model, fit value

was set to3.5. The numbers of final hit compounds predicted by

each of the four pharmacophore models from both databases are

summarized in Table 4. It is observed that even for the same

target, the hits retrieved by diverse pharmacophore models are

quite distinguished from each other hence signifying that different

pharmacophore models may show assorted output in virtual

screening experiments. However, there were few common hits

which were retrieved by more than one pharmacophore models.

In order to decipher the proportion of common hits between

various models, the overlap segment of the hit compounds

obtained by each pair of two diverse pharmacophore models

was evaluated. Analysis revealed that ratio of common hits among

all four pharmacophore was between 18 and 32% thus showing

the diversity in screening competency of different pharmacophore

models derived from different complex structures of same enzyme.

Consequently, multiple pharmacophore model-based screening

approach should be applied to acquire better screening results.

Finally, 133 hits compounds retrieved from database screening

process were subjected to molecular docking studies.

Molecular docking
Docking experiments can be employed to answer various

queries. For instance, position and orientation of an inhibitor or

substrate can be predicted. An attempt to identify compounds that

have affinity for the protein from a large database of compounds

can be made. Moreover, prediction for any given molecule

whether or not it has affinity for the protein, can also be done.

Herein, we will present and discuss our docking experiments to

address these issues for the chymase enzyme.

Validation of ligand binding mode
Docking study has been performed with GOLD 5.1. An initial

validation of the docking protocol is performed by comparing the

conformation, position, and orientation (the pose) of a ligand as

obtained from docking with the one determined experimentally

with X-ray crystallography. Correctly redocking the crystallo-

graphically observed inhibitor is a minimum requirement to

determine whether the program is applicable to this system or not.

Crystal structure with the PDB code 3N7O bound with an

inhibitor molecule (N7O) was selected as receptor and the active

site was defined with a 10 Å radius around the ligand present in

the crystal structure. The top conformation of ligand predicted by

GOLD program was very close to the crystal structure-bound

conformation. The RMSD between the docked pose and its bound

conformation in the crystal structure is 0.53 Å indicating that

GOLD is able to reproduce correct pose (Figure 9).

Identification of hit compounds
After validation of the docking protocol, all 133 hits retrieved by

employing a multiple pharmacophore model-based screening,

were docked into the active site of chymase. Analysis of docking

results indicated that bound ligand in the complex structure of

chymase showed GOLD fitness score of 62.58. While, among 133

hit compounds, 21 hits demonstrated higher GOLD fitness score

Figure 7. Overview of the interaction mode between chymase
and known inhibitors at the active site of enzyme. (A)
SB_Model1 mapped to N7O, (B) SB_Model2 mapped to OHH, (C)
SB_Model4 mapped to DRX. Key amino acids involved in the interaction
were displayed (gray: C atoms; red: O atoms; blue: N atoms).
doi:10.1371/journal.pone.0063030.g007
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than the ligand bound with crystal structure, thus, were selected

for further study. In order to obtain hits which could map all

available bioactive conformations at the active site of chymase,

these 21 hit compounds were further docked to the other two

crystal structures of chymase labeled as 1T31 and 2HVX. These

two crystal structures were also employed for the development of

SB_Model2 and SB_Model4. Analysis of their docked results

helped in further filtering of hit compounds. Finally, four hit

compounds which showed the key interactions with the critical

amino acids present in the active site of protein and also exhibited

higher fitness score in all three crystal structures of chymase were

selected as final hits. The final hits which included KM09155,

HTS00581, and HTS05891 compounds, were retrieved from

Maybridge database. While, fourth hit Compound1192 was

retrieved from Chembridge database. Remarkably, all final hits

were identified by four different pharmacophore models.

KM09155 was revealed by LB_Model with fitness value of 4.36.

Although, there were three compounds retrieved by LB_Model

which showed high fitness scores than KM09155, however, could

not show high fitness score for structure-based models. Therefore,

these compounds were not selected as final hits. The HTS00581

hit was spotted by SB_Mode2 with fitness value of 3.83. While, the

third hit compound HTS05891 was also marked by SB_Mode2

with 3.68 fitness score. The fourth final hit Compound1192 was

identified by two different pharmacophore models including

SB_Mode1 and SB_Mode4 with fitness scores of 3.50 and 3.72,

respectively. Structural diversity of final hits was measured by

using Calculate Diversity Metrics protocol of DS which calculates a

series of quantitative measures of diversity including number

fingerprint features, number assemblies, fingerprint distances,

property distances and fraction cells. Result with Diversity_NumAs-

semblies value of 1.0 designated the final hits very high structural

diversity. Therefore, it is quite evident that multiple pharmaco-

phore-based virtual screening experiments merged with molecular

docking studies are very competent tools for the identification of

diverse hits in the drug discovery process.

Validation of final hits using Autodock and SYLVIA
The binding modes of the potential chymase hits were further

evaluated by using AutoDock 4.2 docking programs. The starting

protein was prepared from the 1.8 Å resolution crystal structure of

the 3N7O complex. Final four hits along with training set

compounds were docked using the Lamarckian genetic algorithm

(LGA) in the ‘‘docking active site’’, defined through a grid

(coordinates: X = 212.224, Y = 245.425, Z = 255.878). Al-

though, AutoDock consumes more calculation time yet envisages

the binding conformations more precisely [37]. It also computes

Figure 8. Ligand-protein interaction diagram from the chymase-inhibitor (compound 1 in the training set of chymase). (A). The
pharmacophore mapping of the same compound is also depicted. HBA, hydrogen bond acceptor; HY_AR, hydrophobic aromatic, HY_Al,
hydrophobic aliphatic. The locations of amino acid residues are represented in rectangular boxes, where pink and green colors denote both the
hydrogen bond acceptor/donor and nonpolar contacts, respectively (B) Correlation graph between experimental IC50 and scale fit values.
doi:10.1371/journal.pone.0063030.g008

Table 4. The Database Screening Results by Different
Structure-based and Ligand-based Pharmacophore Models.

Pharmacophore Model Hits Retrieved

SB_Model1 27

SB_Model2 47

SB_Model4 38

LB_Model 21

doi:10.1371/journal.pone.0063030.t004

Figure 9. Overlay of the docked pose (green) of inhibitor with
its crystal structure conformation (yellow).
doi:10.1371/journal.pone.0063030.g009
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torsional energy which gives rise to the binding energy of the

docked compound. Autodock result signified that all the four hit

compounds had scored similar or better binding energy values

compared to the most active compound in the training set thus

validating the output of GOLD docking program. In order to

further validate final hit compounds, two more crystal structures of

chymase deposited in protein data bank labeled as 1T31 and

2HVX were used for AutoDock validation. The resultant binding

energies of hits with these structures also showed better or equal

values compared to the binding energies of experimentally known

potent chymase inhibitors present in the training set. To further

validate our inhibition strategy, the synthetic accessibility of the

final four hits was also measured using SYLVIA 1.0 program. The

synthetic accessibility of most active compound 1 of the training

set was also calculated for comparison purpose. The SYLVIA

score of 6.19 for compound 1 was much high than the scores of

final hits. Thus, the SYLVIA score for the final hits clearly

illustrates that these compounds are easy to be synthesized

(Table 5).

Binding mode analysis of hits
The 2D chemical structures of four hit compounds KM09155,

HTS00581, HTS05891, and Compound1192 which were selected

from the multiple pharmacophore-based screening and molecular

docking studies, are illustrated in Figure 10. For all three crystal

structures of chymase, the GOLD fitness score and the calculated

Table 5. GOLD Fitness Scores, AutoDock Binding Energies, and SYLVIA Synthetic Accessibility Scores of Potential Chymase
Inhibitors Identified in This Study.

compound
Gold fitness
(3N7O)

binding
energy(3N7O)

Gold
fitness
(1T31)

binding
energy(1T31)

Gold
fitness
(2HVX)

binding
energy(2HVX)

SYLVIA
Score

KM09155 77.533 25.99 70.383 25.68 73.365 26.8 2.96

HTS00581 66.979 24.66 66.915 26.68 75.212 27.73 4.68

HTS05891 64.781 26.95 69.162 27.06 67.096 27.84 4.16

Comp.1192 63.872 26.86 65.870 27.55 64.419 27.09 4.15

doi:10.1371/journal.pone.0063030.t005

Figure 10. Identified hit compounds for chymase inhibition are overlaid on LB_Model, SB_Model1, SB_Model2, and SB_Model4,
respectively.
doi:10.1371/journal.pone.0063030.g010
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binding energy values of final hits are given in Table 5. Moreover,

the orientation and important interactions of the final hits with the

key residues within the active site of chymase are shown in

Figure 11. The analysis for binding mode of final hits within the

active site region of enzyme is presented below.

Binding mode of KM09155
This hit compound revealed very high GOLD fitness scores for

all three crystal structures of chymase as compared to other three

hits. KM09155 with maximum GOLD fitness score of 77.533 and

minimum binding energy of 26.88 kcal/mol established a

network of interactions with key amino acids like Ser195,

Lys192, Ser214, and Gly216. The sulfur atom of the N-phenyl-

2-sulfanylacetamide chemical moiety in KM09155 formed non-

bonded electrostatic interaction with the carbonyl oxygen atom of

Ser195. Carbonyl oxygen of N-phenyl-2-sulfanylacetamide also

interacted with the nitrogen atom of Lys192. Moreover, imper-

ative p…s interactions between the phenyl ring system of

KM09155 and the central carbon of Gly216 were also revealed.

Important hydrogen bonded interactions were also elucidated

between 4-methyl-4H-1,2,4-triazole ring of KM09155 and Ser195

and Gly216 amino acids. Although, KM09155 was revealed by

LB_Model from database, it also mapped key features of other

three structure-based pharmacophore models. Pharmacophoric

overlay of this compound upon all four models is depicted in

Figure 10.

Binding mode of HTS00581
This compound was predicted with top GOLD fitness score of

75.212 and binding energy of 27.73 kcal/mol. At the active site of

chymase, this compound has established various important close

contacts with key amino acids. For instance, carbonyl oxygen atom

of acetic acid group in HTS00581 hit compound fashioned

hydrogen bond interaction with oxyanion hole formed by Ser195

and Gly193 amino acids. The p…s interactions between the side

chain imidazole ring of His57 and piperidine moiety of hit

compound were also observed. This compound has gained

substantial hydrophobic interactions at the active site region of

enzyme. The SB_Model2 with four distinct chemical features

including one HBA, one NI, one HY, and one RA retrieved

HTS00581 hit compound from database with fitness score of 3.83.

The mapping of HTS00581 hit over SB_Model2 is illustrated in

Figure 10. Furthermore, along with the mapping of SB_Model1

and SB_Model4, the HTS00581 compound was also mapped over

LB-Model in order to find out, whether this hit compound

possesses the very basic chemical features which are present in

currently available chymase inhibitors. It mapped all the features

of LB-Model thus indicating the complimentary features that

facilitate strong enzyme-ligand binding interactions.

Binding mode of HTS05891
The binding mode of this hit compound at the active site of

chymase has illustrated various kinds of interactions such as

hydrogen bonding, p…cationic, and hydrophobic interactions with

key residues in the active site region. An important p…cationic

Figure 11. The molecular docking results. The binding modes and molecular interactions of hit compounds at the binding site of chymase
enzyme: (A) KM09155, (B) HTS00581, (C) HTS05891 from Maybridge database, and (D) Compound1192 from Chembridge database. The key active
site residues and inhibitors are shown in stick and ball-stick forms, respectively.
doi:10.1371/journal.pone.0063030.g011
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interaction between the 5-methylisoxazole ring of hit compound

and nitrogen atom of Lys192 was elucidated. The presence of this

electrostatic interaction lead to the binding orientation of hit

compound in more favorable way which instigated key interac-

tions with other key residues like Gly193 and Ser195. The oxygen

atom of carbonyl group in hit compound formed very close

hydrogen bond interaction to hydrogen atom of Gly193. Another

key hydrogen bonding interaction was also observed between

HTS05891 hit and Ser195 amino acid. Considerable hydrophobic

interactions were also observed between the hit compound and

active site of chymase. The HTS05891 hit was spotted by

SB_Model2 from database and the overlay of pharmacophoric

features of SB_Model2 on the compound is depicted in Figure 10.

Moreover, this hit compound mapped all the features of LB-

Model which contains essential chemical features present in

experimentally known potent chymase inhibitors. It also mapped

five features of the Sb_Model3. HTS05891 exhibited high GOLD

fitness scores for all three crystal structures of chymase used in this

docking study. The maximum GOLD fitness score of this

compound for chymase binding is 67.096 with the binding energy

of 27.84 kcal/mol.

Binding mode of compound 1192
With maximum Gold fitness score of 65.870 and binding energy

of 27.55 kcal/mol, this hit compound has established numerous

close contacts that lead to the important ligand-enzyme interaction

such as hydrogen bonding interactions with Gly193, Ser195,

Phe191 and hydrophobic interactions with Gly216 and Arg217

amino acids in the active site of the enzyme (Figure 11). The

oxygen atom of formic acid group present in compound1192 has

shown close hydrogen bonding interaction with the nitrogen atom

of Gly193. Hydrogen bonding was also observed between

carbonyl group and Ser195 amino acid which is an important

residue in the active site of chymase enzyme. Additional hydrogen

bonding interactions were also elucidated between Phe191 and

Arg217. Compound1192 was marked from database by two

pharmacophore models including SB_Model1 and SB_Model4.

This hit compound also mapped all the pharmacophoric features

of SB_Model2. However, it missed one of the HBA features of

LB_Model and mapped five features out of six for this

pharmacophore model. As, compound1192 has mapped well four

structure-based and ligand-based pharmacophore models, there-

fore, it indicates the presence of features imperative for strong

enzyme-ligand binding interactions. The overlay of all four models

on hit compound1192 is depicted in Figure 10.

Density Functional Theory (DFT) Calculations
Electronic attributes. According to Frontier Orbital Theo-

ry, the shapes and symmetries of the HOMO and LUMO are

crucial in predicting the reactivity of a species and the

stereochemical and regiochemical outcome of a chemical reaction.

Consequently, the outcome of these quantum chemical descrip-

tors, direct us to distinguish the reactive sites and substituent

influence on electronic structure of the compounds. Maps of

HOMO and LUMO are plotted onto the molecular surfaces of all

four hit compounds along with most active compound 1 of the

training set (Figure 12). Inspection of variations in these maps of

molecular orbitals indicates that electron exchange and electron-

transfer ability of the compounds may have a role in their anti-

chymase activity. The HOMO map delineates the area that is

most electron-sufficient. Analysis of HOMO maps of compounds

illustrate that HOMO molecular orbitals are located on aromatic

and the heteroaromatic rings which contain the heteroatoms such

as nitrogen and oxygen. While, inspection of LUMO plots

demarcated the regions that can act as electron acceptors to the

active site of the chymase. Amide groups and heteroaromatic rings

were the most often groups in hit compounds occupied by LUMO

orbitals. These results are quite consistent with the docking

analysis which illustrates the participation of these moieties in the

key ligand-receptor interactions. A previous experimental study

also inferred that introduction of heteroatoms to the inhibitor

compound enhanced its stability in human plasma [18]. For

instance, the placement of an ethoxy group in compound 2

instigated its stability. Thus, the analysis of two frontier orbitals

clearly indicates an important role of charge-transfer interactions

with the binding site in the receptor for potent activity. Electron

donating or withdrawing groups in the compounds may be

responsible for an increase or decrease in the orbital energies by

allowing modulation of the molecular electronic ‘‘band gaps’’.

Molecular electrostatic potential (MESP) profiles
Electrostatic potential characteristics are considered to be key

features of molecules through which it recognizes its receptor. The

molecular electrostatic potential surface MESP which is a plot of

electrostatic potential mapped onto the iso-electron density

surface, simultaneously displays molecular shape, size and

Figure 12. Plots of HOMO and LUMO of most active compound
1 along with potent hits KM09155, HTS00581, HTS05891 and
Compound1192.
doi:10.1371/journal.pone.0063030.g012
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electrostatic potential values. MESP mapping is very useful in the

investigation of the molecular structure with its physiochemical

property relationships. Nam et al. reported their discovery that

electrostatic interactions accounted for the majority of the rate

acceleration in the mechanism of RNA transphosphorylation in

solution catalyzed by the hairpin ribozyme [38]. Moreover, the

electrostatic funnel illuminated from three-dimensional mapping

of the electrostatic potential was reported by Dehez et al., driving

the diphosphate nucleotide rapidly toward the bottom of the

internal cavity of membrane-protein mitochondrial ADP/ATP

carrier by forming a privileged passageway [39]. Taking into

account these findings comprehensively, we assumed that the

electrostatic potential of the inhibitor also played a important role

in the binding and interaction with chymase together with orbital

energy and consequently influenced the inhibition effect. The 3D

MESP plots of hit compounds were superimposed inside the active

site of chymase (Figure 13). The coloring area of the surface

represents the overall molecular charge distribution with the

electrostatic potential. As for the compounds in this study, the

electronegative potential (MESPmin) was coded with red on the

MESP maps while the interpolated blue map represents the

electropositive potential (MESPmax) of a strongest repulsion. The

predominance of green region in the MESP surfaces corresponds

to a potential halfway between the two extremes that are indicated

in red and blue colors, respectively. The MESP plotted onto

constant electron density surface for KM09155 hit showed the

most electropositive potential region at the methyl of 4-methyl-4H-

1,2,4-triazole ring and the most electronegative potential region

was spread over the oxygen atoms of the both carbonyl groups

present in KM09155. In other hit compounds, hydrogen atoms

attached with heteroatom like oxygen and nitrogen are the regions

which bear the maximum brunt of positive charge. Moreover, a

gradual depletion of both red and blue areas and an increase of

green color around the aromatic rings were also observed. On the

whole, appearance of both most electronegative and electropos-

itive regions along with moderate section in hit compounds

demonstrates that these regions can act as electron donors or

acceptors to the active site of the chymase thus making these

compounds very reactive. Docking results of these compounds also

signified the participation of these areas in the imperative

interactions with the key active site residues such as Ser195,

Gly193, His57, Tyr215 and Phe191 of the enzyme.

Conclusions

A deriving pharmacophore model from the three-dimensional

structure of a target protein provides helpful information for

analyzing protein-ligand interactions and further improvement of

ligand binding affinity. While, pharmacophore model derived

from already known inhibitors facilitates in the identification of

essential chemical features present in experimentally known potent

chymase inhibitors. To find novel and potent chymase inhibitors

and to provide a new idea for drug design, we used both ligand-

based and structure-based methods to perform the virtual

screening (VS) of commercially available databases. As different

Figure 13. Differential maps of MESP for final hit compounds KM09155, HTS00581, HTS05891 and Compound1192. The red and the
blue color represent the electronegative and electropositive potentials whereas the green represents a potential halfway between the two extremes.
doi:10.1371/journal.pone.0063030.g013
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pharmacophore models generated from different crystal structures

may represent different inhibitor binding modes. Therefore,

multiple pharmacophore-based virtual screening approach can

be more efficient way in identification of potent hits that can bind

to various bioactive conformations available in the active site of

enzyme. X-ray crystallographic data of chymase in complex with

different inhibitors were used to generate four structure–based

pharmacophore models. A common feature pharmacophore

model was also developed from experimentally known inhibitors.

After successful validation of developed pharmacophore models, a

smart virtual screening strategy was conducted by employing all

pharmacophore models to retrieve hits with novel chemical

scaffolds. Drug-like hit compounds were subjected to molecular

docking using GOLD and AutoDock to evaluate compounds for

important binding site interactions and affinity. Finally four

structurally diverse compounds with high GOLD score and

binding affinity for several crystal structures of chymase were

selected as final hits. Identification of final hits by four different

pharmacophore models necessitates the use of multiple pharma-

cophore-based approach in VS process. Quantum mechanical

(QM) calculation is also conducted for analysis of electrostatic

characteristics of compounds. Inspection of the molecular

electrostatic potential surfaces and frontier molecular orbitals

successfully explained their significant role in driving the inhibitor

to adopt a suitable bioactive conformation oriented in the active

site of enzyme. In general, this study is used as example to illustrate

how multiple pharmacophore approach can be useful in

identifying structurally diverse hits which may bind to all possible

bioactive conformations available in the active site of enzyme. The

present study may lead to the knowledge of chemical properties

which are likely to improve activity of already known chymase

inhibitors and may also allow the modification of the structure of

new chemical entities (drug) for the improved bioavailability. The

application of multiple pharmacophore-based VS can also be

extended to the development of fast-follower drugs, where more

than one high-quality crystal structures of the target in complex

with potent ligands are already available. Therefore, the multiple

pharmacophore modeling approach can be very useful in virtual

screening of any chemical database for the development of new

potent inhibitors for the enzyme.
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